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1. Introduction

We recall that a JC-algebra (Stgrmer (3)) is a norm closed Jordan algebra of
self-adjoint operators on a Hilbert space. Recently, Alfsen, Shultz, and Stgrmer (1)
have introduced a class of abstract normed Jordan algebras called JB-algebras, and
have proved that every special JB-algebra is isometrically isomorphic to a JC-algebra.
We show that this result brings to a satisfactory conclusion the discussion in (2) of
certain wedges W in Banach algebras and their related Jordan algebras W — W, and
leads to two characterisations of the bicontinuously isomorphic images of JC-
algebras.

It was proved in (2) that if W is a closed type-0 locally multiplicative wedge in a
Banach algebra and the set {(1+ w)™'||: w € W} is bounded, then W — W is a closed
Jordan algebra and behaves in many ways like a JC-algebra with positive cone W. It
can now be seen that W — W is in fact bicontinuously isomorphic to a JC-algebra. We
prove also that for a closed type-0 wedge W in a Banach algebra, to be locally
multiplicative is equivalent to having xyx € W whenever x,y € W. As a corollary we
obtain two characterisations of those Jordan subalgebras R of a Banach algebra that
are bicontinuously isomorphic to JC-algebras. The first involves subadditivity of the
spectral radius r, and in the second subadditivity is replaced by a submultiplicative
property:

X,y ER, A € RNSp(xy)>|A| < r(x)r(y).
For JC-algebras A it is obvious that the stronger submultiplicative property
r(xy) s r(x)r(y) (x,y € A)

holds, but it remains an open question whether this holds on their bicontinuously
isomorphic images R.

Finally we show that if W is a closed type-0 locally multiplicative cone but the set
of inverses (1+ w)™' is not necessarily bounded, the completion of W — W with
respect to the spectral radius norm is a special JB-algebra. Thus in this more general
case W — W remains isomorphic to a dense Jordan subalgebra of a JC-algebra.

2. Notation

B will denote a complex Banach algebra with unit, Inv(B) will denote the set of
invertible elements of B, and for a € B, Sp(a) and r(a) will denote the spectrum and
spectral radius of A.
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A wedge in B is a non-void subset W of B such that
x,yEW,a€ER" > x+yax EW.
A wedge W in B is of type-0 if
xEWD I+x€Ilnv(B)and (1 +x)'E W,
is locally multiplicative if
x,yEWxy=yz > xyeE W,

and is a cone if W N(— W) ={0}.

H will denote a complex Hilbert space, and BL(H) the Banach algebra of all
bounded linear operators on H. A JC-algebra is a real linear subspace A of BL(H),
closed with respect to the operator norm, consisting of self-adjoint operators, and
satisfying

a,be A ab + ba € A.
The positive cone A in a JC-algebra A is the set of elements of A that are positive
operators in the usual sense (that is operators a with (ax,x) = o (x € H)).
Following Alfsen, Shultz and Stgrmer (1), a JB-algebra is a real Banach space X

which is a Jordan algebra with respect to a product xcy, which has a unit element, and
which satisfies (for all x,y € X)

oyl <xlllivll, = MlxlP,  flx¥l < lix?+ y7l.

X is a special JB-algebra if it is also a subset of an associative algebra and
xoy = 3(xy + yx), where xy is the associative product.

Theorem 1. Let W be a closed type-0O locally multiplicative wedge in B, let
R=W-W={x—y:x,y € W}, and suppose that the set {|(1+ w) '||: w € W} is boun-
ded. Then ris a norm on R equivalent to the given norm, and R with the norm ris a special
JB-algebra.

Proof. We recall from (2, Theorem 3) that R is a closed real linear subspace
and Jordan subalgebra of B, that r is subadditive on R, that all elements of R have
their spectra contained in the reals, and that

W={x€ER:Sp(x)CR*}. ¢}

By (2, Theorem 9), W N(— W) = {0}, and so, by (2, Theorem 4), r is a norm on R
satisfying the inequality

rG(xy + yx)) <r(x)r(y) (x,y €R).
By hypothesis, there exists a real constant M such that
I+w)yli<sM (wew). @
We prove that
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lIxll < @Il +3M)r(x) (x €R). 3

Since r is a norm, this is trivial if r(x)=0; and we may therefore suppose, by
normalisation, that r(x) =3 Then Sp(1+ x)C [3,3). By (1), 1+ x is therefore of the
form 3+ u with u € W. Since W is of type-0 it follows that (1 + x)™' € W, and we have
Sp((1+ x)™) C [3,2). Again by (1), it follows that (1+ x)™' =%+ w with w € W, and so
1+ x =31+ 3w)"". The inequality (2) now gives |1 + x|| <3M, and (3) is proved.

We have now proved that r is a norm on R equivalent to the given norm, and so R
with the norm r is a real Banach space. It is obvious that r(x?) = (r(x))’ for all x € R,
and, since the squares of elements of R belong to W, the proof will be complete if we
show that

rwy<sr(u+v) (u,v€ W) @
Let u,v € W. Then u + v € W, and, by (1),
riu+v)—(u+v)e w.
Since W is a wedge, it follows that
riu+tv)y—u=v+r(u+v)—(u+v)ew,
and so Sp(r(u + v) —u) C R*. Thus (4) is proved, and the proof is complete.
Corollary 2. Let W, R be as in Theorem 1. Then R is bicontinuously isomorphic

to a JC-algebra A, and W corresponds under this isomorphism to the positive cone A*
of A.

Proof. By Theorem 1 and (1, Lemmas 9.3 and 9.4), R with the norm r is
isometrically isomorphic to a JC-algebra A. Since the norm r is equivalent on R to the
given norm, the isomorphism is bicontinuous with respect to the given norm. The
identification of the image of W with A* follows at once from the fact that W is the
set of squares of elements of R (2, Theorem 9) and the corresponding fact for A*.

Corollary 3. Let W be a closed type-0 locally multiplicative wedge. Then the set
{1+ w)7Y|: w € W} is bounded if and only if W is a normal cone (that is, there exists
a constant k >0 with ||x + y| = «|x[|(x,y € W)).

Proof. Let E ={|(1+ w)'||: w € W}. By (2, Proposition 10(i)), E is bounded if W
is a normal cone. Conversely, suppose that E is bounded. By Theorem 1 there exists a
positive constant k with

r(x)=«|x| (x€R).
By (2, Proposition 10(ii)), this shows that W is a normal cone.
Theorem 4. Let W be a closed type-0 wedge in B. Then the following statements
are equivalent:

(1) Wis locally multiplicative,
(i) x,yeE W>xyxe W.
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Proof. That (i) implies (ii) was proved in (2, Theorem 5). Suppose conversely that
(i1) holds. Given w € W, it is clear that w" € W (n=1,2,...), the fact that 1€ W
giving the case n = 2. We prove that

Sp(w)C R*'(w € W). 3)

The invertibility of 1+ w gives
Sp(w)N(—R")C {0} (WEW). (6)

We argue as in the proof of (2, Proposition 1). Suppose that w € W and that
pe”® € Sp(w) with p >0, 8 € R, 0 <|6| < 7. Choose the greatest positive integer n with
n|6| < w. Then n|@| = /2. Take b = w” and observe that p"e™ is of the form —y + i§
with y =0 and 8§ € R\{0}. Then (y + b)’€ W and —8%€ Sp((y + b)?), contradicting (6).
Thus Sp(w) C R and (5) follows from (6).

We prove next that

weEWrw)<l > 1-weWw @)

Given w € W with r(w)<1, we have (1-w)'=1+b with b =23%., w* € W. Thus
1-w=(0+b)'EW.

Now let x,y € W with xy = yx, and suppose first that x € Inv(B) and r(x) < 1. By
(5) we have r(1—x)<1, and by (7) 1 —x € W. Since the binomial series for (1 —¢)™'""?
has positive coeflicients, we therefore have

xP={l-(1-xy"ew,

1 -1/2

and x "2y = yx™'2. By condition (ii), we have in turn x "yx "€ W, x'"yx'?=
x(xyx~"?)x € W. Therefore

xy = x"2yx'2€ W,

and it is clear that this still holds without the condition r(x)<1. Finally, given
arbitrary x,y € W with xy = yx and € > 0, we have € + x € W NInv(B), and (e + x)y =
y(e + x). Therefore (e + x)y € W. Since W is closed, we have xy € W, and the proof is
complete.

Corollary 5. Let R be a Jordan subalgebra of B containing 1. Then R is
bicontinuously isomorphic to a JC-algebra if and only if it satisfies the following
conditions:

(i) R is closed,

(il) Sp(x)C R (x ER),

(iii) r is subadditive on R,

(iv) {l(1 + x»7"|: x € R} is bounded.

Proof. Suppose first that R satisfies the stated conditions (i)-(iv), and let
W ={x € R:Sp(x) CR*}. By (2, Theorem 3), W is a closed type-0 locally multi-
plicative wedge and R = W — W. Since elements of W NInv(B) have square roots in
W, the set {J(1+ w)'|:w € W} is bounded. By Corollary 2, R is bicontinuously
isomorphic to a JC-algebra.

Conversely, suppose that ¢ is a bicontinuous isomorphism of R onto a JC-algebra
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A, and let W= ¢ '(A"). Then W is a closed cone and R= W — W. If a,b € A with
ab=ba=1, and x = ¢ (a), y= ¢~'(b), then xy = yx = 1. This is not quite obvious
since ¢ is not an isomorphism for the associative structure. However, since ¢ is a
Jordan isomorphism, we have xy + yx =2 and xyx = x. Thus (xy)’= xy and (yx)’ = yx,
and we have in turn 4~4xy+xy=(Q2—xy)’=2—xy,xy=1,yx =1. Since A" is of
type-0, it now follows that W is of type-0. Since aba € A* (a,b € A*) and ¢ is a
Jordan isomorphism, we have xyx € W (x,y € W). By Theorem 4, W is locally
multiplicative, and Theorem 3 of (2) now shows that R satisfies (ii) and (iii). That R
satisfies (i) and (iv) is clear from the boundedness of ¢ and ¢™' and from the
inequality |(1+ a®)7|<1 (a € A).

The next lemma may appear obvious at first sight but involves the difficulty that
the spectra of elements are defined in terms of the complex Banach algebras B and
BL(H) whereas the Jordan isomorphism is defined only on the Jordan subalgebra R.

Lemma 6. Let R be a Jordan subalgebra of B containing 1, and let ¢ be a
bicontinuous isomorphism of R onto a JC-algebra. Then

Sp(¢(x)) = Sp(x) (xER).

Proof. Let W ={x € R:Sp(x)C R*}. By Corollary 5 and (2, Theorem 3), W is a
closed type-0 locally multiplicative wedge. Also {|(1+ w)'|:w € W} is bounded.
Therefore, by Theorem 1, the spectral radius is a norm on R equivalent to the given
norm, and so there exists a constant k >0 such that

r(x)=«lx| (x € R).
We deduce that ,
%,y € Ruxy = yx > |x + iyl = 7 (x| +lylD. ®
Given x,y € R with xy = yx, we have
(lxlt+ IyDllx + iyll = lx — iyl llx + iyl = .* + ¥l = r(x*+ y?) = r(x?) = x|

Similarly (|x||+ [ly])llx + ivl| = «*y|, and so
2 2
, K K
(il +yDllx + iyl = - (x| + vl = = (Ul + 0y,

which proves (8).
We prove next that

x€ERNInv(B)=>x"'eER. )]

Let x € R NInv(B), and let C be the least closed complex subalgebra of B containing
1 and x. Since Sp(x) C R, the spectrum of x relative to C coincides with its spectrum
relative to B. Therefore x~' € C, and there exist real polynomials p,,g, in x such that
x7' = limue(ps + ig,). It follows from (8) that there exist p,g € RNC such that
lim,.p, = p, lim,.=q, = q. Thus x™'=p + ig. We have px,gx €ERNC and (px—1)+
igx = 0. Therefore, by (8), px—1=0, x'=p € R; (9) is proved.

Given x,y € R with xy=yx=1, we have, as in the proof of Corollary 5,
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d(x)P(y) = d(y)p(x)=1. It follows, by (9) that if x € RNInv(B), then ¢(x) is
invertible in BL(H). Finally, since Sp(x) C R for all x € R, we now have Sp(¢(x)) =
Sp(x).

We now consider the characterisation of bicontinuous isomorphic images of
JC-algebras in terms of a submultiplicative property of the spectral radius in place of
the subadditive property in Corollary 5.

Theorem 7. Let R be a Jordan subalgebra of B containing 1. Then R is bicon-
tinuously isomorphic to a JC-algebra if and only if it satisfies
(1) R is closed,
(it) Sp(x)CR (xER),
(iii) x,y € R,A € RNSp(xy)=> |A| = r(x)r(y),
@iv) {l(1+ x*7Y|): x € R} is bounded.

Proof. Suppose first that conditions (i)—(iv) hold, and let W ={x € R:Sp(x)C R"}.
Minor modifications of the proof of (2, Theorem 8) show that W is a closed type-0
locally multiplicative wedge and that R = W — W. Thus Corollary 2 gives the required
bicontinuous isomorphism.

Suppose conversely that ¢ is a bicontinuous isomorphism of R onto a JC-algebra
A. We prove first that

x,y,2 € R Sp(z(xy — yx)z) CiR. (10)
Given x,y,z €E R, let a = ¢(x), b = ¢(y), ¢ = $(z). We have

(z(xy + yx)2)? — (z(xy — yx)z)? = 2zxyz’yxz + 2zyxz’xyz

and, in turn, yz’y € R, xyz’yx € R, zxyz*yxz € R. Therefore (z(xy — yx)z)’ € R, and,
since ¢ is a Jordan isomorphism,

S ((z(xy — yx)2)°) = $((z(xy + yx)2)*) — 2¢(zxyz’yxz) — 2 (zyxz’xy2)
= (c(ab + ba)c)* - 2cabc’bac — 2cbac’abe
= (c(ab — ba)c).

Since ic(ab — ba)c is self-adjoint, we have Sp((c(ab — ba)c)’)C — R". Therefore, by
Lemma 6, Sp((z(xy — yx)z)>) C — R*, and (10) is proved.

Let W=¢"'(A"). Then W is a closed type-O locally multiplicative cone and
W={xER:Sp(x)CR"}. Let x,y ER and A ER with A > r(3(xy + yx)). Then 2A —
(xy + yx) € W NInv(B) and so 2A — (xy + yx) = z72 with z € W. Therefore

2A —2xy = 2A —(xy + yx) — (xy — yx)
=z Y1-z(xy — yx)z}z""

By (10), it follows that A — xy € Inv(B); and we have proved that AZ Sp(xy) whenever

A > r(3(xy + yx)). Replacing x by —x, we see that A€ Sp(xy) whenever —A >

rG(xy + yx)), and so
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A € RNSp(xy) = |A] < r((xy + yx)).

But, by (2, Theorem 4), r(3(xy + yx)) < r(x)r(y), and so (iii) is proved; and (i), (ii), (iv)
have been proved in Corollary 5.

1 owe the following example to M. A. Youngson. This not only shows that we can
have W N(— W) = {0} without having boundedness of {|(1+ w)™'||: w € W}, but also
settles a question asked in (2, p.247) concerning the existence of square roots.

Example 8. Take B to be the complex Banach algebra C,[0, 1] of all continuous
complex functions on [0, 1] with continuous first derivatives there, with the usual
norm {|x|| = sup{|x(s)|:0=<s < 1} + sup{[x'(s)[:0<s < 1}. Let V be the set of all non-
negative real valued functions belonging to B. Plainly V is a closed type-0 locally
multiplicative cone. As is no doubt well known, V is not a normal cone; for example
consider u,v € V given by u(s)=s", v(s)=1-s" (0=s =<1). It follows that the set
{lc1 + w)7Y|: w € V} is not bounded, as can also be verified directly without difficulty.
Moreover, the element w of V given by w(s)=s (0 < s =< 1) has no square root in V;
so that WN(—W)={0} is not sufficient to give the existence of square roots of
elements of W (see (2, p. 247)). In this connection it should also be noted that if
elements of W have at most one square root in W, then W N(— W)= {0}. For if
h € W N(— W), then h?is an element of W with the square roots h and —h in W.

In the light of Example 8 it is of interest, when W N(— W) = {0}, to consider the
completion of W — W with respect to the spectral radius norm. By using the full force
of the characterisation of special JB-algebras in (1), we show that the completion is
still a special JB-algebra.

Theorem 9. Let W be a closed type-0 locally multiplicative cone in B, and let
R =W — W. Then ris a norm on R, and the completion of R with the natural extension
of r and of the Jordan product on R, is a special JB-algebra.

Proof. Since W N(— W)= {0}, Theorems 3 and 4 in (2) show that r is a norm on
the Jordan algebra R and that

r(xey) < r(x)r(y) (x,y ER), (11)

where xoy =3(xy + yx). Let S denote the completion of R with respect to the norm r
and let r denote also the natural extension of the norm r to S. Then S with the
extended norm r is a real Banach space. By (11), the Jordan product extends by
continuity to a mapping: S X S-S which we denote also by xoy. It is routine to
check that xey is a distributive and commutative product on S, that a(xcy) = (ax)ey =
xo(ay) for a € R and that xo(yox) = (x%y)ex. Thus S with this product is a Jordan
algebra.

Given x,y € S, choose Cauchy sequences {x,}, {v,} in R corresponding to x,y
respectively. Then, since the proof of (4) does not use the boundedness of the set
{1+ w)':wE W}, we have

r(x*+ y) =lim r(x2+ y2) = lim r(x2) = r(x?,
n—xo n—ow
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and r(x?) = lim,..r(x2) = lim, .(r(x,))* = (r(x))>. We have now proved that (S,r) is a
JB-algebra. To prove that S is special, let f be a real polynomial in three variables
that vanishes on all special Jordan algebras but not on M3, the exceptional formally
real simple Jordan algebra of finite dimension. Then f(x,y,z) =0 for all x,y,z € R and
therefore also (by continuity) for all x,y,z € S. Therefore, by (1, Theorem 9.4), S is a
special JB-algebra.

Corollary 10. Let W, R be as in Theorem 9. Then the Jordan algebra R is
isomorphic to a dense Jordan subalgebra of a JC-algebra.

Proof. Let S be the completion of R with respect to the norm r. Then S with the
extended norm r is a special JB-algebra and is therefore isometrically isomorphic to a
JC-algebra.

Acknowledgement. I am indebted to E. M. Alfsen, F. W. Shultz, and E. Stgrmer
for a preprint copy of (1), which is the essential basis for this note.
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