J. Functional Programming 3 (3): 283-313, July 1993 (© 1993 Cambridge University Press 283

Program transformation with metasystem
transitions

VALENTIN F. TURCHIN
The City College of New York

Abstract

A new program transformation method is presented. It is a further refinement of supercom-
pilation where the supercompiler is not applied directly to the function to be transformed,
but to a metafunction, namely an interpreter which computes this function using its definition
and an abstract (i.e. including variables) input. It is shown that with this method such tranfor-
mations become possible which the direct application of the supercompiler cannot perform.
Examples include the merging of iterative loops, function inversion, and transformation of
deterministic into non-deterministic algorithms, and vice-versa.

Capsule review

Supercompilation is a program transformation method that can achieve partial evaluation,
and is in some respects more powerful.

Turchin presents a method to improve the transformational power of supercompilation
without modifying the subject program or the transformation system. The essential idea is
to insert an interpretive layer between the subject program and the transformation system.
The motivation is to increase the power of the overall program transformation, allowing
transformations which the underlying system cannot achieve.

Since the interpreter can take a more abstract view of the computation carried out by
the object program and use various rules on the abstract computation histories (associativity,
distributivity, unwinding), the introduction of the interpretive layer can lead to improvements
outside the scope of ordinary supercompilation.

It is an instance of applying the principle of metasystem transition to program transforma-
tion. The potential of the method is shown by giving examples including function inversion
and merging iterative loops. Although done by hand, the derivations of the present paper can
be automated.

The paper functions as a gentle introduction to supercompilation with specific technical
material introduced by need: the language Refal, Refal graphs, walk grammars, metacoding
and operations on graphs.

1 Introduction

In this paper we present a program transformation method which is a further devel-
opment of supercompilation as described in Turchin (1986). To express symbolically
what is new in this method, we represent as S, > S; the relation of S; being a meta-
system with respect to S, which means that S, examines, controls, and manipulates

12 FPR3

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

284 V. F. Turchin

§1. Creation of a metasystem is a metasystem transition. We understand functions as
machines that manipulate data, so if F is a function, and D its data, the relation F>D
holds. The supercompiler (Scp) runs the machine which evaluates a call of function
F with unknown values of some variables and constructs a model of this machine
by finding a self-sufficient finite set of the machine’s configurations and transitions
between them. This model becomes a new program. The supercompiler machine is a
metasystem with respect to the function machine: Scp>F>D. The construction and
use of a supercompiler is a metasystem transition.

Our new method also depends on supercompilation. But instead of just applying
Scp to function calls, we make one more metasystem transition: we transform F into
the input for a certain interpreter Int, and apply Scp to Int: Scp>Int>F>D. As
long as the interpreter is correct, the resulting program defines a function equivalent
to F. (We say equivalent, and not just identical, because supercompilation, as we
use it, may lead to an extension of the domain of the function; our equivalence is,
actually, a partial ordering relation preserving semantics in the minimal domain.)

It is a surprising fact that this, seemingly trivial, operation radically increases
the power of the program transformer, allowing such transformations which the
supercompiler alone, applied directly to function calls, cannot perform. Moreover,
since Int is itself a function, we can again make a metasystem transition and put
another Int over it. This may be repeated any number of times creating schemes of
the form:

Scp>Int>--->Int>F>D

It is possible that further metasystem transitions may show even better perfor-
mance, but this is hard to check manually. (At the moment of this writing the
supercompiler we have has not yet been coupled with an interpreter).

The formalism we have developed allows for what in (Turchin, 1977) is called
the stairway effect: a ‘mechanical’ way to repeat metasystem transitions. According
to the view developed in (Turchin, 1977), the stairway effect is the essence of the
phenomenon of evolution; to make mechanical intelligence, we must be able to
make repeated metasystem transitions in the machine.

To see why the metasystem transition helps, we must say more about the inter-
preter Int. Its argument is not just a program for F, but a formal object which
can be used as a generator of all possible computation histories of a call of F.
Generally, this is a context-free grammar, but in the case of a regular grammar it
is more convenient to represent it by a regular expression. Computation histories
produced by the grammar or the regular expression are abstract, i.e. may include free
variables. When we define the interpreter, we endow it with the power to analyze
and use the set of all abstract computation histories in various ways. The general
principle is that when an input value is given to Int, it picks up from the whole
set of abstract computations that computation which will take place with this given
input. However, the way Int looks for this specific computation history may vary.
It can examine possible computations not only in the order in which the process of
computation normally proceeds, i.e. from left to right, but in the opposite direction

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 285

(see two kinds of loop unwinding in Section 5). It also may analyze some parts of
computation in one direction, while others in the other.

It is this ‘clever’ interpreter which is supercompiled in order to obtain a finite
program from a set, generally infinite, of abstract computation histories.

When the supercompiler is applied directly to F, it follows and oversees the work
of F; the nodes of the graph it constructs are defined by arguments of F. In the
metasystem transition from F to Int computation histories of F become arguments of
Int. Now, what the supercompiler analyses and generalizes is computation histories
of F, not just its arguments. Thus the transformation of the algorithm may be much
deeper than it is possible in a direct supercompilation.

In Section 2 we define the language we use, as well as a brief exposition of
supercompilation. The language is Refal, and we use it in two forms: Refal pro-
grams, which are aimed at the human user, and Refal graphs, which are subject to
transformations. In Section 3 we introduce context-free grammars which generate
the sets of all possible walks in a Refal graph. Section 4 describes how to do
a metasystem transition from a machine to a metamachine. We introduce objects
called metavariables. Section 5 defines the metafunction Int which is placed between
the function to be transformed and the supercompiler. In Section 6 we formulate
our method of program (graph) transformation. The most significant example, the
merging of iterative loops, is presented in Section 7. The transformation is done in
three stages, in the course of which the original deterministic algorithm becomes
non-deterministic, and then deterministic again. Section 8 gives a simple example of
function inversion. The conclusions are made in Section 9.

Speaking of related work, there is a huge literature on program transformation,
the closest to our work being the work on partial evaluation (or specialization),
which is one part of what the supercompiler is doing. By self-application of a
partial evaluator one can automatically obtain compilers and compiler generators
(Futamura, 1971), (Turchin, 1980). This was first implemented in programs by N.
Jones and his group (Jones et al., 1985, 1989), see also Romanenko (1988). An
implementation of an automatic autoprojector (i.e. self-applicable partial evaluator
for a higher order language (a subset of Scheme) is described in (Bondorf, 1990).
These transformations involve metasystem transitions. R. Gliick (1991) provided
examples of multiple metasystem transitions in partial evaluation. For a bibliography
on partial evaluation up to 1988 see Sestoft and Sondergaard (1988). Metasystem
transition in programming is also referred to as metaprogramming (Bundy and
Welham, 1981; Bowen and Kowalski, 1983; Takeuchi and Furukawa, 1986; Safra
and Shapiro, 1986).

Driving and looping back in supercompilation are close relatives of Burstall-
Darlington unfolding and folding, respectively (Burstall and Darlington, 1977),
which have been taken up by many researchers (Partsch and Steinbrueggen, 1983).
The use of generalization in supercompilation is similar to that in Boyer and Moor
(1975).

Several techniques similar to supercompilation appeared lately. ‘Online’ partial
evaluation (Gliick, 1991; Weise et al, 1991), as distinct from the ‘offline’ method,

12-2

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

286 V. F. Turchin

which includes a preliminary binding-time analysis, is, essentially a variety of super-
compilation.

There are many parallels between the program transformation work using func-
tional languages, like we do, and the similar work based on Prolog. In particular, the
transformational method in Proietti and Pettorossi (1990, 1991) is an exact analogue
of supercompilation carried over from the functional language to Prolog.

2 Refal programs and graphs

The language we use is the same as used in the supercompiler: Refal. A systematic
definition of Refal, Refal graphs, and the basic operations on Refal graphs can be
found in Turchin (1980, 1986). In the present paper the exposition is based on a few
examples. We give a brief definition of Refal programs and graphs (in the volume
sufficient for this paper), followed by two examples of supercompilation. The reader
is referred to Turchin (1986) for more rigorous and detailed definitions. For more
information about Refal, and, in particular, metacoding see Turchin (1989).
Consider the following simple program in Refal:

* Program 1 (iterative)
<F x> = <Fb [], <Fa [],x>>

<Fa y,‘a’x>
<Fa y,[1> =y

<Fa y‘b’,x>

<Fb y,‘b’x> = <Fb y‘c’,x>
<Fb y,[1> =y

Refal is a strict functional language with very simple semantics. A function
definition is a list of equations called sentences, where in the left side there are
function calls for various cases of arguments represented by patterns, and in the
right side there are replacements for these cases expressed in terms of the variables
which appear in the pattern. Lines starting with an asterisk are comments.

Refal functions are defined on the domain of all object expressions, which are
composed from symbols and parentheses, with parentheses properly paired according
to the usual rules. Symbols are characters, numbers, and symbolic names. Characters
and sequences of characters are enclosed in quotes when it is necessary to distinguish
them from symbolic names, numbers, and special signs, e.g. ‘a’, ‘a+bc’, ‘a’+‘be’;
the last two strings of characters are the same. Symbolic names start with a capital
letter, e.g. F, Pred3, which distinguishes them from variables, which are represented
by symbolic names starting with a lower case letter, e.g. x, y3. Where it is necessary
for readability, the metasymbol [] is used for the empty expression, a string of length
zero. Otherwise it is represented by just nothing; thus () and ([]) represent the
same expression.

An expression which may include variables is referred to as a pattern. Thus (x) is
a pattern expression standing for any expression enclosed in parentheses; ‘a’tail
is any expression starting with the character ‘a’.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 287

Function calls in Refal are delimited by activation brackets < and >; <F x,y> is a
function F of x and y.

Pattern matching and substitution are the only operations in Refal. We denote
the matching of an object expression E to a pattern P as E : P. Its result is either
a failure or the assignment of some values to the variables in the pattern P. For
instance, the matching ‘dogs’:‘d’x‘s’ ends successfully with ‘og’ as the value of
X.

The semantics of Refal is defined by the Refal machine which executes Refal
programs. The Refal machine works by steps, each step being an application of one
sentence, namely the first applicable one (in the order they are listed). A sentence is
applicable when its left side can be matched to the argument of the function call.
The sentence is used by substituting the right side for the function call as matched
to the left side.

In the program above, function Fa goes from left to right through its argument,
which is assumed to consist of letters ‘a’ only, and replaces every ‘a’ by ‘b’.
The result is accumulated in the variable y, initially empty. Function Fb works in a
similar fashion, transforming a b-string into a c-string.

While a Refal program is convenient to write and read, a better — for automatic
program transformation - representation of an algorithm is a Refal graph, which
is nothing but a graph of states and transitions of a Refal machine with a cer-
tain program in its memory and a certain initial configuration to be evaluated. A
configuration is a general Refal expression which represents the current state of
computation. It may include free variables, thus standing for a set of exact states of
the machine. The nodes of a Refal graph are configurations. Its edges are operations
on configuration variables which result in the jumps from one state to another. Refal
graphs can be seen as flow-charts for Refal programs. In fact, it is the language of
Refal graphs that is our working language. Refal programs are used only as initial
definitions, because they are more convenient for the user.

To show Refal graphs, we convert the definition of the function Fa from Program 1
above into the graph form:

[1] = <Fa x,y>

[1] x—‘a’; y‘b’«y [1]

[+] x—[]; ye<out

Here the first line is not a part of the graph proper; it establishes the connection
between graph terms (numbered configurations) and program terms. When a con-
figuration notation is followed by equality sign, it is its definition; otherwise it is its
development, i.. the graph defining its evaluation.

In our graph, x—‘a’x is a contraction for x. We use two kinds of operations
in Refal graphs, which are special cases of the general operation of matching:
contractions and assignments. A contraction is the matching v : P, where v is a
variable. It is denoted as ¥ — P. An assignment is a matching where the pattern
is a single variable v; it is denoted as E « v. In both cases the values of the
variables on the left side of the operation are assumed to be known, so that the
left side can be reduced to an object expression (i.e. without variables) before the

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

288 V. F. Turchin

operation. The values of the variables in the right side are defined in the execution
of the operation. Contractions combine conditions with computation of values. The
contraction v — P checks that the value of v can be matched to P, and if so, assigns
values to the variables in P. Assignments are unconditional. Both operations can be
seen as substitutions for v, which is indicated by the direction of arrows. Variable
v belongs to the adjacent configuration: the start of the transition in the case of
contraction, and the end of it in the case of assignment.

The contraction x— ‘a’x includes x on both sides. This means that x is redefined
in the operation. If its initial value was ‘aaa’, it becomes ‘aa’. The sign [+] stands
for the beginning of another edge from the configuration above (branching). The
special variable out stands for the final result of computation.

Now you can read the graph as follows: if x starts with ‘a’ (x—‘a’) then add
‘b’ to y (y'b’«y) and call [1] recursively. If x is empty, the final value of y is
assigned to out.

Program 1 does its job by operations on variables in the same recurrent config-
uration (tail recursion, while loop). Compare it with the following program which
displays recursion proper:

* Program 2 (recursive)

<F x> = <Fb <Fa x>>
<Fa ‘a’x> = ‘b’<Fa x>
<Fa {I> =10

<Fb ‘b’x> = ‘Cc’<Fb x>
<Fb [1> = [1;

With both programs, we would like to do optimization by merging two loops into
one. With Program 2 this goal is easily achieved by the supercompiler described in
Turchin (1986). We shall give a brief summary of this procedure, referring the reader
to that paper for details.

The supercompiler starts with a given initial configuration of the Refal machine,
which in our case is a call of function F with an arbitrary argument:

(1] = <F x>

Now the supercompiler develops the configuration [1], i.e. uses the Refal machine
on it in accordance with Program 2. The first step does not depend on the argument
x and results in the configuration:

[2] = <Fb <Fa x>>
The graph at this stage is simply
(1] [2]

There is an implicit edge here from [1] to [2] which carries no operations: an
unconditional transition from one configuration to another.

Even though the Refal machine is defined in the applicative way (the inside-out
order of evaluation), and the final result of supercompilation is executed, again,

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 289

as an applicative program, the supercompiler uses lazy, i.e. outside-in, evaluation,
unless it leads to a repeated computation of the same expression. In the cofiguration
[21, the supercompiler tries to make a step in the evaluation of Fb, but immediately
finds this impossible and switches to the inner function call of Fa.

A step in this call requires the driving of the free variable x through the definition
of Fa. A branching is created: if x starts with ‘a’, the first sentence will be used; if
it is empty, the second sentence. The result of the step is the graph:

[1] [2] x—fa’x [3]
[+] x—»[; [D<out

[3] = <Fb ‘b’<Fa x>>

The next step of the Refal machine is the computation of the function Fb in [3].
The result is:

‘c’<Fb <Fa x>>

It is a composite expression including a passive part ‘c’ and an active part, the
composition of two function calls identical to [2]. Thus, the configuration [2]
reappears, resulting in a recursive loop. The second branch, x— [1, produces []. The
result is the following program:

* Improved Program 2

<F ‘a’x> = ‘c¢’<F x>

<fF [1> =101

The original program required two passes through the argument-strings; the
transformed program does the job faster, in one pass. Supercompilation of Program 2
resulted in optimization. But when we try to achieve an analogous transformation
by supercompiling the iterative Program 1, we fail.

Indeed, let us try using the same technique as with Program 2. In one unconditional
step the starting configuration becomes:

[2] = <Fb [],<Fa [],x>>

The supercompiler tries to evaluate Fb, but finds it impossible before Fa is evaluated,
at least partially. So, one step is made in the evaluation of Fa.The first branch, with
the contraction x— ‘a’x, leads to the configuration:

{3] = <Fb [],<Fa ‘a’,x>>

In this configuration, Fb cannot be evaluated, again. Comparing [3] with [2],
the supercompiler finds it necessary to generalize [] and ‘a’ as a new variable y,
otherwise the process of driving would be infinite. The generalized configuration
becomes:

[2¢] = <Fb [1, <Fa y,x>>
Then the supercompiler reduces [2] to [28] by the assignment []«y:

(11 [2] Dey [28]

and develops the state [28], which loops on itself, so the supercompiler has no

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

290 V. F. Turchin

choice other than to declare it basic, i.e. a necessary part of the final program. Going
on along the branch where x— [], it makes another generalization and loops back
to the second basic configuration:

[3] = <Fb y1,x1>
The resulting graph (after merging [1] and [2] and renaming the states) is:

* The graph for Program 1
(1] ey [2] x—‘a’x; y'b’«y [2]
[+] x—>[1; yex1; [Dey1 [3]
[3] x1-5‘b’x1; yifc’«yl [3]
(+] x1—>[]; yleout

which represents exactly the same algorithm as the original program.

Thus supercompilation fails to make optimization in this case. However, as we
shall see in Section 7, with a metasystem transition to computation histories, the same
algorithm of supercompilation performs automatically the desired optimization,
merging two iterative loops into one.

3 Walk grammars

We introduced a Refal graph as a flow-chart that describes one step of the Refal
machine. Now we generalize it to describe any number of steps. Then a graph can
be seen as a collection of computation histories of various lengths. Let us take the
definition of function Fa from Program 1.

<Fa y,‘a’x> = <Fa y‘b’, x>
<Fay, [I> =y

The graph for it is:

[1] wy; [1]
[+] wy

where the transitions (clementary walks) are:

wp = x—‘a’x; y'bley
wy = x—[]; yeout

There are two computation histories of length 1 (in terms of steps): w; [1] and
ws. The first is unfinished, the second finished. The unfinished computation can be
continued by any of the two elementary walks starting at [1]; we have wyw; [1]
and w;w,. This can be repeated infinitely, generating all possible finished walks in
the original graph. They are of the form wiw,, with all natural numbers n.

By a class we shall mean a set expressible as a Refal pattern. For each finite walk
w, finished or unfinished, there is a class of input data such that every member of this
class, when used as the input data, results in a computation history which is exactly
w. We call these classes input neighborhoods. Since all elements of a neighborhood
have the same computation history, they are, indeed, close to each other in an

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 291

important way. To take an example, the walk wyw; has the input neighborhood
‘aa’x for the argument x, and y for y (the argument y is arbitrary; the choice of a
walk does not depend on it). We also can speak of output neighborhoods, the one
in this example being <Fa y‘bb’,x>.

Walks can be simplified by equivalence transformations. The basic formal rules
of operating with walks can be found in Turchin (1986). They include composition
rules, commutation rules, and the rule of clashing. Here we shall do transformations
as we need them, semiformally, in the hope that the validity of the rules is obvious.
Thus in the example above we can do the transformation:

wiwp = x—‘a’x; y'bley; x—fa’x; y'bley [1]
= x—‘a’x; x—‘a’x; y'bley; y'bley [1]
= x—‘aa’x; y‘bb’«y [1]

We have used a commutation rule in the first step of transformation, and a compo-
sition rule in the second. The resulting walk has the form of a Refal graph which in
one step does the job that the original program did in two steps. The input neigh-
borhood is as stated above, and so is the output neighborhood after we substitute
the assignment for y into [1].

In order to try a given walk with a given input, we simply add the assignments
for the input variables at the beginning of the walk, e.g.

‘aaa’«x; [ley; x—‘aa’x; ybb’«y [1]
After the obvious commutation we have a pair of operations:
‘aaa’«x; x—‘aa’x
We refer to it as a clash of an assignment and a contraction for the same variable.

The resolution of a clash is in matching of the assigned value to the pattern in the
contraction:

‘aaa’:‘aa’x = ‘a’«x

This clash has been successfully resolved, with ‘aa’ as the new value of x. After
combining assignments the walk is reduced to:

‘a’e«x; ‘bb’«y [1]

Suppose we try the same walk, but with ‘a’ as the initial value for x. Then we
have the clash:

‘a’:‘aa’x

which has no resolution. With this initial data this walk is unfeasible. It is easy to
see that for the finished walk wiw, there is exactly one value for x with which the
walk is feasible, namely ‘aaa’. With all other data, as well as with all other walks
for this data, the walk will be unfeasible. This is how the selection of a needed walk
takes place.

Unfeasible walks may appear not only because of input data, but also from within
the algorithm itself. Take this walk in the graph for Program 1:

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

292 V. F. Turchin

(ey; x—>‘a’x; yb’ey; x—[]; yex1; x1-5[]; yleout

After combining y ‘b’ «y and y«x1, we have an assignment for x1 which clashes
with the contraction for it:

y'blex1; x1—-[] = y‘b’:[]
and is unresolvable. Only those finished walks are feasible where the number of
loops in Fa is the same as in Fb.

We shall be mostly interested in finished walks, so when saying ‘walk’ we shall
mean a finished walk.

The set of all syntactically possible (i.e. without regard for feasibility) walks in a
graph can be defined by a context-free grammar where active configurations of the
Refal machine become nonterminals, while sequences of contractions and assign-
ments make up terminal symbols. Indeed, each node represents one configuration,
the number of different configurations is given in advance and thus is finite, and
each node representing the same configuration is the root of the same subgraph.
Transitions starting from a configuration [i] become grammar rules for the non-
terminal S;. In particular, the grammar for the graph of Fa, if we use the above
notation for transitions, is:

S1 = w181
S = wy

The grammar for the whole Program 1 (see its graph in Section 2) is:

Si = [ey; S

§$ = x-‘a’x; ybley; &

$ = x—]; y—x1; [Neyl; S
§3 = x1-b’xl; ylc’«yl; S;
§3 = x1-[]; yleout

Subgraphs in walks will be enclosed in square brackets. Thus the grammar for
the improved Program 2 is:

S1 = Sz
S = x-‘a’x; [S$3]; ‘c’out—out
S = x—[1; [Jeout

The grammar for Fa is regular. Therefore, the set of walks it represents can be also
rendered by a regular expression. It is wiw,. The grammar for the whole Program 1
is also regular; the grammar for Program 2 is not.

In the rest of this paper we confine ourselves to Refal programs for which the
corresponding walk grammar is regular. All sentences in such a program must
have a right side which either is completely passive (no function calls, a terminal
branch) or is a call of one function, without nested calls. We refer to the subset of
Refal which observes these restrictions as flat Refal. This subset is algorithmically
universal, which follows from the fact that the Universal Turing Machine can be
defined in it. Thus every Refal program can be reduced to a program in flat Refal,
and our method of program transformation, where complete sets of finished walks
are represented by regular expressions, has a full generality.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 293

4 Metavariables

Variables in Refal expressions are free. <F x> stands for a call of F with an
unspecified argument x. Variables in Refal graphs are also free, i.e. free to take
any values. We shall refer to free variables as variables of level 0. In metasystem
transitions, variables of other levels emerge. The program Int, which interprets or
transforms function F must deal with the graph of F, in particular with its variables
and function calls, as with certain fixed objects, pieces of data. At the same time
we may wish, when calling Int, to leave some parts of the argument unspecified,
i.e. represented by free variables. We must distinguish these free variables from the
variables in the graph. We shall say that a variable is at the reference level, if it is
free. A function call is at the reference level, if it will be evaluated when submitted
to the Refal machine. The syntax of variables and function calls, as it is defined in
Refal, is the syntax of the reference level.

There are two ways of maintaining the separation between different metasystem
levels: we can fix either the reference level, or the starting level.

With the fixed reference level method, which is currently used in the Refal system,
the reference level is assigned index 0 and is expressed in terms of the regular Refal
syntax. Thus such variables as x are always free by definition. When a metasystem
transition takes place, the general expressions which are to become objects of work
for a higher level function are metacoded, i.e. converted into object expressions using
a certain standard procedure. This procedure {(metacode) may be different. In the
present implementation of Refal, for example, the e-variable x becomes an object
expression ‘*EX’. The variables converted in this way are said to be at the level —1.
After one more metasystem transition, this variable, which is now at the level —2,
becomes represented by ‘*VEX’.

With the fixed starting level, metasystem transitions are performed differently. We
do not metacode the existing variables, but simply raise the reference level by one,
so that it again becomes the top level of the metasystem staircase; if the index of the
top level was r it becomes r + 1. The variables of level r, which were free before the
metasystem transition, are not free any more, but are treated as data. The variables
that should be free on the new level r + 1 will be referred to as metavariables. They
must be syntactically distinguishable from regular Refal variables and metavariables
of other levels.

While metacodes of variables have negative level indexes, metavariables have pos-
itive indexes, but the index of the machine in control (ie. function being evaluated)
is always greater by one than the level of the machine controlled (i.e. function being
transformed). The fixed reference level system does not require any extensions of
the language Refal as described above, because the metacoded variables can be
represented by Refal expressions composed of characters and symbolic names. In
contrast, the fixed starting level system requires extension of the basic elements of
Refal by a potentially infinite set of special objects: metavariables. The rules of the
game must also be updated because the reference level is not fixed any more; it
becomes part of the semantics of Refal expressions. Depending on the reference
level, different metavariables will be treated as free.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

294 V. F. Turchin

Both systems of the nomenclature in metasystem transitions can be implemented
in the computer and have their advantages and drawbacks. The fixed reference
level system requires a metacode transformation of the whole Refal expression in
metasystem transitions. With the fixed starting level system, the interpretation of
Refal objects depends on the current index of the reference level. In particular, the
program we obtain in the end will be expressed in terms of some reference level
r, and to convert it into a normal Refal program it will be necessary to perform r
metacode transformations (this can be done in one pass, of course). The language
Refal can me extended so as to include variables of different levels.

In the present paper we use the fixed starting level system, as it makes it easier
for the reader to follow. We shall need only one level of metavariables, and we
distinguish them by putting # in front of the variable name, e.g. #x.

5 Graph interpreter

A Refal graph is a product of a Refal program and an initial configuration. It defines
a function of the variables which enter the initial configuration: input variables. The
interpreter Int is a function which uses the graph to actually compute the value of
the function when the values of the input variables are given. But we define Int so
that its argument is not literally the recursive Refal graph itself, but a condensed
representation of the set (usually infinite) of all finished walks in the graph in the
form of a regular expression.
As an example, let us take the function <Fa y,x> as defined in Program 1:

<Fa y,‘a’x> = <Fa y‘b’,x>
<Fa y, [1> y

]

and the most general call <Fa y,x> as the initial configuration. Then the total set
of walks is represented by the regular expression L*w, where

L= x—-‘a’x; y'b’«y
w= x—[]; ye<out

(From now on, to make the notation easier to grasp, we use L for walks appearing
in loops, and w for the others, with subscripts when necessary).

We shall use the sign + to separate alternatives. Our regular expression can be
thought of as the infinite sum:

w+ILw+LLw+ LLLw+---

The function Int makes an equivalence transformation of a sum of walks. As
long as the input variables are object expressions (not including variables), the result
of this transformation of each walk is either failure, when this walk could not be
taken with the given inputs, or the walk of the form E «out, where E is the desired
value of the call. Function Int, as an interpreter, at this moment outputs E as
desired result. In the final Refal graph for <Int ...> this result must be assigned to
the output variable out. However, the reference level of Int is 1, not 0. The output

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 295

variable at this level must be written as #out. Thus we have the rule:
<Int E<out> = E<iout

The empty result [] represents the absense of feasible walks.
The following properties of additivity and distributivity of the function Int are
certain:

<Int Gi+Gy> = <Int G;> + <Int Gy>

<Int G(G; + G3)> = <Int GG; + GGy>
<Int (G, + G)G> = <Int GG+ G,G>

where G, G|, G, are any sums of walks (graphs).
Also:

<Int G + [1> = <Int [] + G> = <Int G>

To compute F for a given set of input values, say ‘aa’ for x and [] for y, we
make the corresponding assignments to the input variables and put it in front of
the graph, or rather the regular expression, and then call Int:

<Int ‘aa’«x; [Jey; L'w>

Now all walks start with these assignments (distributivity). Seeing the regular
expression as an infinite sum, we can compute Int for each walk:

<Int ‘aa’«x; [Jey; w> = [

<Int ‘aa’ex; [Qey; Lw> = [

<Int ‘aa’e«x; [Jey; LLw> = ‘Db’ «#out
<Int ‘aa’x; [J«y; LLLw> = (]

All the remaining walks produce [], so the final outcome is ‘bb’. If the Refal pro-
gram were non-deterministic, the result of Int could be a sum of final assignments,
possibly infinite.

With inputs given without indeterminacy, Int can be defined as a straightforward
procedure executing the operations on walks from left to right. This way, however,
will not necessarily be the most efficient. For example, if there is a definitely
impossible clash (like ‘a’:‘b’) inside a walk, there is no sense to execute the
preceding operations; the result will be [] anyway. What is more important, such
a walk may include undefined elements, and the result still may be determined.
Sometimes it may be possible to get a speedy answer by examining the walk from
the end, or transposing and combining various operations in it.

Thus, function Int is, essentially, a set of equivalence transformation rules; the
order in which they are used may vary according to the strategy chosen, which may
be further adjusted to current needs by the supervising program of the supercompiler.
In the present paper we do not formally define our strategy of transformation; we
shall only formulate two general guiding principles on which it is based. The author
is confident that using these principles it would not be difficult to write a program of
automatic transformation sufficient for all the examples presented here, and more.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

296 V. F. Turchin

But of course, this statement will be proven only when such a program is actually
written.

e The first principle is the usual method of recursion: pick up pieces of the
arguments (i.e. walk operations), combine them using equivalence relations,
and try to reduce what remains to the same form as was there before the
separation of the pieces.

e The second principle is to pick up pieces in such a manner that clashes, appear
between them. The reason for this rule is that in transformations of walks it is
clashes that represent steps of the Refal machine. The general structure of an
elementary walk, i.e. the one desribing one step of the Refal machine, is this:
a series of contractions for the variables of the old configuration, followed by
a series of assignments for the variables of the new configuration. When one
walk is followed by another, the assignments of the first walk clash with the
contractions of the second. When we chain walks according to the grammar
of a Refal graph, we only schedule computing operations, without actually
performing them. We perform computation when we resolve clashes and make
substitutions. The more clashes we have resolved, the greater is the part of
computation that we have performed during program transformation.

When we use regular expressions to represent sets of walks, there are two ways to
chip off a piece: from the beginning and from the end. Accordingly, we introduce
two rules of handling regular expressions to be used by the interpreter Int. We call
them unwinding rules, and they can be applied independently to any loop (closure,
Kleene star) in the regular expression.

(a) Left unwinding: GL"G, = G{LL*G, + G;G;
(b) Right unwinding: G,L*G, = G, L" LG, + G,G;

Here G; and G, are arbitrary regular expressions. The choice of one of the rules is
defined by the second general principle mentioned above. If G|L contains a clash
(which will be the case if G; includes an assignment for some variable, while the
loop L includes a contraction for the same variable), then left unwinding should be
tried. If LG, has a clash, this is a reason to use right unwinding. It is possible, of
course, that both operations result in a clash.

The simplest interpretation strategy is a direct interpretation in applicative order.
It works as follows. We start from the input assignments at the beginning of the
graph, scan the walks and use the commutation and composition rules to produce
clashes, which are then resolved. As we meet a loop, we unwind it from the left, and
again resolve the clashes. Then we try to reduce the resulting regular expression to
the one we started with (recursion).

As we mentioned before, this process would be infinite, if not for the supercompiler
on the next metasystem level, which oversees and controls the work of the interpreter.
The supercompiler should notice the recursion and build up a finite recursive
program corresponding to the walk set in the argument of Int.

We discussed the work of Int when a specific input is given. But we are really
interested, of course, in the case where the inputs are not specified, or specified

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 297

partially. These gaps in the input specification will be represented by metavariables.
For example, if we want to leave both arguments of Fa unspecified, i.e. to transform
the function Fa as such, we must supercompile:

<Int #x+x; #yey; G>

where G is the regular expression for <Fa x,y>.

6 The method

Now we summarize our method of program transformation and apply it, for illus-
tration, to the identical transformation of the function <Fa x,y>. The purpose is to
show how the technique works in a very simple case, and check that the identical
transformation is among those the technique allows. This is not quite trivial, because
identical transformation with our method is not just rewriting the definition. The
program must reproduce itself after a double metasystem transition.

Step 1. Given a Refal program and an initial configuration, construct a Refal graph
for it. In our example, <Fa x,y>, it is:

[1] x—>‘a’x; y‘b’«y [1]
[+] x—{]; yeout

Step 2. Convert the graph into a context-free grammar:

S = zx—ofa’x; ybley; §
S = x—[]; yeout

Step 3. Assuming that the grammar is regular, make it into a regular expression:
(x—‘a’x; y'b’«y)" x—[]; y—out

Step 4. For each input variable, add the assignment of a metavariable to it at the
beginning of the regular expression, and form a call of the interpreter Int with the
resulting expression as the argument:

<Int wiL°'wy>
where

Wy = #xex; #yey
L = x—‘a’x; y‘b’«y
wy = x—[]; yeout

Step 5. Supercompile the call of Int, using the properties of Int and the two basic
principles (recursion and clashes) formulated in Section 5.

Let us see the process of supercompilation in our example. The initial configuration
is:
(1] = <Int w L wy>

How should we proceed? How to use unwinding rules? In search of clashes, put the

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

298 V. F. Turchin

finger at the first assignment, which is #x«x in w;. Move to the right looking for a
contraction for x. We find it in the loop walk L. Therefore, to produce a clash, we
must unwind L on the left. After doing so we have:

<Int wiLL'w; +wiwy>

By the additivity of Int, mimicked by the additivity of Scp (because both functions
are graph transformers), the graph under supercompilation becomes:

(1] [2]
[+J [3]

(2]
(3]

<Int wiLL wy>
<Int wiwy>

Consider the configuration [2]. The loop breaks the original regular expression
into two segments. Because of the left unwinding, the first segment has become:

wiL = #xex; #yey; x->‘a’x; y'bley

Now it will be transformed by the interpreter. Using the commutation and
composition rules yields:

wiL = #xex; x—‘a’x; #y‘b’ey#x:‘a’x; #y‘b’ey

Then the clash #x:‘a’x for x must be resolved. We must remember that the
metavariable #x is not a graph variable, but a free variable of the interpreter, which
will be replaced by a specific object expression (constant) whenever the interpreter
is running. For example, if #x is ‘aaa’ then the walk starts with ‘aaa’«x. After
the resolution of the clash it becomes ‘aa’«x. The clash is resolved successfully
only if the value of #x starts with ‘a’. The supercompiler, which drives the call of
Int, will create a walk with the contraction #x— ‘a’#x. The resolution of the clash,
namely:

#x:‘a’x = #x—‘a’#x; #xex
looks as if #x and x were of the same metasystem level. The difference is only in

where the contraction belongs: it belongs to the graph being under construction,
not to the argument of Int. The graph under supercompilation becomes:

(1] (2] #x—>‘a’#x [4]
[+] [3]
[4] = <Int #xex; #y‘b’«y; L'wy>

Configurations such as [2], which replace the preceding configuration uncondition-
ally and without any operations, are referred to as transient. There is no need to
keep transient configurations in the graph. Below we shall omit them without a
notice.

Remembering what w; stands for, we can rewrite [1] as:

[1] = <Int #xex; #yey; L'wp

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 299
We see then that [4] is a special case of [1]. The supercompiler notices this too
and reduces it to [1] by the assignment #y ‘b’ «#y:
[1] #x—‘a’#x; #y‘b’#y [1]
[+] [3]
Now we transform the loop exit [3]:
<Int wywy> = <Int #xex; #yey; x—[]; yeout>
= <Int #x:([]; #yeout>
= #x—[] <Int #y<out>
#x— [J; #y«—#out
This is the end of supercompilation. The result is:
[1] #x—>‘a’#x; #y‘b’ <y [1]
[+] #x—[]; #ye#out

which is the same as the original graph for Fa, except that it is expressed, as we
anticipated, in terms of metavariables. When Scp is written as a Refal program, the
graphs and regular expressions with which it works will be all downgraded in the
metacode, and the output program will be in terms of normal variables.

7 Merging iterative loops

Now we want to improve Program 1 for <F x>. As we saw above, direct supercompi-
lation leaves it unchanged. We will show that with the use of metasystem transitions
the transformation becomes possible.

7.1 Stage 1: simultaneous unwinding

The graph for Program 1 is represented as the following regular expression:

G = wiLiwaLyw;

w = #xex; [ey

L= x—‘a’x; y'b’«y
wy= x—[]; yex1; [Jey
Ly= x1-°‘b’xl; yifc’eyl
w3 = x1-[]; yleout

Note that we have already included the initial assignment in w;.
Now let us see the process of supercompilation of the interpreter. The initial
configuration is:

[1] = <Int wiLiw:Lyws >

If we apply the same strategy as in Section 6, i.e. unwind on the left one loop at a

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

300 V. F. Turchin

time, then our method will return the original program. In order to merge the two
loops, we shall unwind them simultaneously. We must unwind both loops on the left,
because in this way we produce clashes, as required by our second principle of walk
transformation.

Simultaneous unwinding breaks the set of walks in four parts:

(1] = <Int G+ G, + G+ Gg>
= <Int G1> + <Int G, +G3+ Gs>

where

Gl = W1LaL;w2LbLI;W3
Gz = W1LaL;W2W3

G3 = W1W2LbL,;W3

G4 = Wiwyws

Two loops break G, into three segments. The first and the second are transformed

as follows:
wils, = #xex; [ey; x-‘a’x; y'bley
= #x—o‘a’#x; #xex; ‘bley
wyly = x—[]; ye=x1; [Qeyl; x1-‘b’xl; yi‘c’«yl

= x—[1; y=>‘b’y; yex1; ‘c’«yl

The third segment, L;ws, is unchanged. The supercompiler compares the transformed
G, with the initial state [1]. As in Section 6, #x— “a’#x is left in front of the call of
Int. The supercompiler compares <Int G;> with <Int G>. It compares w;L, with
wy !

#xex; ey
#xex; ‘Dley

and sees that the new configuration - in that part — is not a subset of the old one.
It constructs the generalized segment

wié = #xex; #yey

by generalizing [J and ‘b’ as the metavariable #y.
Now wy Ly is compared with w;:
x—[1; yexl; eyl
x—[1; yob’y; yexl; ‘c’eyl
The expressions [] and ‘c’ are generalized as a metavariable #y1. But there is one
more operation in w,L; as compared with w: the contraction y— ‘b’y. The absence
of this contraction is interpreted as the identical contraction y—y. Generalizing it
with y—‘b’y, we come to y—#y2 y, where #y2 is one more metavariable. The
generalized second segment is:
wrt = x[]; yo#y2 y; ye=x1; #yleyl

Let us sum up what happened up to this moment. We were driving <Int G>. After

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 301

unwinding, <Int G> became a sum of four configurations. Then G, was driven. It
was transformed into something close to G, which required a generalization. Now
<Int G> must be reduced to the generalization, which is:

<Int G2> = <Int wi8L;wy8L;w3>

The reduction is done by assigning [] to the three metavariables which appeared in
the generalization:

(1] Oe#y; De#y2; syl [2]
[2] = <Int G8>

The former development (the result of driving) of [1], including the breakdown
into four components, is discarded, and the driving of [2] starts.

The next stage of supercompilation is similar to the beginning, but w; & and w8
replace w; and w,. Two loops are unwound on the left and the component G, &
is transformed. Unlike the beginning stage, however, it reduces to G8. The graph
becomes:

(1] [e#y; Oe#y2; [De#yl [2]
[2] #x—‘a’#x; #y‘D «#y; #y2‘'D’«#y2; #yl‘c’«#yl [2]
[+] <Int G8 + G388 + G48>

Now we drive <Int G;,#>, where

ng =w gLaL;W2gW3
= #xex;#ye—y; x—>‘a’x; y‘b’ey L;
x—[]; yo#y2 y; y—=x1; #yleyl; x1—-[]; yleout

One loop breaks it in two segments. The first segment is transformed in the now
familiar way:

#x— ‘a’#x <Int #xex; #y‘b’ey L. .>

In the second segment, the clash for x1 results in y— {1, which combines with the
contraction for y. The last two assignments also combine. The branch for <Int G, 2>
becomes:

[+] #x—‘a’#x [3]
[3] = <Int #xex; #y'b’«y L, x—[]; y—o#y2; #yl—out>

Now [3] is developed by unwinding L; on the left, so as to clash the contractions
for x and y in L] with the assignments to them at the beginning of the walk.
Denoting the two segments in [3] by w, and w; again, we have:

wiLoLows + wiwy
The first walk after simplification yields:
#x—‘a’#x; #xex; #y‘bb’—y; Low;

which loops back to [3].

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

302 V. F. Turchin

The second walk, w;w,, becomes:
#x—[]; #y‘D’:#y2; #yleout
Now the graph for [3] is:

[3] #x—‘a’#x; #y‘b’—#y [3]
[+] #x—>[] #y‘Dd’:#y2; #yleout

The subgraph G§ is treated in a similar way. Finally, G4 8 produces one more walk
on the Int level:

widwy 8wy = #xex; #y—y; x—0; yo#y2 y;
y=x1; #yleyl; x1—{]; yleout
= #x—[]; #y:#y2; #yl<out

Collecting all four branches, we come to the following total graph resulting from
supercompilation:

(11 O«#y; Q#y2; [De#y1 [2]
[2] #x—‘a’#x; #y‘'D’«#y; #y2°'D’ «#y2; #ylic’—i#yl [2]
[+] #x—‘a’#x [3] #x—‘a’#x; #y‘D’«#y [3]
[(+] #x—[]; #y‘b’:#y2; #yl—#out
[+] #x—[]1 [4] #y2D’ «#y2; #yl‘c’«#yl [4]
[+] #y:#y2‘b’; #yl‘c’<#out
[+] #x—(]; #y:#y2; #yl<tout

This algorithm is very far from the efficient program we wanted to obtain. At
first sight, it is much worse than the original algorithm. Looking more carefully,
however, we notice that we have already achieved something in the line of our goal.
The main loop of the program, from [2] to itself, starts with chipping ‘a’ from the
input #x and adding ‘c’ to #y1, which ultimately becomes the output. So we did
merge the loops, after all.

However, in addition to input and output, the program uses two variables: #y and
#y2, which serve as synchronous ‘counters’ in the two loops. They both start from
empty and are lengthened by one ‘b’ in the main loop. In the last, exit, branch
their values are compared in the matching #y:#y2, which, of course, must always
succeed.

There are two more loops, at [3] and [4], the exits from which include matchings
incompatible with the equality of #y and #y2. These loops can be run infinitely
without producing feasible finished walks. They describe walks where the number of
cycles in one loop is less or greater than in the other, and such walks are unfeasible.
If we perform a careful analysis of operations in these loops, we must come to the
efficient program. But how to do this?

7.2 Stage 2: eliminating infinite loops

An important feature of our method is that the same transformation technique
can be applied repeatedly and each time bring non-trivial results. So, we simply

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 303

make another metasystem transition. Metavariables in our graph become normal
variables; the variable x is assigned a new metavariable #x. Introducing notation
for segments, we reduce the graph to this:

[1] wy [21 L, [2]
[+]1 wy [3] L, [3]
[(+] ws
[+] ws [4] L3 [4]
{+] ws
[+] wg
where
wi = #xex; [Dey; Dey2; eyt
Ly = x>‘a’x; y'b’ey; y2b’«y2; yléc’eyl
wy = x—‘a’x
L, = x—>‘a’x; y'b’ey
w3 = x—>[]; y‘b’:y2; yleout
wg = x—[]
Ly = y2b’«y2; yl‘c’«yl
ws = y:y2‘b’; ylfc’«out
we = x—[]; y:y2; yleout

The regular expression corresponding to this graph is:
wiL](w2L3w3 + waL3ws + we)
The first two terms of the sum are those to disappear. Let us take the first term:
wiLiwza Liws

Our goal is to prove that this regular expression is unfeasible. When we only want
to choose between the two alternatives, feasible an unfeasible, without building an
equivalent graph, we can simplify the original graph by leaving out all the operations
which do not take place in clashes. Thus we can cancel assignments at the end of
the walk and contractions at its beginning. So, we cancel yl«<out in w;. Moreover,
in the loop L; we can throw away the contraction for x, because there are no
assignments for x before the loop, and the assignment for y1, because there are no
contractions for it after the loop. For the same reason the whole walk w, disappears,
as well as the contraction for x in L, and w;. We now have the regular expression:

wi LI LEW_?,
where

wi = #xex; Dey; Oey2; eyl

Ly = yb’ey; y2°b’«y2
Ly, = yb’ ey
w3 = y'b’:y2; yleout

It must be stressed that all these simplifications are done exclusively for making the

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

304 V. F. Turchin

volume of expressions smaller, as we compute by hand. It is not necessary to do this

in a computer program.
We do right unwinding in both loops (but sequentially), to produce clashes in ws

with updated variables y and y2:

(1] [2]
[+1 (3]

[2] = <Int W1L;L§L2W3>
(3] = <Int W1LIW3>

Further computation goes on as follows:
Lows; =y‘b’«y; y‘b’:y2 = y‘bb’:y2
Compare and generalize:
wif = y #y‘b’:y2
Reduce and redefine:

[1] De#y [2]1 [3]
[+1 [4]

<Int W1LIL§L2W3 g>
<Int wiLiws;3>

(3]
[4]

Simplifying Low;® we find that [3] is reduced to [2] with the assignment
‘b’ #y«—#y. Now [4] becomes:

(4] [s]
[+] [6]

[s]
(6]

Compute [5]:

<Int W1L;L1W3 8>
<Int wiw;38>

Liwi® = y‘b’ #y‘b’:y2‘b’ = y‘b’ #y:y2

Compare it with w38, To determine if the former is a subclass of the latter, the
supercompiler Scp will use the generalized matching algorithm (GMA, see (Turchin,
1986)), matching

(y‘D’#y:y2): (y #y‘D’:y2) = y‘b’#y:y #y‘b’
According to GMA, this will cause a branching with two contractions:

[5] #y—#y‘b’ [7]
[+] #y—{] (8]

[71 = <Int wiL]; y‘b’#y‘b’:y2>
[8] = <Int wiL]; y‘b’:y2>

Now [7] is reduced:
(7] ‘b #y—#y [4]

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 305

Compute [8]:

(81 [s]
(+1 [10]

{91 = wiLiL;; y*b’:y2
[10] = wy; y‘b’:y2

Compute [9]:
Li; y1'b’:y2 = y‘bD’«y; y2b’e«y2; yl1‘b’:y2
y‘bb’:y2‘b’ =y‘b’:y2

We see here a somewhat unusual kind of recursion, when a configuration is reduced
to itself without any assignments:

[8] [9] (8]
[+] [10]

Computing [10] we see that it includes the failing matching: #y: []; hence this
branch disappears. We still have one more terminal branch left behind: [6]. It also
disappears. The final result is a graph where there is not a single terminal branch:

[(1]«<#y [3]‘b’#y—#y [3]
[+] [4] #y—#y‘b’; ‘D #y—#y [4]
(+] #y—1[1 [8] [8]

This graph produces an empty set of walks, hence the original regular expression
wiLiw,Liws is proven, as we anticipated, empty. In a similar manner, computation
proves that wiLiwsL3ws is also empty. We are left with w;Lwg, where

wi = #xex; Dey; Dey2; eyt
L, x—‘a’x; y'bley; y2bley2; ylfcleyl
we = x—1[1; y:y2; yleout

The program corresponding to this regular expression still keeps updating the
counters y and y2, only to check in the end that they have equal values. We want
to get rid of this unnecessary work, so we go on with supercompilation.

For the same reasons as before, we unwind the only loop on the right:

(1] (2]
[+] (3]

[2]
(3]

<Int W1LIL1W6>
<Int wiwg>

Liwg =x—‘a’; y:y2; yl‘c’«out
Comparing this with wg, we generalize:
weé = x—#x2; y:y2; yl1 #yleout,

then make a reduction and again unwind on the right:

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

306 V. F. Turchin
(1] [O«#x2; O<#yi [2] [3]
[+] [4]

(3] = <Int wiLjLiwg¢8>
(4] = <Int wywg8>

Now Ljwg?® is easily reduced to wg8 :
[3] ‘a’#x2«#x2; ‘c’#yl#yl (3]
Computing [4] we have:

wiws® = #xex; [ley; Qey2;[Jeyl; xo#x2; y:y2; yl#yleout

= #xx;x—#x2; #yl<out
Thus we have the graph:

(1] [O#x2; [Q<#yl [3] ‘a’#x2#x2; ‘c’#yle<#yl [3]
[+] #x:#x2; #yle#out

And still this is not the efficient algorithm we want! We have eliminated two
counters, y and y2, but only at the price of introducing a new counter x2.

7.3 Stage 3: eliminating non-determinism

Now we shall use the same transformation technique once again. This problem can
be seen independently of the loop merging problem; it has its own characteristic
feature.

The graph to transform is:

[1] [ex2; eyl [3] ‘a’x2¢x2; ‘c’yleyl [3]
(+] x:x2; yleout

Note that this algorithm is non-deterministic. The looping branch is unconditional
and can be chosen at each step; if we always chose it, the process would be infinite.
But we can check the other branch at each step too, and at a certain moment
terminate computation with a correct result.

The Refal machine is deterministic, and so are the Refal graphs which are obtained
by translating Refal programs. But when we unwind walk loops on the right, we read
the walks in the reversed order. Thus a graph obtained in this way will be, generally,
non-deterministic. We can use non-deterministic graphs either as an intermediate
stage of transformation, or as the desired result, as in the case of function inversion.

Let us transform our algorithm into an equivalent deterministic one. The regular
expression corresponding to our graph is wiL'w;, where:

wp = #xex; [Jex2; eyt
L = ‘a’x2«x2; ‘c’yleyl
w2 = X:X2; yleout

Among the rules of operations on regular expressions, there is one which im-
mediately follows from the basic rules: If A is an assignment, and G any regular

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 307

expression which involves no variables involved in A4, then AG = GA; if C is a
contraction, and G an expression meeting the same requirement, then GC = CG.
Using this rule, we move #x«<x from w; to w, and merge it with the matching,
which results in #x:x2.

Since by this time the reader should have become familiar with our technique,
we shall not write out intermediate graphs, but only highlight operations on regular
expressions.

After a right unwinding we have:

Lwy, = ‘a’x2«x2; ‘c’yleyl; #x:x2; yleout
= #x:‘a’x2; ‘c’yleout
= #x—o‘a’#x; #x:x2; ‘c’yleyl
Generalization results in:
wy 8 = #x:x2; #yl yleout

and Lw; ¢ reduces to wy € by #y1‘c’«#y1. The termination branch is:

wiw 8 [1x2; [Jeyl; #x:x2; #y1 yleout

= #x—[]; #yleout
Now we have come to the desired final result:

(11 [J«#y1 [2] #x—>‘a’#x; #yl‘c’<#yl [2]
[+] #x—[]; #yleout

Even though the original algorithm is non-deterministic, it can be executed on
a sequential deterministic machine without an exponential explosion. If n is the
lengths of the string, the time complexity for this algorithm, because of repeated
comparisons x:x2, is O(n?). But if we have more than one branch in the loop, the
deterministic time complexity will be exponential, and our transformation method
will still convert it into a linear complexity:

(1] Oex; Dey [2] x‘a’ex; yb’«y [2]
[+] xb’ex; y‘a’«y [2]
[+] #x:x; yeout
This function builds up x by adding ‘a’ or ‘b’ in each step, while y is augmented
by ‘b’ or ‘a’, respectively. If x happens to be equal to the input #x, then y becomes

the output.
The regular expression for this problem is

wi(Lg + Lp) ws

where

wi= [Jex; Dey
L= x‘a’«x; y‘b’«y
Ly = x‘b’ex; y‘a’ey
wy = #x:x; y«out

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

308 V. F. Turchin

The right unwinding yields:

wi(La+ Lp)"wz = wi(La+ Lp) (La + Lp)wz + wiw,
= wy(La+ Lp)"Lawy + wi(Lg + Lp) Lywy + wiw2

It is easy to check that proceeding in the fashion as above we come to the efficient
deterministic algorithm:

(1] OQey [2] x—xfa’; ‘D’yey [2]
[+] x—x‘b’; ‘a’yey [2]
[+] x> []; yeout

8 Function inversion
We take a function of one variable:
<F x> = <Fa [],x>

with Fa defined, again, as in Program 1. We want to invert it. The transformed
function should expect a string of letters ‘b’ as its input and convert every ‘b’
back into ‘a’.

The graph for F is:

(1] Oy [2] zx—>a’x; yD’ <y [2]
[+] x—[]; ye<out

To compute the value, or the values, of the inverted function for some input value
E, the interpreter must find the walks which end with the assignment of such
an expression to out, that after all substitutions it becomes identical to E. This
is nothing but the contraction out—E imposed on the output variable out. In
particular, when we want a fully inverted function, we must allow for E to be
arbitrary, that is to be represented by a metavariable.

Further, the value of the inverse function of a function with one variable x will
be the input value of x required in the walks we discovered. The required value for
x is the one to which x is contracted, and this value must become the output of the
inverse function. Thus we have the rule:

<Int x—»E> = E «#out

If there are more than one qualifying path, there will be more than one assignments
to out possible (a non-deterministic program). If the original function is of two
variables x and y, then the value of the inverse function will be a pair, and we shall
use the rule:

<Int x—E;; yoE» = (E|, Ey) «#out

Let the input value for the inverse function be represented by #y. When we add
the contraction out—#y to the terminal branch in the graph for F, the resulting
clash is resolved as follows:

yeout; out—#y = y:#y = yoi#y

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 309

Keep in mind that the clash is resolved on the graph level (performed by Int), where
y is a variable and #y a constant. If it were on the Int level (performed by Scp),
where y is an object expression (the metacode of a variable), and #y a variable, the
resolution of the clash would be y«—#y.

All said, the total set of walks is represented by the regular expression w;L"w;,

where
w = [ley
L = zx-o‘a’x; y‘b’ey
wy = x—[]; yo#y

Naturally, we are going to unwind the loop on the right:
W1L.W2 = W1L‘LW2 + Wiwy

A formal reason for that, to be used in writing the algorithms, is a consideration of
clashes. We want to involve metavariables (data) into clashes. The only metavariable
we have is in the contraction for y in w,, while L includes an assignment for y. Thus
Lw; makes a useful clash, while w| L achieves nothing.

As in Section 6, we have the following graph under supercompilation:

(1] [2]
[+1 (3]

[2] = <Int w;L"Lwy>
[3] = <Int wiwy>

The transformation follows:
Lw, = x—‘a’x; y'bey; x—[0; yo#y
= x—‘a’; y‘b’:#y
= x—‘a’; #yo#y‘b’; yo#y
As in Section 6, the contraction for the metavariable #y belongs to the Scp level:

[1) #y—#y‘b’ [4]
[+1 {3]

(4] = <Int wiL’; x—‘a’; y—o#y>

Unlike Section 6, however, the new configuration [4] is not a subclass of [1].
The supercompiler compares them:

(1] = <Int wiL"; x—([1; yo#y>
{4] = <Int wiL*; x—>‘a’; yo#y>

It generalizes [] and ‘a’ as a new metavariable #x, which results in the generalized
configuration, to which [1] is reduced by an assignment for #x:

[1] De#x [2]

[2] = <Int wiL"; x—#x; y—o#y>

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

310 V. F. Turchin

All previous development for [1] is destroyed, and the development process goes
on from the (redefined) configuration [2].
Denoting the generalized second segment as

wyd = x—#x; yo#y

we have the regular expression w;L w8 for [2]. We again unwind it on the right
and come to the graph:

[1] DO«#x [2] (3]
[+1 [4]

<Int wiL'Lw,&>
<Int wiw;8&>

[3l
(4]

The computation of Lw;# produces, again, a contraction for #y, and:

x—‘a’#x; yo#y
which, this time, reduces to the preceding configuration [2] by ‘a’#x<#x:

[1]1 O«#x [2] #y—o#y‘b’;‘a’#x—#x [2]
[+]1 [4]

Finally, we compute [4]

<Int wiwy8> = <Int [Jey; x—#x; yo#y>
#y—[1; <Int x—#x> = #y—[]; #x<out

The inverse function has the graph:

[1]1 [De#x [2] #y—#y‘b’; ‘a’#x—#x [2]
[+] #y—[]; #x<#out

If we invert the function Fa of two arguments and agree to represent its output as
a pair (x,y) then we come to a correct but, of course, non-deterministic, algorithm:

[1]1 [Qe#x [2] #yo#y‘d’; ‘a’#x—#x (2]
[+] (#x,#y)—#out

Our technique of inversion is close to the interpretive inversion of Refal programs
developed by Romanenko (1991). The main difference is that we immediately couple
it with the supercompiler.

9 Conclusions

1. We have developed a new method of program transformation which is based
on supercompilation, but includes a metasystem transition: the supercompiler Scp
is applied not to the function F to be transformed, but to an interpreter Int
which works with computation histories according to F. Thus Int is a metafunction
with regard to F. The examples we presented show the application of this method to
various kinds of transformation problems. The method is not targeted at any specific
property of the program to transform, and yet produces a variety of optimizations.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 311

2. A remarkable feature of this method is that it can be applied to the program that
has just been transformed and still produce a new, better, result. In Section 7 we
transformed the initial program and merged two algorithmic loops into one, but the
resulting program was still far from perfect: it was non-deterministic and contained
unfeasible branches. After the second transformation these branches disappeared,
but the program was still non-deterministic. It is after the third transformation
that we obtained the final efficient program. This is in a sharp contrast with the
idempotency of most methods of optimization, when applying the same technique
more than once gives, essentially, the same result as one transformation. In particular,
direct supercompilation is idempotent. We explain this feature of our method by
the metasystem transitions which take place between repeated uses of the method.
Indeed, when Scp is applied directly to F, the result is still a transformed F. In the
subsequent use we apply Scp to the same function. With a metasystem transition,
we each time apply Scp to a different function, namely to the metafunction of the
preceding function. This is seen clearly if we stick to the fixed starting level method
of the representation of metasystem transitions (see Section 4). At the beginning,
F is at level 0. When Scp is applied directly, it becomes level 1, and the reference
level is 1. The output of Int, which is the new graph for F, is again at level 0.
With our new method, Int is at level 1, and Scp is at level 2. Its output is at
level 1, not O; it is expressed in terms of metavariables. If we simply went on
repeating the transformation, then the level of the function under transformation
would become 2, 3,... etc.: a potentially infinite metasystem stairway. However, after
each transformation we reduced the level of the outcome, returning the function
definition to level 0, this being only the matter of notation. Thus the metasystem
stairway, as we used it, was, essentially, reduced to the three levels: 0,1, and 2.

3. There is an intriguing question here: how much can the power of the method
be enhanced by consecutive multiple-level metasystem transitions, in particular, the
next after the one we used, i.e.:

Scp > Int; > Int; > F > D?

On one hand, when we did this transition for the first time, i.e. from F to Int;, the
power of the method increased greatly. Thus treating Int; as F before and adding
Int; we may hope to obtain even better results. On the other hand, our success has
been due to the fact that we used a ‘clever’ version of Int. Then we could reason that
applying the same Int to itself will not really enhance the method. So, the question
is open for further research. It still may be possible that the steps towards greater
power of program transformers could be made by just writing out the next formula
of metasystem transition, without developing any new programs. If this does not
work that simply, it should be possible to make improvements on each metasystem
level. In particular, it may be possible to upgrade Int, by using the knowledge that
it will be always applied to the fixed function Int;, not to an arbitrary F, as in the
case of Int;.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

312 V. F. Turchin

Acknowledgment

I greatly appreciate the discussion of the method presented here during the seminars
of the Refal group in Moscow in June, 1992, especially the remarks by And. Klimov,
Ark. Klimov, S. Abramov, A. Romanenko, S. Romanenko, V. Topunov. Special
thanks are due to R. Gliick and And. Klimov who read the manuscript and gave
valuable advice on its improvement.

References

Bondorf, Anders. (1980) Automatic autoprojection of higher order recursive equations, Lect.
Notes in Comp. Sci.,, ESOP 90 432, Springer, pp.70-87.

Bowen, K. and Kowalski, R. Amalgamating language and metalanguage in logic programming.
Logic Programming, Clark and Tarnlund (ed.) Academic Press pp.153-172.

Boyer, R.S. and Moore, J.S. (1975) Proving theorems about Lisp funcitons, J. of ACM 22:
pp-129-144.

Bundy, A. and Welham, B. (1981) Using metalevel inference for selective application of
multiple rewrite rules in algebraic manipulation. Artificial Intelligence vol.16, pp.189-212.
Burstall,LR.M. and Darlington, J. (1977) A transformation system for developing recursive

programs. J.ACM 24 pp.44-67.

Gliick, R. (1991) Towards multiple self-application, Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipulation (Yale University), ACM Press: pp.
309-320.

Futamura, Y. (1971) Partial evaluation of computation process — an approach to compiler
compiler, Systems, Computers, Controls 2: pp.45-50.

Jones N., Sestoft P., Sondergaard H. (1985) An Experiment in Partial Evaluation: The
Generation of a Compiler Generator. Jouannaud J.-P. (Ed.) Rewriting Techniques and
Applications, Dijon, France, Lect.Notes in Comp. Sci. 202, Springer.

Jones N., Sestoft P, Sondergaard H. (1989) MIX: a self-applicable partial evaluator for
experiments in compiler generation. LISP and Symbolic Computation 2: pp.9-50.

Partsch, H. and Steinbrueggen, R. (1983) Program transformation systems. ACM Comput.
Surv. 15: pp.199-236.

Proietti, M. and Pettorossi, A. (1990) Synthesis of eureka predicates for developing logic
programs. Lect. Notes in Comp. Sci., ESOP 90 432: pp.306-325.

Proietti, M. and Pettorossi, A. (1991) Unfolding-definition-folding, in this order, for avoid-
ing unnecessary variables in logic programs. Lecture Notes in Comp. Sci. PLILP 91 528
Springer: pp.347-358.

Romanenko, A. (1991) Inversion and Metacomputation. Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, Yale University, USA pp. 12-22.

Romanenko, S.A. (1988) A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure. Partial Evaluation and Mixed
Computation Elsevier Sci. Publ.: pp.445-463.

Safra, S. and Shapiro, E. (1986) Metainterpreters for real. Information Processing 86, H.-
J.Kugler (ed.) IFIP Congress, Dublin, Ireland. North-Holland: pp.271-278.

Sestoft, P., Sondergaard, H. (1988) A bibliography on partial evaluation, SIGPLAN Notices,
23 No.2: pp.19-27.

Takeuchi, A. and Furukawa, K. (1986) Partial evaluation of Prolog programs and its appli-
cation to metaprogramming. Information Processing 86, H.-J.Kugler (ed.) IFIP Congress,
Dublin, Ireland. North-Holland: pp.415-420.

Turchin, V. F. (1977) The Phenomenon of Science, Columbia University Press, New York.

Turchin, V. F. (1980) The Language Refal, the Theory of Compilation and Metasystem Analysis,
Courant Computer Science Report 20, New York University.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

Program transformation with metasystem transitions 313

Turchin, V. F. (1986) The concept of a supercompiler, ACM Transactions on Programming
Languages and Systems, 8: pp.292-325.

Turchin V. F. (1989) Refal-5, Programming Guide and Reference Manual, New England Pub-
lishing Co., Holyoke MA.

Weise, D., Conybear, R., Ruf, E,, Seligman, S. (1991) Automatic online program specialization.
5th Intern. Conf. on Functional Progr. Languages and Computer Architecture. Lecture Notes
in Comp. Sc. 523 Springer, pp.165-191.

https://doi.org/10.1017/50956796800000757 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000757

