Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats

Kazuhiro Hayakawa1*, Masayuki Kimura1, Keiko Kasaha1, Keisuke Matsumoto1, Hiroshi Sansawa1 and Yukio Yamori2

1Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi-shi, Tokyo 186-8650, Japan
2International Center for Research on Primary Prevention of Cardiovascular Diseases, 86-2 Shimobara-cho Jodoji, Sakyo-ku, Kyoto 606-8413, Japan

(Received 22 October 2003 – Revised 29 April 2004 – Accepted 11 May 2004)

We investigated the blood-pressure-lowering effects of γ-aminobutyric acid (GABA) and a GABA-enriched fermented milk product (FMG) by low-dose oral administration to spontaneously hypertensive (SHR/Izm) and normotensive Wistar–Kyoto (WKY/Izm) rats. FMG was a non-fat fermented milk product produced by lactic acid bacteria, and the GABA contained in FMG was made from the protein of the milk during fermentation. A single oral dose of GABA or FMG (5 ml/kg; 0.5 mg GABA/kg) significantly (P < 0.05) decreased the blood pressure of SHR/Izm from 4 to 8 h after administration, but did not increase that of WKY/Izm rats. The hypotensive activity of GABA was dose-dependent from 0.05 to 5.00 mg/kg in SHR/Izm. During the chronic administration of experimental diets to SHR/Izm, a significantly slower increase in blood pressure with respect to the control group was observed at 1 or 2 weeks after the start of feeding with the GABA or FMG diet respectively (P < 0.05) and this difference was maintained throughout the period of feeding. The time profile of blood-pressure change due to administration of FMG was similar to that of GABA. FMG did not inhibit angiotensin I-converting enzyme. Furthermore, an FMG peptide-containing fraction from reverse-phase chromatography lacked a hypotensive effect in SHR/Izm rats. The present results suggest that low-dose oral GABA has a hypotensive effect in SHR/Izm and that the hypotensive effect of FMG is due to GABA.

γ-Aminobutyric acid: Fermented milk: Blood pressure: Spontaneously hypertensive rat

High blood pressure is the leading risk factor for CVD, which remains one of the most important public health problems in the world (Guidelines Subcommittee of the World Health Organization–International Society of Hypertension, 1999; International Society of Hypertension Working Group, 2003). The development of hypertension is caused by several factors, including diet and lifestyle. It is well known that nutritional factors influence blood pressure; for example, excessive salt and alcohol intake may lead to an increase in blood pressure (Suter et al. 2002). Studies using the Dietary Approaches to Stop Hypertension (DASH) diet demonstrate that a diet rich in fruits, vegetables, low-fat dairy products, fibre and minerals (Ca, K and Mg) significantly lowers blood pressure and is effective as the first-line therapy (Moore et al. 2001; Whelton et al. 2002; Akita et al. 2003). Many studies have addressed the effect of minerals on blood pressure, but few have assessed the influence of a small quantity of an amino acid as a dietary supplement.

γ-Aminobutyric acid (GABA) is an amino acid that has long been reported to lower blood pressure by intravenous administration in experimental animals (Takahashi et al. 1955; Stanton, 1963; Lacerda et al. 2003) and in human subjects (Elliott & Hobbiger, 1959). However, the effect of dietary GABA has attracted little attention as a factor that may influence blood pressure, and it is not known whether low-dose oral administration of GABA affects blood pressure. GABA is present in many vegetables and fruits but not in dairy products. We developed a fermented low-fat milk product containing GABA (FMG) by using two types of lactic acid bacteria. Although GABA is not normally detectable in milk, it was made from the protein of the milk by the metabolic action of the lactic acid bacteria.

Our previous study showed that FMG had a blood-pressure-lowering effect in mildly hypertensive patients (Inoue et al. 2003). Although various fermented milk and cheese products have stronger hypotensive effects, owing to...
inhibition of angiotensin I-converting enzyme (ACE), it is not clear whether the effect of FMG depends on GABA or other components.

Therefore, in the present study we compared the effects of single-dose or chronic oral administration of GABA or FMG on the blood pressure of spontaneously hypertensive rats (SHR). We determined the ACE-inhibiting activity of FMG to clarify the hypotensive mechanism of this product; we then determined the minimum effective dose and the dose–response curve for the hypotensive action of GABA.

Materials and methods
Chemicals and reagents
GABA and other reagents were of analytical grade and were purchased from Sigma Chemical Co. (St Louis, MO, USA).

Preparation of fermented milk
FMG (Table 1) was produced by fermenting skimmed cows’ milk with two starters, Lactobacillus casei strain Shirota and Lactococcus lactis YIT 2027 (Kimura et al. 2002a). The concentration of GABA in FMG was 1 mmol/l.

Animals and diets
SHR (SHR/Izm) and normotensive Wistar–Kyoto rats (WKY/Izm) (male, 14 weeks old, weighing 310–370 g for the single oral administration experiment (Expt 1); 6 weeks old, weighing 145–160 g at the beginning of the chronic administration experiment (Expt 2)) were purchased from Japan SLC, Inc. (Shizuoka, Japan), the breeder for the Disease Model Cooperative Research Association (Kyoto, Japan). Izm is the original strain type of SHR established by Okamoto & Aoki (1963). The animals were divided into four groups of six animals each in Expt 1 and three groups of ten animals each in Expt 2. The diets were standard laboratory diet (MF diet; Oriental Yeast Co. Ltd, Tokyo, Japan) in Expt 1 and modified AIN-93G diet (Table 2; Oriental Yeast Co. Ltd) in Expt 2. All animals received tap water ad libitum and were housed under a 12 h light–dark cycle (lights on 08.30 to 20.30 hours). An automatic air conditioning system (Air Handling Unit TUC-244BH, Toyo Engineering Works Ltd, Tokyo, Japan) controlled the temperature at 24±2°C and the humidity at 60±5%. Rats were acclimated to the housing conditions for at least 1 week before the start of the experiments. The present study was conducted in accordance with the Guide for the Care and Use of Laboratory Animals, as adopted by the Committees for Animal Experiments of the Yakult Central Institute.

Dosage

Expt 1. FMG (5 ml/kg body weight), a fraction containing the peptides from FMG (5 ml/kg), a suspension (60 ml/l) of skimmed milk powder (5 ml/kg body weight), GABA (0·05, 0·50 or 5·0 mg/kg body weight) or captopril (10 mg/kg body weight) were given orally to SHR/Izm and WKY/Izm rats (six per group) by stomach tube between 09.30 and 10.00 hours. GABA, skimmed milk powder and captopril were dissolved in physiological saline (9 g NaCl/l). The dose of captopril (a typical ACE inhibitor) as a positive control was chosen so as to have a similar magnitude of blood-pressure-lowering effect as the level of FMG found in SHR/Izm.

Expt 2. The rats were housed in individual cages and received the experimental diets (Table 2) ad libitum. The diets were standard laboratory diet (MF diet; Oriental Yeast Co.) in Expt 1 and AIN-93G diet (Table 2; Oriental Yeast Co.) in Expt 2. All animals received tap water ad libitum and were housed under a 12 h light–dark cycle (lights on 08.30 to 20.30 hours). An automatic air conditioning system (Air Handling Unit TUC-244BH, Toyo Engineering Works Ltd, Tokyo, Japan) controlled the temperature at 24±2°C and the humidity at 60±5%. Rats were acclimated to the housing conditions for at least 1 week before the start of the experiments. The present study was conducted in accordance with the Guide for the Care and Use of Laboratory Animals, as adopted by the Committees for Animal Experiments of the Yakult Central Institute.

Table 1. Composition of γ-aminobutyric acid (GABA)-enriched fermented milk

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (g/kg)</td>
<td>888</td>
</tr>
<tr>
<td>Protein (g/kg)</td>
<td>22</td>
</tr>
<tr>
<td>Fat (g/kg)</td>
<td>nd</td>
</tr>
<tr>
<td>Ash (g/kg)</td>
<td>5</td>
</tr>
<tr>
<td>Carbohydrate (g/kg)</td>
<td>81</td>
</tr>
<tr>
<td>Fibre (g/kg)</td>
<td>4</td>
</tr>
<tr>
<td>Na (mg/kg)</td>
<td>381</td>
</tr>
<tr>
<td>Ca (mg/kg)</td>
<td>742</td>
</tr>
<tr>
<td>Free amino acids (mg/kg)</td>
<td></td>
</tr>
<tr>
<td>GABA</td>
<td>102</td>
</tr>
<tr>
<td>Asp</td>
<td>50</td>
</tr>
<tr>
<td>Thr</td>
<td>28</td>
</tr>
<tr>
<td>Ser</td>
<td>9</td>
</tr>
<tr>
<td>Glu</td>
<td>14</td>
</tr>
<tr>
<td>Pro</td>
<td>83</td>
</tr>
<tr>
<td>Gly</td>
<td>19</td>
</tr>
<tr>
<td>Ala</td>
<td>35</td>
</tr>
<tr>
<td>Cys</td>
<td>0</td>
</tr>
<tr>
<td>Val</td>
<td>29</td>
</tr>
<tr>
<td>Met</td>
<td>6</td>
</tr>
<tr>
<td>Ile</td>
<td>15</td>
</tr>
<tr>
<td>Leu</td>
<td>26</td>
</tr>
<tr>
<td>Tyr</td>
<td>4</td>
</tr>
<tr>
<td>Phe</td>
<td>9</td>
</tr>
<tr>
<td>Lys</td>
<td>30</td>
</tr>
<tr>
<td>His</td>
<td>11</td>
</tr>
<tr>
<td>Arg</td>
<td>6</td>
</tr>
<tr>
<td>Energy (kJ/kg)</td>
<td>1340</td>
</tr>
</tbody>
</table>

Table 2. Composition (g/kg) of the experimental diets

<table>
<thead>
<tr>
<th>Diet...</th>
<th>Control</th>
<th>GABA</th>
<th>FMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize starch</td>
<td>392</td>
<td>392</td>
<td>392</td>
</tr>
<tr>
<td>Casein</td>
<td>195</td>
<td>195</td>
<td>155</td>
</tr>
<tr>
<td>Dextrinized maize starch</td>
<td>132</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>Soyabeansol</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Cellulose powder</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Mineral mixture*</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Vitamin mixture†</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>l-Cystine</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Choline bitartrate</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>tert-Butylhydroquinone</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>NaCl</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>GABA</td>
<td>–</td>
<td>0.1</td>
<td>–</td>
</tr>
<tr>
<td>FMG‡</td>
<td>–</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>

GABA, γ-aminobutyric acid; FMG, γ-aminobutyric acid-enriched fermented milk.
*AIN-93G-MX; Oriental Yeast Co., Tokyo, Japan.
†AIN-93G-VX; Oriental Yeast Co.
‡Freeze-dried FMG (GABA-enriched fermented milk; FMG was modified so that carbohydrate and moisture were 30 and 939 g/kg respectively. The remaining composition was not altered).
Expt 2. The basal diet was modified AIN-93G containing NaCl (10 g/kg; Table 2). For 3 weeks, SHR/Izm rats were fed a basal diet (control, group 1), or a diet containing freeze-dried FMG (100 g/kg) (final concentration of GABA 0.1g/kg, group 2) or GABA (0.1 g/kg, group 3). The animals were maintained on the basal diet before the experiment.

Measurement of blood pressure and heart rate
At 0, 4, 8, and 24 h after a single oral administration of the sample solutions, individual rats were placed in a constant-temperature box at 37°C for a few minutes, and then systolic blood pressure (SBP) and heart rate were measured by the tail-cuff method using a blood pressure analyser (BP-98A; Softron Co. Ltd, Tokyo, Japan) connected to a personal computer (Mebius series; Sharp Co., Tokyo, Japan). To assess the hypotensive effects of different doses of GABA alone, SBP and heart rate were measured 0 and 4 h after a single administration. During chronic administration (Expt 2), SBP and HR were measured once per week.

Measurement of angiotensin I-converting enzyme inhibitory activity
ACE inhibitory activity was measured by the method of Cushman & Cheung (1971), with modifications. Each test sample was centrifuged at 6000 g for 10 min, and the supernatant fraction was adjusted to pH 8.3 by adding 5 M-NaOH. The supernatant fraction was used for the assay. A sample (80 μl) of treated sample supernatant fraction was mixed with 0.1 U ACE solution (20 μl)/ml and 20 μl 0.2 M-borate buffer (pH 8.3) containing 5 mM-hippuril-L-histidyl-L-leucine (Sigma, St Louis, MO, USA) and 0.3 M-NaCl. After incubation at 37°C for 30 min, the reaction was stopped by adding 1 M-HCl (250 μl). The hippuric acid liberated from hippuril-L-histidyl-L-leucine by the enzymic action of ACE was extracted with ethyl acetate and was determined photo metrically at 228 nm. The coefficient of ACE inhibitory activity (IDR_{50}) was defined as the dilution ratio of the sample needed to inhibit the ACE activity by 50%.

Preparation of peptides fraction from γ-aminobutyric acid-enriched fermented milk
FMG was centrifuged at 6000 g for 10 min, and 10 ml supernatant fraction was loaded onto a Bond-Elute C18 chromatography cartridge (Varian Inc., Harbor City, CA, USA). The solution that flowed through the chromatograph was collected as the unadsorbed fraction of FMG. After the cartridge had been washed with water, peptides were eluted with 60% acetonitrile. The eluted fraction was evaporated to dryness, and the residual material was dissolved in 10 ml purified water and was used for ACE inhibitory assays as the peptide fraction of FMG.

Statistical analyses
Statistical analyses were performed using SAS Systems version 6.12 (SAS Institute Inc., Cary, NC, USA). Initial body weight and resting blood pressure data were analysed by Student’s t test to compare the SHR and WKY groups. One-way ANOVA was used to compare the ACE inhibitory activity, dose–response, body weight and food intake among the three diet groups during chronic administration. When the variance ratio (F) was significant, mean values were compared by Dunnett’s test or the William’s test. Two-way ANOVA was used to compare the result profiles over time with respect to blood pressure in single- and chronic-administration experiments. When the variance ratio (F) was significant among groups, mean values were compared by Fisher’s least significant difference test. All results are reported as mean values with their standard errors. All statistical analyses were two-tailed, and statistical significance was established at P < 0.05.

Results
Effect of a single oral dose of γ-aminobutyric acid-enriched fermented milk on blood pressure in spontaneously hypertensive/Izm and Wistar–Kyoto/Izm rats
Before dosing, the average body weight and resting SBP in SHR/Izm and WKY/Izm rats were as shown in Table 3. There was a significant difference in SBP between SHR/Izm and WKY/Izm (P < 0.01), but not in body weight. The effects of a single oral dose of FMG (5 ml/kg; equivalent to 0.5 mg GABA/kg), GABA (0.5 mg/kg) or skimmed milk solution (5 ml/kg; GABA-free) on SBP are shown in Fig. 1. In SHR/Izm rats (Fig. 1(A)), two-way ANOVA showed independent effects of group (P < 0.05) and time (P < 0.01): SBP (mmHg) 4 h after administration were 191.7 (SEM 3.5) for the control group (saline), 177.8 (SEM 4.7) for the FMG group (P < 0.05), 177.7 (SEM 3.2) for the GABA group (P < 0.05), and 175.2 (SEM 3.7) for the control group (GABA-free) by 4 h after administration were 191.7 (SEM 3.5) for the control group (saline), 177.8 (SEM 4.7) for the FMG group (P < 0.05), and 175.2 (SEM 3.7) for the GABA group (P < 0.05). SBP returned to the baseline value by 24 h after dosing. In comparison, FMG and GABA did not change the SBP in WKY/Izm rats (Fig. 1(B)). Skimmed milk solution did not affect SBP in either strain of rats. There were no significant changes in heart rate after administration of FMG, GABA or skimmed milk solution in any animals (results not shown).

Dose-responsive hypotensive effect of single administration of γ-aminobutyric acid
Fig. 2 shows the hypotensive effects of different doses of GABA at 4 h after a single oral dose. Administration of GABA doses of 0.50 and 5.00 mg/kg (but not 0.05 mg/kg)

Table 3. Body weight and resting blood pressure in spontaneously hypertensive (SHR/Izm) and normotensive Wistar–Kyoto (WKY/Izm) rats (14 weeks old) at the beginning of Expt 1†

<table>
<thead>
<tr>
<th></th>
<th>SHR/Izm</th>
<th>WKY/Izm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>333.8</td>
<td>353.3</td>
</tr>
<tr>
<td>Resting SBP (mmHg)</td>
<td>195.4**</td>
<td>123.1</td>
</tr>
</tbody>
</table>

Mean value was significantly different from that for WKY/Izm rats. **P < 0.01.
† For details of diets and procedures, see Table 1 and pp. 412–413.
significantly \((P<0.05)\) decreased SBP. The hypotensive effect of GABA was dose-dependent from 0.05 to 5.00 mg/kg \((r = 0.972)\).

Angiotensin I-converting enzyme inhibitory activity and effect on systolic blood pressure of \(\gamma\)-aminobutyric acid-enriched fermented milk and its peptide-containing fraction given as a single dose

Table 4 shows the ACE inhibitory activities and blood-pressure-lowering effects in SHR/Izm of FMG and its peptide-containing fraction. Captopril (an ACE inhibitor) as a positive control showed a strong ACE inhibitory effect and lowered the SBP significantly. In contrast, FMG, both its fractions, and GABA did not inhibit ACE activity, but SBP was significantly decreased compared with the saline control at 4 h after administration of FMG, the unadsorbed fraction of FMG, GABA or captopril \((P, 0.05)\). The peptide fraction of FMG showed neither ACE inhibitory activity nor blood-pressure-lowering effects. The profile of blood pressure change due to administration of the non-adsorbed fraction of FMG was very similar to that for FMG in SHR/Izm (Fig. 3).

Chronic administration of \(\gamma\)-aminobutyric acid-enriched fermented milk or \(\gamma\)-aminobutyric acid

The body weight and food intake of SHR/Izm in Expt 2 are shown in Table 5. There were no significant differences in

Table 4. Angiotensin-I converting enzyme (ACE) inhibitory activity and antihypertensive effects of \(\gamma\)-aminobutyric acid-enriched fermented milk (FMG) and its fractions†

<table>
<thead>
<tr>
<th>ACE inhibition</th>
<th>SBP (mmHg)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDR(50)</td>
<td>Mean SEM</td>
</tr>
<tr>
<td>FMG Whole</td>
<td>0·1</td>
</tr>
<tr>
<td>Peptide fraction</td>
<td><0·1</td>
</tr>
<tr>
<td>Unadsorbed fraction§</td>
<td><0·1</td>
</tr>
<tr>
<td>GABA (1 mmol/l)</td>
<td><0·1</td>
</tr>
<tr>
<td>Captopril (0·5 mmol/l)</td>
<td>>1000</td>
</tr>
<tr>
<td>Saline (9 g NaCl/l)</td>
<td><0·1</td>
</tr>
</tbody>
</table>

IDR\(50\), dilution ratio of sample needed to inhibit ACE activity by 50%; SBP, systolic blood pressure; GABA, \(\gamma\)-aminobutyric acid. Mean values were significantly different from that of the saline group (control): *\(P<0.05\).

† For details of procedures, see Table 1 and p. 412.

‡ The SBP of spontaneously hypertensive /Izm rats was measured 4 h after administration of a single oral dose (5 ml/kg body weight). For details of diets and procedures, see Table 1 and pp. 412–413. Values are means with their standard errors for six animals per group. Mean values were significantly different from that of the control (saline, 9 g NaCl/l (0·00 mg GABA/kg)) value: *\(P<0.05\).

§ The fraction of FMG that was not adsorbed on reverse-phase chromatography and that included 1 mmol GABA/l.
these values between the three groups. The time course of
SBP during the experiment is shown in Fig. 4. The SBP
increased gradually with age and reached 200 mmHg at
10 weeks of age in the control group. A significantly
slower increase in SBP compared with the control group
was observed 1 or 2 weeks after the start (at 7 weeks of
age) of feeding with the GABA or FMG diet respectively
\((P, 0.05)\), and this difference was maintained throughout
the period of feeding. After 3 weeks of feeding the experi-
mental diets, SBP values (mmHg) in the control, GABA
and FMG groups were 199.8 (SEM 3.8), 184.9 (SEM 1.4)
\((P, 0.01 v.\, control\, group)\) and 182.8 (SEM 2.4) \((P, 0.01 v.\, control\, group)\) respectively. There were no significant
changes in heart rate in the control, FMG or GABA
groups (results not shown).

Discussion

FMG and the identical amount of reagent GABA had a
similar magnitude of hypotensive effect by single-dose
and chronic administration to SHR/Izm. We also pre-
viously reported that FMG has a hypotensive effect in
patients having mild hypertension (Inoue et al. 2003),
although it was not clear whether the effect depended on
GABA. However, it seems reasonable to conclude that
the hypotensive effect of FMG was caused by GABA.
After a single oral dose of GABA (about 7 mg/kg) was
given to rats (body weight 350 g), the plasma GABA con-
centration peaked (1.4 mg/ml) after 1 h, then decreased
gradually to 0.8 mg/ml after 6 h, and disappeared after
24 h (Nakamura et al. 2000). In our present experiment,
the hypotensive effect of GABA continued until 8 h after
oral administration, and the effect disappeared after 24 h.
There was good correlation between the plasma GABA
level and the hypotensive effect (Fig. 1).

Many studies have linked increased long-term consump-
tion of milk and dairy products with decreased blood press-
ure and reduced risk of hypertension. For example, a study
of 5000 people found that those with normal blood press-
ure reported higher consumption of milk than did hyperten-
sive subjects (Ackley et al. 1983). The authors suggested
that some component of milk, probably Ca, exerted a pro-
tective effect against hypertension. In a recent review, the
Dietary Approaches to Stop Hypertension (DASH) diet (a
diet high in low-fat dairy foods, fruits and vegetables)
reduced blood pressure (Appel et al. 1997; Miller et al.
2000). However, the hypotensive effect of milk is small
(Allender et al. 1996), and a single oral dose of skimmed

![Fig. 3. Effect of a single oral administration of fractions of \(\gamma\)-amino-
butyric acid-enriched fermented milk (FMG) on systolic blood press-
ure (SBP) in spontaneously hypertensive (SHR/Izm) rats. ●, Saline
(9 g NaCl/l); □, FMG (peptide fraction); ○, FMG (without peptide
fraction); ■, FMG (whole). The dose was 5 ml/kg body weight. For
details of diets and procedures, see Table 1 and pp. 412–413.
Values are means with their standard errors for six animals per
group. Mean values were significantly different from that of the con-
trol (saline) value at the same time point: * \(P, 0.05\).

![Fig. 4. Effect of chronic administration of \(\gamma\)-aminobutyric acid-
enriched fermented milk (FMG) or \(\gamma\)-aminobutyric acid (GABA) on
systolic blood pressure (SBP) in spontaneously hypertensive/Izm
rats. ●, Control; ■, FMG; ○, GABA. Test diets were fed from 7 to 10
weeks of age. For details of diets and procedures, see Tables 1 and
2 and pp. 412–413. Values are means with their standard errors for
ten animals per group. Mean values were significantly different from
that of the control value at the same time point: * \(P, 0.05\).

| Table 5. Body weight and food intake of rats in Expt 2* |
| (Mean values with their standard errors for ten rats per group) |
	Control	GABA	FMG			
	Mean	SEM	Mean	SEM	Mean	SEM
Body weight (g)						
7 weeks old	184.4	1.9	182.5	2.1	180.9	2.0
10 weeks old	264.7	5.4	271.0	2.5	268.9	2.5
Food intake (g per rat in 3 weeks)	350.7	19.5	362.5	16.2	361.5	18.2

GABA, \(\gamma\)-aminobutyric acid; FMG, \(\gamma\)-aminobutyric acid-enriched fermented milk.
* For details of diets and procedures, see Tables 1 and 2 and p. 412.
milk had no blood-pressure-lowering effect in SHR/Izm in our present study.

Some studies reported that in both single-dose and long-term regimens, various fermented milk or cheese products had stronger hypotensive effects than milk (Nakamura et al. 1995; Yamamoto et al. 1999; Saito et al. 2000; Seppo et al. 2003). Some lactic acid bacteria produce peptides that are released from the protein of the milk by proteolysis and inhibit ACE, which is instrumental in inducing hypertension (Nakamura et al. 1995; Yamamoto et al. 1999). It seemed reasonable to think that the hypotensive effect of FMG was related to inhibition of ACE. However, we found that neither FMG nor its peptide fraction showed any substantial inhibition of ACE activity. Nor did the peptides of FMG have a hypotensive effect after their oral administration to SHR/Izm rats. Furthermore, the two starters used to produce FMG, Lactobacillus casei strain Shirota and Lactococcus lactis YIT 2027, did not generate any hypotensive peptides from the protein of the milk. These and our other results indicate that the hypotensive effect of FMG is closely related to the presence of GABA.

During fermentation to produce FMG, GABA is made from the protein of the milk by Lactococcus lactis YIT 2027, which has strong glutamate decarboxylase activity. From the point of view of GABA production, acidic fermented milk is beneficial, because the glutamate decarboxylase activity of Lactococcus lactis YIT 2027 is optimal at about pH 5.3 (K Hayakawa et al., unpublished results); its GABA transaminase (optimal pH 8–10; Shelp et al. 1999), which catalyses the transformation of GABA to succinic semialdehyde, is poorly active under acidic conditions. Therefore, GABA accumulates during fermentation.

Although the mechanism of the hypotensive action of systemically administered GABA has not been fully elucidated, several hypotheses have been postulated. Because GABA barely passes the blood–brain barrier (Gelder & Elliott 1958; Kuriyama & Sze 1971), it is reasonable to consider that, at low doses, GABA cannot act centrally but only peripherally. In practice, GABA inhibits noradrenaline release from sympathetic nerve terminals in the mesenteric arterial bed in SHR/Izm rats (Hayakawa et al. 2002). It has been suggested that this effect is mediated through peripheral activation of the GABAB receptor, because the hypotensive effect is reduced by pre-administration of the GABAB receptor antagonist saclofen.

Several recent studies have reported that various GABA-containing dietary materials or products decrease blood pressure in SHR and hypertensive patients. Gabaron tea (anaerobically fermented tea; Oomori et al. 1987), extracts of beni-koji (Tsujii et al. 1992) and a particular defatted rice germ (Onoda et al. 1998) are included among these supplements. However, these dietary materials and products contain many ingredients besides GABA, whose effects were not ruled out, although it was presumed that the hypotensive effect was due to the presence of GABA.

In a previous study, we investigated the safety of FMG in healthy adults with normal blood pressure (Kimura et al. 2002). Administration of 100 ml FMG/d for 8 weeks and 300 ml/d for 2 weeks failed to induce any changes in normal blood pressure and heart rate. In addition, we observed no remarkable changes in haematological and biochemical indices. It is important that FMG has no effect on normal blood pressure in human subjects, as it is undesirable to reduce blood pressure further than the level needed. In the present animal study, we observed a similar effect, in that FMG did not affect blood pressure in normotensive WKY/Izm rats; FMG exhibited a hypotensive effect only in the SHR/Izm.

In conclusion, our present results clearly show that our novel GABA-containing fermented milk product significantly reduced blood pressure in SHR/Izm rats. We consider that the hypotensive effect of FMG depends on GABA. Therefore, our FMG will probably be a beneficial addition to the diets of people with essential hypertension. The low incidence of hypertension among vegetarians may be partly attributable to their ingestion of GABA via these foods; however, further studies are required to confirm this theory.

Acknowledgements

We thank Mr S. Thuchikura (Disease Model Cooperative Research Association, Kyoto, Japan) for his skilled technical assistance, and the staff of our laboratory animal facility for their careful maintenance of the rats.

References

Moore TJ, Conlin PR, Ard J & Svetkey LP (2001) DASH (Dietary Approaches to Stop Hypertension) diet is effective treatment for stage 1 isolated systolic hypertension. Hypertension 38, 155–158.

Hypotensive effect of fermented milk 417