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Left-orderable Fundamental Group and
Dehn Surgery on the Knot 52

Ryoto Hakamata and Masakazu Teragaito

Abstract. We show that the manifold resulting from r-surgery on the knot 52, which is the two-bridge
knot corresponding to the rational number 3/7, has a left-orderable fundamental group if the slope r
satisfies 0 ≤ r ≤ 4.

1 Introduction

A group G is said to be left-orderable if it admits a strict total ordering that is left
invariant. More precisely, this means that if g < h, then f g < f h for any f , g, h ∈ G.
The fundamental groups of many 3-manifolds are known to be left-orderable. On
the other hand, the fundamental groups of lens spaces are not left-orderable, because
any left-orderable group is torsion-free. The notion of an L-space was introduced
by Ozsváth and Szabó [12] in terms of Heegaard–Floer homology. Lens spaces and
Seifert fibered manifolds with finite fundamental groups are typical examples of L-
spaces. Although it is an open problem to give a topological characterization of an
L-space, there is a possible connection between L-spaces and left-orderability. More
precisely, Boyer, Gordon, and Watson [3] conjecture that an irreducible rational ho-
mology sphere is an L-space if and only if its fundamental group is not left-orderable.
They give affirmative answers for several classes of 3-manifolds.

It is well known that all knot groups are left-orderable (see [4]), but the result-
ing closed 3-manifold by Dehn surgery on a knot does not necessarily have a left-
orderable fundamental group. For example, there are many knots that admit Dehn
surgery yielding lens spaces. By [12], the figure-eight knot has no Dehn surgery yield-
ing L-spaces. Hence we can expect that any nontrivial surgery on the figure-eight
knot yields a manifold whose fundamental group is left-orderable, if we support the
conjecture above. In fact, Boyer, Gordon, and Watson [3] show that if −4 < r < 4,
then r-surgery on the figure-eight knot yields a manifold whose fundamental group
is left-orderable. In addition, Clay, Lidman, and Watson [6] verified it for r = ±4
through a different argument.

In this paper, we follow the argument of [3] for the most part to handle the knot
52 from the knot table in [14]. This knot is the two-bridge knot corresponding to the
rational number 3/7, and is a twist knot. We believe that this is an appropriate target
next to the figure-eight knot. Since 52 is non-fibered, it does not admit Dehn surgery
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yielding an L-space [11]. Hence we can expect that any non-trivial Dehn surgery on
52 will yield a 3-manifold whose fundamental group is left-orderable.

Theorem 1.1 Let K be the knot 52. If 0 ≤ r ≤ 4, then r-surgery on K yields a
manifold whose fundamental group is left-orderable.

In fact, 0-surgery on any knot yields a prime manifold whose first Betti number
is 1, and such manifold has left-orderable fundamental group [4, Corollary 3.4]. Fur-
thermore, the same conclusion holds for 4-surgery on twist knots [16]. Hence, in this
paper we will handle the case where 0 < r < 4.

2 Knot Group and Representations

Let K be the knot 52 from the knot table in [14]; see Figure 1. This knot is the two-
bridge knot corresponding to the rational number 3/7. In this diagram, K bounds a
once-punctured Klein bottle, as seen from the checkerboard coloring, whose bound-
ary slope is 4. In fact, 4-surgery on K gives a toroidal manifold, and 1, 2, and 3-
surgeries give small Seifert fibered manifolds ([5]).

Figure 1

Let M be the knot exterior of K. It is well known that the knot group G =
π1(M) has a presentation 〈x, y | wx = yw〉, where x and y are meridians and
w = xyx−1 y−1xy. Also, a (preferred) longitude λ is given by x−4w∗w, where w∗ =
yxy−1x−1 yx corresponds to the reverse word of w. (These facts are easily obtained
from Schubert’s normal form of the knot [15].)

Let s > 0 be a real number and let

T =
2 + 3s + 2s2 +

√
s2 + 4

2s
.

Then it is easy to see that T > 4. Also, let t = T+
√

T2−4
2 . Then, t > 3 and

(2.1) t =
2 + 3s + 2s2 +

√
s2 + 4 +

√
(2 + 3s + 2s2 +

√
s2 + 4)2 − 16s2

4s
.

https://doi.org/10.4153/CMB-2013-030-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-030-2


312 R. Hakamata and M. Teragaito

Let φ = s(t + t−1)2 − (2s2 + 3s + 2)(t + t−1) + s3 + 3s2 + 4s + 3. Since t + t−1 = T,
φ = sT2 − (2s2 + 3s + 2)T + s3 + 3s2 + 4s + 3. If we solve the equation φ = 0 with
respect to T, we obtain the expression of T in terms of s as above. Thus φ = 0 holds.

We now examine some limits, which will be necessary later.

Lemma 2.1

(i) lims→+0 t =∞.
(ii) lims→+0 st = 2.
(iii) t − s > 2 and lims→∞(t − s) = 2.
(iv) lims→∞ s/t = 1.
(v) lims→∞ s(t − s− 2) = 0.
(vi) lims→∞ t(t − s− 2) = 0.

Proof (i) and (ii) are obvious from (2.1). For (iii),

t − s =
2 + 3s +

√
s2 + 4 +

(√
(2 + 3s + 2s2 +

√
s2 + 4)2 − 16s2 − 2s2

)
4s

shows us that t − s > 0, since (2 + 3s + 2s2 +
√

s2 + 4)2 − 16s2 > 4s4. The second
conclusion follows from

lim
s→∞

2 + 3s +
√

s2 + 4

4s
= 1, lim

s→∞

√
(2 + 3s + 2s2 +

√
s2 + 4)2 − 16s2 − 2s2

4s
= 1.

A direct calculation shows (iv).
For (v),

4s(t − s− 2)− 2 =(√
(2 + 3s + 2s2 +

√
s2 + 4)2 − 16s2 +

√
s2 + 4

)
− (2s2 + 5s).

Since the right-hand side converges to−2, we have lims→∞ s(t − s− 2) = 0.
From (iii), an inequality s + 2 < t < s + 3 holds for sufficiently large s. Then

(s + 2)(t− s−2) < t(t− s−2) < (s + 3)(t− s−2). Hence (iii) and (v) imply (vi).

Let ρs : G→ SL2(R) be the representation defined by the correspondence

(2.2) ρs(x) =

(√
t 0

0 1√
t

)
, ρs(y) =

 t−s−1√
t− 1√

t

s
(
√

t− 1√
t
)2 − 1

−s
s+1− 1

t√
t− 1√

t

 .

Here, we continue using the variable t to reduce the complexity. By using the fact
that s and t satisfy the equation φ = 0, we can check ρs(wx) = ρs(yw) by a direct
calculation. Hence the correspondence on x and y above gives a homomorphism
from G to SL2(R). In addition, ρs(xy) 6= ρs(yx), and so ρs has the non-abelian
image.
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Remark 2.2 This representation of G comes from that in [9, p. 786]. The polyno-
mial φ corresponds to the Riley polynomial in [13].

Lemma 2.3 For a longitude λ, ρs(λ) is diagonal, and its (1, 1)-entry is a positive real
number.

Proof Note that ρs(x) is diagonal and ρs(x) 6= ±I. The fact that ρs(x) commutes
with ρs(λ) easily implies that ρs(λ) is also diagonal. (This can also be seen from a
direct calculation of ρs(λ), by using φ(s, t) = 0.)

A direct calculation gives the (1, 1)-entry

(2.3)
1

(t − 1)2t5

(
s
(

1− (2 + s)t + t2
)(

s− (2 + 2s + s2)t + (1 + s)t2
) 2

+ (1 + s− t)2t3
(

s− (1 + s)2t + st2
) 2
)

of ρs(λ). Thus it is enough to show that 1 − (2 + s)t + t2 > 0. This is equivalent to

the inequality T > 2 + s, which is clear from T = 2+3s+2s2+
√

s2+4
2s .

Let r = p/q be a rational number and let M(r) denote the manifold resulting from
r-filling on the knot exterior M of K. In other words, M(r) is obtained by attaching
a solid torus V to M along its boundaries so that the loop xpλq bounds a meridian
disk of V .

Clearly, ρs : G → SL2(R) induces a homomorphism π1(M(r)) → SL2(R) if and
only if ρs(x)pρs(λ)q = I. Since both of ρs(x) and ρs(λ) are diagonal, this is equivalent
to the equation

(2.4) Ap
s Bq

s = 1,

where As and Bs are the (1, 1)-entries of ρs(x) and ρs(λ), respectively. We remark
that since As =

√
t is a positive real number, so is Bs by Lemma 2.3. Furthermore,

equation (2.4) is equivalent to

− log Bs

log As
=

p

q
.

Let g : (0,∞)→ R be a function defined by

g(s) = − log Bs

log As
.

Lemma 2.4 The image of g contains an open interval (0, 4).

Proof First, we show that

lim
s→+0

g(s) = 0.
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Since lims→+0 log As =∞, it is enough to show that lims→+0 Bs = 1. We decompose
Bs, given in (2.3), as

Bs =
s

t − 1

1− (2 + s)t + t2

(t − 1)t

( s− (2 + 2s + s2)t + (1 + s)t2

t2

) 2

+
( 1 + s− t

t − 1

) 2( s− (1 + s)2t + st2

t

) 2
.

From Lemma 2.1, lims→+0 t =∞ and lims→+0 st = 2. These give

lim
s→+0

s

t − 1
= 0, lim

s→+0

1− (2 + s)t + t2

(t − 1)t
= 1,

lim
s→+0

s− (2 + 2s + s2)t + (1 + s)t2

t2
= 1, lim

s→+0

1 + s− t

t − 1
= −1,

and

lim
s→+0

s− (1 + s)2t + st2

t
= 1.

Thus we have lims→+0 Bs = 1.
Second, we show

lim
s→∞

g(s) = 4.

Let N be the numerator of Bs shown in (2.3). Then

log Bs

log As
=

2 log N

log t
− 2 log(t − 1)2t5

log t
.

Claim 2.5 lims→∞Nt−5 = 1.

Proof of Claim 2.5 From Lemma 2.1, lims→∞ s/t = 1 and lims→∞(1 + s− t) = −1.
We have

1− (2 + s)t + t2 = t(t − s− 2) + 1,

s− (1 + s)2t + st2

t
=

s

t
+ s(t − s− 2)− 1,

s− (2 + 2s + s2)t + (1 + s)t2

t2
=

1

t
· s− (1 + s)2t + st2

t
− 1

t
+ 1.

Hence Lemma 2.1 implies

lim
s→∞

(1− (2 + s)t + t2) = lim
s→∞

s− (2 + 2s + s2)t + (1 + s)t2

t2
= 1,

lim
s→∞

s− (1 + s)2t + st2

t
= 0.

Combining these, we have lims→∞Nt−5 = 1.
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Thus we have lims→∞(log N − 5 log t) = 0. Then

lim
s→∞

log N

log t
= 5.

Clearly,

lim
t→∞

log(t − 1)2t5

log t
= 7.

Hence we have lims→∞ g(s) = 4.

3 The Universal Covering Group of SL2(R)

Let

SU (1, 1) =

{(
α β
β̄ ᾱ

) ∣∣∣∣ |α|2 − |β|2 = 1

}
be the special unitary group over C of signature (1, 1). It is well known that SU (1, 1)
is conjugate to SL2(R) in GL2(C). The correspondence is given by ψ : SL2(R) →
SU (1, 1), sending

(
a b
c d

)
7→

(
a+d+(b−c)i

2
a−d−(b+c)i

2
a−d+(b+c)i

2
a+d−(b−c)i

2

)
.

There is a parametrization of SU (1, 1) by (γ, ω), where γ = β/α and ω = argα
defined mod 2π (see [1, 10]). Thus SU (1, 1) = {(γ, ω) | |γ| < 1,−π ≤ ω < π}.
The group operation is given by (γ, ω)(γ ′, ω ′) = (γ ′ ′, ω ′ ′), where

γ ′ ′ =
γ ′ + γe−2iω ′

1 + γγ̄ ′e−2iω ′ ,(3.1)

ω ′ ′ = ω + ω ′ +
1

2i
log

1 + γγ̄ ′e−2iω ′

1 + γ̄γ ′e2iω ′ .(3.2)

Now the universal covering group S̃L2(R) of SU (1, 1) can be described as

S̃L2(R) = {(γ, ω) | |γ| < 1,−∞ < ω <∞}.

The group operation is given by (3.1) and (3.2) again, but ω ′ ′ is no longer mod
2π. Let Φ : S̃L2(R) → SL2(R) be the covering projection. Then it is obvious that
ker Φ = {(0, 2mπ) | m ∈ Z}.

Lemma 3.1 The subset (−1, 1)× {0} of S̃L2(R) forms a subgroup.

Proof From (3.1) and (3.2), it is straightforward to see that (−1, 1) × {0} is closed
under the group operation. For (γ, 0) ∈ (−1, 1)× {0}, its inverse is (−γ, 0).
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For the representation ρs : G→ SL2(R) defined by (2.2),

ψ
(
ρs(x)

)
=

1

2
√

t

(
t + 1 t − 1
t − 1 t + 1

)
∈ SU (1, 1).

Thus ψ(ρs(x)) corresponds to (γx, 0), where γx = t−1
t+1 .

Also, for a longitude λ,

ψ
(
ρs(λ)

)
=

1

2

(
Bs + 1

Bs
Bs − 1

Bs

Bs − 1
Bs

Bs + 1
Bs

)
, Bs > 0

from Lemma 2.3. Thus ψ(ρs(λ)) corresponds to (γλ, 0), where γλ =
B2

s−1
B2

s +1 .

4 Proof of Theorem

As the knot exterior M satisfies H2(M; Z) = 0, any ρs : G → SL2(R) lifts to a repre-

sentation ρ̃ : G→ S̃L2(R) [7]. Moreover, any two lifts ρ̃ and ρ̃ ′ are related as follows:

ρ̃ ′(g) = h(g)ρ̃(g),

where h : G → ker Φ ⊂ S̃L2(R). Since ker Φ = {(0, 2mπ) | m ∈ Z} is isomorphic
to Z, the homomorphism h factors through H1(M), so it is determined only by the
value h(x) of a meridian x (see [9]).

The following result, which was originally claimed in [9], is the key in [3] for the
figure-eight knot. Our proof follows that of [3] for the most part, but it is much
simpler, because of the values of ψ(ρs(x)) and ψ(ρs(λ)), which were calculated in
Section 3.

Lemma 4.1 Let ρ̃ : G → S̃L2(R) be a lift of ρs. Then, replacing ρ̃ by a representation

ρ̃ ′ = h · ρ̃ for some h : G→ S̃L2(R), we can suppose that ρ̃(π1(∂M)) is contained in the

subgroup (−1, 1)× {0} of S̃L2(R).

Proof Since Φ(ρ̃(λ)) = (γλ, 0), γλ ∈ (−1, 1) and ρ̃(λ) = (γλ, 2 jπ) for some j.
On the other hand, λ is a commutator, because our knot is genus one. Therefore
[17, (5.5)] implies−3π/2 < 2 jπ < 3π/2. Thus we have ρ̃(λ) = (γλ, 0).

Similarly, ρ̃(x) = (γx, 2`π) for some `, where γx ∈ (−1, 1). Let us choose h : G→
S̃L2(R) so that h(x) = (0,−2`π). Set ρ̃ ′ = h · ρ̃. Then a direct calculation shows that
ρ̃ ′(x) = (γx, 0) and ρ̃ ′(λ) = (γλ, 0). Since x and λ generate the peripheral subgroup
π1(∂M), the conclusion follows from these.

Proof of Theorem 1.1 Let r = p/q ∈ (0, 4). By Lemma 2.4, we can fix s so that
g(s) = r. Choose a lift ρ̃ of ρs so that ρ̃(π1(∂M)) ⊂ (−1, 1)×{0}. Then ρs(xpλq) = I,
so Φ(ρ̃(xpλq)) = I. This means that ρ̃(xpλq) lies in

ker Φ =
{

(0, 2mπ) | m ∈ Z
}
.
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Hence ρ̃(xpλq) = (0, 0). Then ρ̃ can induce a homomorphism π1(M(r)) → S̃L2(R)
with non-abelian image. Recall that S̃L2(R) is left-orderable [2]. Since M(r) is ir-
reducible [8], π1(M(r)) is left-orderable by [4, Theorem 1.1]. This completes the
proof.
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