(C) Canadian Mathematical Society 2013

Left-orderable Fundamental Group and Dehn Surgery on the Knot 5_{2}

Ryoto Hakamata and Masakazu Teragaito

Abstract. We show that the manifold resulting from r-surgery on the knot 5_{2}, which is the two-bridge knot corresponding to the rational number 3/7, has a left-orderable fundamental group if the slope r satisfies $0 \leq r \leq 4$.

1 Introduction

A group G is said to be left-orderable if it admits a strict total ordering that is left invariant. More precisely, this means that if $g<h$, then $f g<f h$ for any $f, g, h \in G$. The fundamental groups of many 3 -manifolds are known to be left-orderable. On the other hand, the fundamental groups of lens spaces are not left-orderable, because any left-orderable group is torsion-free. The notion of an L-space was introduced by Ozsváth and Szabó [12] in terms of Heegaard-Floer homology. Lens spaces and Seifert fibered manifolds with finite fundamental groups are typical examples of L spaces. Although it is an open problem to give a topological characterization of an L-space, there is a possible connection between L-spaces and left-orderability. More precisely, Boyer, Gordon, and Watson [3] conjecture that an irreducible rational homology sphere is an L-space if and only if its fundamental group is not left-orderable. They give affirmative answers for several classes of 3-manifolds.

It is well known that all knot groups are left-orderable (see [4]), but the resulting closed 3 -manifold by Dehn surgery on a knot does not necessarily have a leftorderable fundamental group. For example, there are many knots that admit Dehn surgery yielding lens spaces. By [12], the figure-eight knot has no Dehn surgery yielding L-spaces. Hence we can expect that any nontrivial surgery on the figure-eight knot yields a manifold whose fundamental group is left-orderable, if we support the conjecture above. In fact, Boyer, Gordon, and Watson [3] show that if $-4<r<4$, then r-surgery on the figure-eight knot yields a manifold whose fundamental group is left-orderable. In addition, Clay, Lidman, and Watson [6] verified it for $r= \pm 4$ through a different argument.

In this paper, we follow the argument of [3] for the most part to handle the knot 5_{2} from the knot table in [14]. This knot is the two-bridge knot corresponding to the rational number $3 / 7$, and is a twist knot. We believe that this is an appropriate target next to the figure-eight knot. Since 5_{2} is non-fibered, it does not admit Dehn surgery

[^0]yielding an L-space [11]. Hence we can expect that any non-trivial Dehn surgery on 5_{2} will yield a 3-manifold whose fundamental group is left-orderable.

Theorem 1.1 Let K be the knot 5_{2}. If $0 \leq r \leq 4$, then r-surgery on K yields a manifold whose fundamental group is left-orderable.

In fact, 0 -surgery on any knot yields a prime manifold whose first Betti number is 1 , and such manifold has left-orderable fundamental group [4, Corollary 3.4]. Furthermore, the same conclusion holds for 4 -surgery on twist knots [16]. Hence, in this paper we will handle the case where $0<r<4$.

2 Knot Group and Representations

Let K be the knot 5_{2} from the knot table in [14]; see Figure 1. This knot is the twobridge knot corresponding to the rational number $3 / 7$. In this diagram, K bounds a once-punctured Klein bottle, as seen from the checkerboard coloring, whose boundary slope is 4 . In fact, 4 -surgery on K gives a toroidal manifold, and 1,2 , and 3 surgeries give small Seifert fibered manifolds ([5]).

Figure 1

Let M be the knot exterior of K. It is well known that the knot group $G=$ $\pi_{1}(M)$ has a presentation $\langle x, y \mid w x=y w\rangle$, where x and y are meridians and $w=x y x^{-1} y^{-1} x y$. Also, a (preferred) longitude λ is given by $x^{-4} w^{*} w$, where $w^{*}=$ $y x y^{-1} x^{-1} y x$ corresponds to the reverse word of w. (These facts are easily obtained from Schubert's normal form of the knot [15].)

Let $s>0$ be a real number and let

$$
T=\frac{2+3 s+2 s^{2}+\sqrt{s^{2}+4}}{2 s}
$$

Then it is easy to see that $T>4$. Also, let $t=\frac{T+\sqrt{T^{2}-4}}{2}$. Then, $t>3$ and

$$
\begin{equation*}
t=\frac{2+3 s+2 s^{2}+\sqrt{s^{2}+4}+\sqrt{\left(2+3 s+2 s^{2}+\sqrt{s^{2}+4}\right)^{2}-16 s^{2}}}{4 s} . \tag{2.1}
\end{equation*}
$$

Let $\phi=s\left(t+t^{-1}\right)^{2}-\left(2 s^{2}+3 s+2\right)\left(t+t^{-1}\right)+s^{3}+3 s^{2}+4 s+3$. Since $t+t^{-1}=T$, $\phi=s T^{2}-\left(2 s^{2}+3 s+2\right) T+s^{3}+3 s^{2}+4 s+3$. If we solve the equation $\phi=0$ with respect to T, we obtain the expression of T in terms of s as above. Thus $\phi=0$ holds.

We now examine some limits, which will be necessary later.

Lemma 2.1

(i) $\lim _{s \rightarrow+0} t=\infty$.
(ii) $\lim _{s \rightarrow+0} s t=2$.
(iii) $t-s>2$ and $\lim _{s \rightarrow \infty}(t-s)=2$.
(iv) $\lim _{s \rightarrow \infty} s / t=1$.
(v) $\lim _{s \rightarrow \infty} s(t-s-2)=0$.
(vi) $\lim _{s \rightarrow \infty} t(t-s-2)=0$.

Proof (i) and (ii) are obvious from (2.1). For (iii),

$$
t-s=\frac{2+3 s+\sqrt{s^{2}+4}+\left(\sqrt{\left(2+3 s+2 s^{2}+\sqrt{s^{2}+4}\right)^{2}-16 s^{2}}-2 s^{2}\right)}{4 s}
$$

shows us that $t-s>0$, since $\left(2+3 s+2 s^{2}+\sqrt{s^{2}+4}\right)^{2}-16 s^{2}>4 s^{4}$. The second conclusion follows from

$$
\lim _{s \rightarrow \infty} \frac{2+3 s+\sqrt{s^{2}+4}}{4 s}=1, \quad \lim _{s \rightarrow \infty} \frac{\sqrt{\left(2+3 s+2 s^{2}+\sqrt{s^{2}+4}\right)^{2}-16 s^{2}}-2 s^{2}}{4 s}=1
$$

A direct calculation shows (iv).
For (v),

$$
\begin{aligned}
4 s(t-s-2)-2 & = \\
& \left(\sqrt{\left(2+3 s+2 s^{2}+\sqrt{s^{2}+4}\right)^{2}-16 s^{2}}+\sqrt{s^{2}+4}\right)-\left(2 s^{2}+5 s\right)
\end{aligned}
$$

Since the right-hand side converges to -2 , we have $\lim _{s \rightarrow \infty} s(t-s-2)=0$.
From (iii), an inequality $s+2<t<s+3$ holds for sufficiently large s. Then $(s+2)(t-s-2)<t(t-s-2)<(s+3)(t-s-2)$. Hence (iii) and (v) imply (vi).

Let $\rho_{s}: G \rightarrow S L_{2}(\mathbb{R})$ be the representation defined by the correspondence

$$
\rho_{s}(x)=\left(\begin{array}{cc}
\sqrt{t} & 0 \tag{2.2}\\
0 & \frac{1}{\sqrt{t}}
\end{array}\right), \quad \rho_{s}(y)=\left(\begin{array}{cc}
\frac{t-s-1}{\sqrt{t}-\frac{1}{\sqrt{t}}} & \frac{s}{\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{2}}-1 \\
-s & \frac{s+1-\frac{1}{t}}{\sqrt{t}-\frac{1}{\sqrt{t}}}
\end{array}\right)
$$

Here, we continue using the variable t to reduce the complexity. By using the fact that s and t satisfy the equation $\phi=0$, we can check $\rho_{s}(w x)=\rho_{s}(y w)$ by a direct calculation. Hence the correspondence on x and y above gives a homomorphism from G to $S L_{2}(\mathbb{R})$. In addition, $\rho_{s}(x y) \neq \rho_{s}(y x)$, and so ρ_{s} has the non-abelian image.

Remark 2.2 This representation of G comes from that in [9, p. 786]. The polynomial ϕ corresponds to the Riley polynomial in [13].

Lemma 2.3 For a longitude $\lambda, \rho_{s}(\lambda)$ is diagonal, and its $(1,1)$-entry is a positive real number.

Proof Note that $\rho_{s}(x)$ is diagonal and $\rho_{s}(x) \neq \pm I$. The fact that $\rho_{s}(x)$ commutes with $\rho_{s}(\lambda)$ easily implies that $\rho_{s}(\lambda)$ is also diagonal. (This can also be seen from a direct calculation of $\rho_{s}(\lambda)$, by using $\phi(s, t)=0$.)

A direct calculation gives the $(1,1)$-entry

$$
\begin{align*}
\frac{1}{(t-1)^{2} t^{5}}\left(s\left(1-(2+s) t+t^{2}\right)(s\right. & \left.-\left(2+2 s+s^{2}\right) t+(1+s) t^{2}\right)^{2} \tag{2.3}\\
& \left.+(1+s-t)^{2} t^{3}\left(s-(1+s)^{2} t+s t^{2}\right)^{2}\right)
\end{align*}
$$

of $\rho_{s}(\lambda)$. Thus it is enough to show that $1-(2+s) t+t^{2}>0$. This is equivalent to the inequality $T>2+s$, which is clear from $T=\frac{2+3 s+2 s^{2}+\sqrt{s^{2}+4}}{2 s}$.

Let $r=p / q$ be a rational number and let $M(r)$ denote the manifold resulting from r-filling on the knot exterior M of K. In other words, $M(r)$ is obtained by attaching a solid torus V to M along its boundaries so that the loop $x^{p} \lambda^{q}$ bounds a meridian disk of V.

Clearly, $\rho_{s}: G \rightarrow S L_{2}(\mathbb{R})$ induces a homomorphism $\pi_{1}(M(r)) \rightarrow S L_{2}(\mathbb{R})$ if and only if $\rho_{s}(x)^{p} \rho_{s}(\lambda)^{q}=I$. Since both of $\rho_{s}(x)$ and $\rho_{s}(\lambda)$ are diagonal, this is equivalent to the equation

$$
\begin{equation*}
A_{s}^{p} B_{s}^{q}=1, \tag{2.4}
\end{equation*}
$$

where A_{s} and B_{s} are the $(1,1)$-entries of $\rho_{s}(x)$ and $\rho_{s}(\lambda)$, respectively. We remark that since $A_{s}=\sqrt{t}$ is a positive real number, so is B_{s} by Lemma 2.3. Furthermore, equation (2.4) is equivalent to

$$
-\frac{\log B_{s}}{\log A_{s}}=\frac{p}{q} .
$$

Let $g:(0, \infty) \rightarrow \mathbb{R}$ be a function defined by

$$
g(s)=-\frac{\log B_{s}}{\log A_{s}} .
$$

Lemma 2.4 The image of g contains an open interval (0,4).
Proof First, we show that

$$
\lim _{s \rightarrow+0} g(s)=0
$$

Since $\lim _{s \rightarrow+0} \log A_{s}=\infty$, it is enough to show that $\lim _{s \rightarrow+0} B_{s}=1$. We decompose B_{s}, given in (2.3), as

$$
\begin{aligned}
& B_{s}=\frac{s}{t-1} \frac{1-(2+s) t+t^{2}}{(t-1) t}\left(\frac{s-\left(2+2 s+s^{2}\right) t+(1+s) t^{2}}{t^{2}}\right)^{2} \\
&+\left(\frac{1+s-t}{t-1}\right)^{2}\left(\frac{s-(1+s)^{2} t+s t^{2}}{t}\right)^{2}
\end{aligned}
$$

From Lemma 2.1, $\lim _{s \rightarrow+0} t=\infty$ and $\lim _{s \rightarrow+0} s t=2$. These give

$$
\begin{array}{ll}
\lim _{s \rightarrow+0} \frac{s}{t-1}=0, & \lim _{s \rightarrow+0} \frac{1-(2+s) t+t^{2}}{(t-1) t}=1 \\
\lim _{s \rightarrow+0} \frac{s-\left(2+2 s+s^{2}\right) t+(1+s) t^{2}}{t^{2}}=1, & \lim _{s \rightarrow+0} \frac{1+s-t}{t-1}=-1
\end{array}
$$

and

$$
\lim _{s \rightarrow+0} \frac{s-(1+s)^{2} t+s t^{2}}{t}=1
$$

Thus we have $\lim _{s \rightarrow+0} B_{s}=1$.
Second, we show

$$
\lim _{s \rightarrow \infty} g(s)=4
$$

Let N be the numerator of B_{s} shown in (2.3). Then

$$
\frac{\log B_{s}}{\log A_{s}}=\frac{2 \log N}{\log t}-\frac{2 \log (t-1)^{2} t^{5}}{\log t}
$$

Claim $2.5 \lim _{s \rightarrow \infty} N t^{-5}=1$.
Proof of Claim 2.5 From Lemma 2.1, $\lim _{s \rightarrow \infty} s / t=1$ and $\lim _{s \rightarrow \infty}(1+s-t)=-1$. We have

$$
\begin{aligned}
1-(2+s) t+t^{2} & =t(t-s-2)+1 \\
\frac{s-(1+s)^{2} t+s t^{2}}{t} & =\frac{s}{t}+s(t-s-2)-1 \\
\frac{s-\left(2+2 s+s^{2}\right) t+(1+s) t^{2}}{t^{2}} & =\frac{1}{t} \cdot \frac{s-(1+s)^{2} t+s t^{2}}{t}-\frac{1}{t}+1 .
\end{aligned}
$$

Hence Lemma 2.1 implies

$$
\begin{aligned}
& \lim _{s \rightarrow \infty}\left(1-(2+s) t+t^{2}\right)=\lim _{s \rightarrow \infty} \frac{s-\left(2+2 s+s^{2}\right) t+(1+s) t^{2}}{t^{2}}=1 \\
& \lim _{s \rightarrow \infty} \frac{s-(1+s)^{2} t+s t^{2}}{t}=0
\end{aligned}
$$

Combining these, we have $\lim _{s \rightarrow \infty} N t^{-5}=1$.

Thus we have $\lim _{s \rightarrow \infty}(\log N-5 \log t)=0$. Then

$$
\lim _{s \rightarrow \infty} \frac{\log N}{\log t}=5
$$

Clearly,

$$
\lim _{t \rightarrow \infty} \frac{\log (t-1)^{2} t^{5}}{\log t}=7
$$

Hence we have $\lim _{s \rightarrow \infty} g(s)=4$.

3 The Universal Covering Group of $S L_{2}(\mathbb{R})$

Let

$$
S U(1,1)=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}-|\beta|^{2}=1\right\}
$$

be the special unitary group over $(\mathbb{C}$ of signature $(1,1)$. It is well known that $S U(1,1)$ is conjugate to $S L_{2}(\mathbb{R})$ in $G L_{2}(\mathbb{C})$. The correspondence is given by $\psi: S L_{2}(\mathbb{R}) \rightarrow$ $S U(1,1)$, sending

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{cc}
\frac{a+d+(b-c) i}{2} & \frac{a-d-(b+c) i}{2} \\
\frac{a-d+(b+c) i}{2} & \frac{a+d-(b-c) i}{2}
\end{array}\right) .
$$

There is a parametrization of $S U(1,1)$ by (γ, ω), where $\gamma=\beta / \alpha$ and $\omega=\arg \alpha$ defined $\bmod 2 \pi($ see $[1,10])$. Thus $S U(1,1)=\{(\gamma, \omega)| | \gamma \mid<1,-\pi \leq \omega<\pi\}$. The group operation is given by $(\gamma, \omega)\left(\gamma^{\prime}, \omega^{\prime}\right)=\left(\gamma^{\prime \prime}, \omega^{\prime \prime}\right)$, where

$$
\begin{align*}
& \gamma^{\prime \prime}=\frac{\gamma^{\prime}+\gamma e^{-2 i \omega^{\prime}}}{1+\gamma \bar{\gamma}^{\prime} e^{-2 i \omega^{\prime}}} \tag{3.1}\\
& \omega^{\prime \prime}=\omega+\omega^{\prime}+\frac{1}{2 i} \log \frac{1+\gamma \bar{\gamma}^{\prime} e^{-2 i \omega^{\prime}}}{1+\bar{\gamma} \gamma^{\prime} e^{2 i \omega^{\prime}}} \tag{3.2}
\end{align*}
$$

Now the universal covering group $\widetilde{S L_{2}(\mathbb{R})}$ of $S U(1,1)$ can be described as

$$
\widetilde{S L_{2}(\mathbb{R})}=\{(\gamma, \omega)| | \gamma \mid<1,-\infty<\omega<\infty\} .
$$

The group operation is given by (3.1) and (3.2) again, but $\omega^{\prime \prime}$ is no longer mod 2π. Let $\Phi: S L_{2}(\mathbb{R}) \rightarrow S L_{2}(\mathbb{R})$ be the covering projection. Then it is obvious that $\operatorname{ker} \Phi=\{(0,2 m \pi) \mid m \in \mathbb{Z}\}$.

Lemma 3.1 The subset $(-1,1) \times\{0\}$ of $\widetilde{S L_{2}(\mathbb{R})}$ forms a subgroup.
Proof From (3.1) and (3.2), it is straightforward to see that $(-1,1) \times\{0\}$ is closed under the group operation. For $(\gamma, 0) \in(-1,1) \times\{0\}$, its inverse is $(-\gamma, 0)$.

For the representation $\rho_{s}: G \rightarrow S L_{2}(\mathbb{R})$ defined by (2.2),

$$
\psi\left(\rho_{s}(x)\right)=\frac{1}{2 \sqrt{t}}\left(\begin{array}{ll}
t+1 & t-1 \\
t-1 & t+1
\end{array}\right) \in S U(1,1)
$$

Thus $\psi\left(\rho_{s}(x)\right)$ corresponds to $\left(\gamma_{x}, 0\right)$, where $\gamma_{x}=\frac{t-1}{t+1}$.
Also, for a longitude λ,

$$
\psi\left(\rho_{s}(\lambda)\right)=\frac{1}{2}\left(\begin{array}{cc}
B_{s}+\frac{1}{B_{s}} & B_{s}-\frac{1}{B_{s}} \\
B_{s}-\frac{1}{B_{s}} & B_{s}+\frac{1}{B_{s}}
\end{array}\right), \quad B_{s}>0
$$

from Lemma 2.3. Thus $\psi\left(\rho_{s}(\lambda)\right)$ corresponds to $\left(\gamma_{\lambda}, 0\right)$, where $\gamma_{\lambda}=\frac{B_{s}^{2}-1}{B_{s}^{2}+1}$.

4 Proof of Theorem

As the knot exterior M satisfies $H^{2}(M ; \mathbb{Z})=0$, any $\rho_{s}: G \rightarrow S L_{2}(\mathbb{R})$ lifts to a representation $\widetilde{\rho}: G \rightarrow \widetilde{S L_{2}(\mathbb{R})}$ [7]. Moreover, any two lifts $\widetilde{\rho}$ and $\widetilde{\rho}^{\prime}$ are related as follows:

$$
\widetilde{\rho}^{\prime}(g)=h(g) \widetilde{\rho}(g),
$$

where $h: G \rightarrow \operatorname{ker} \Phi \subset \widetilde{S L_{2}(\mathbb{R})}$. Since $\operatorname{ker} \Phi=\{(0,2 m \pi) \mid m \in \mathbb{Z}\}$ is isomorphic to \mathbb{Z}, the homomorphism h factors through $H_{1}(M)$, so it is determined only by the value $h(x)$ of a meridian x (see [9]).

The following result, which was originally claimed in [9], is the key in [3] for the figure-eight knot. Our proof follows that of [3] for the most part, but it is much simpler, because of the values of $\psi\left(\rho_{s}(x)\right)$ and $\psi\left(\rho_{s}(\lambda)\right)$, which were calculated in Section 3.
Lemma 4.1 Let $\widetilde{\rho}: G \rightarrow \widetilde{S L_{2}(\mathbb{R})}$ be a lift of ρ_{s}. Then, replacing $\widetilde{\rho}$ by a representation $\widetilde{\rho}^{\prime}=h \cdot \widetilde{\rho}$ for some $h: G \rightarrow \widetilde{S L_{2}(\mathbb{R})}$, we can suppose that $\widetilde{\rho}\left(\pi_{1}(\partial M)\right)$ is contained in the subgroup $(-1,1) \times\{0\}$ of $\widetilde{S L_{2}(\mathbb{R})}$.

Proof Since $\Phi(\widetilde{\rho}(\lambda))=\left(\gamma_{\lambda}, 0\right), \gamma_{\lambda} \in(-1,1)$ and $\widetilde{\rho}(\lambda)=\left(\gamma_{\lambda}, 2 j \pi\right)$ for some j. On the other hand, λ is a commutator, because our knot is genus one. Therefore $[17,(5.5)]$ implies $-3 \pi / 2<2 j \pi<3 \pi / 2$. Thus we have $\widetilde{\rho}(\lambda)=\left(\gamma_{\lambda}, 0\right)$.

Similarly, $\widetilde{\rho}(x)=\left(\gamma_{x}, 2 \ell \pi\right)$ for some ℓ, where $\gamma_{x} \in(-1,1)$. Let us choose $h: G \rightarrow$ $\widetilde{S L_{2}(\mathbb{R})}$ so that $h(x)=(0,-2 \ell \pi)$. Set $\widetilde{\rho}^{\prime}=h \cdot \widetilde{\rho}$. Then a direct calculation shows that $\widetilde{\rho}^{\prime}(x)=\left(\gamma_{x}, 0\right)$ and $\widetilde{\rho}^{\prime}(\lambda)=\left(\gamma_{\lambda}, 0\right)$. Since x and λ generate the peripheral subgroup $\pi_{1}(\partial M)$, the conclusion follows from these.
Proof of Theorem 1.1 Let $r=p / q \in(0,4)$. By Lemma 2.4, we can fix s so that $g(s)=r$. Choose a lift $\widetilde{\rho}$ of ρ_{s} so that $\widetilde{\rho}\left(\pi_{1}(\partial M)\right) \subset(-1,1) \times\{0\}$. Then $\rho_{s}\left(x^{p} \lambda^{q}\right)=I$, so $\Phi\left(\widetilde{\rho}\left(x^{p} \lambda^{q}\right)\right)=I$. This means that $\widetilde{\rho}\left(x^{p} \lambda^{q}\right)$ lies in

$$
\operatorname{ker} \Phi=\{(0,2 m \pi) \mid m \in \mathbb{Z}\} .
$$

Hence $\widetilde{\rho}\left(x^{p} \lambda^{q}\right)=(0,0)$. Then $\widetilde{\rho}$ can induce a homomorphism $\pi_{1}(M(r)) \rightarrow \widetilde{S L_{2}(\mathbb{R})}$ with non-abelian image. Recall that $S L_{2}(\mathbb{R})$ is left-orderable [2]. Since $M(r)$ is irreducible [8], $\pi_{1}(M(r))$ is left-orderable by [4, Theorem 1.1]. This completes the proof.

Acknowledgment We would like to thank the referee for helpful comments.

References

[1] V. Bargmann, Irreducible unitary representations of the Lorentz group. Ann. of Math. 48(1947), 568-640. http://dx.doi.org/10.2307/1969129
[2] G. M. Bergman, Right orderable groups that are not locally indicable. Pacific J. Math. 147(1991), no. 2, 243-248. http://dx.doi.org/10.2140/pjm.1991.147.243
[3] S. Boyer, C. McA. Gordon, and L. Watson, On L-spaces and left-orderable fundamental groups. Math. Ann. 356(2013), no. 4, 1213-1245. http://dx.doi.org/10.1007/s00208-012-0852-7
[4] S. Boyer, D. Rolfsen, and B. Wiest, Orderable 3-manifold groups. Ann. Inst. Fourier (Grenoble) 55(2005), no. 1, 243-288. http://dx.doi.org/10.5802/aif. 2098
[5] M. Brittenham and Y.-Q. Wu, The classification of exceptional Dehn surgeries on 2-bridge knots. Comm. Anal. Geom. 9(2001), no. 1, 97-113.
[6] A. Clay, T. Lidman, and L. Watson, Graph manifolds, left-orderability and amalgamation. Algebr. Geom. Topol. 13(2013), no. 4, 2347-2368. http://dx.doi.org/10.2140/agt.2013.13.2347
[7] É. Ghys, Groups acting on the circle. Enseign. Math. 47(2001), no. 3-4, 329-407.
[8] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements. Invent. Math. 79(1985), no. 2, 225-246. http://dx.doi.org/10.1007/BF01388971
[9] V. T. Khoi, A cut-and-paste method for computing the Seifert volumes. Math. Ann. 326(2003), no. 4, 759-801. http://dx.doi.org/10.1007/s00208-003-0438-5
[10] G. Lion and M. Vergne, The Weil representation, Maslov index and theta series. Progress in Mathematics, 6, Birkhäuser, Boston, Mass., 1980.
[11] Y. Ni, Knot Floer homology detects fibred knots. Invent. Math. 170(2007), no. 3, 577-608. http://dx.doi.org/10.1007/s00222-007-0075-9
[12] P. Ozsváth and Z. Szabó, On knot Floer homology and lens space surgeries. Topology 44(2005), no. 6, 1281-1300. http://dx.doi.org/10.1016/j.top.2005.05.001
[13] R. Riley, Nonabelian representations of 2-bridge knot groups. Quart. J. Math. Oxford Ser. (2) 35(1984), no. 138, 191-208. http://dx.doi.org/10.1093/qmath/35.2.191
[14] D. Rolfsen, Knots and links. Mathematics Lecture Series, 7, Publish or Perish, Inc., Berkeley, Calif., 1976.
[15] H. Schubert, Knoten mit zwei Brücken. Math. Z. 65(1956), 133-170. http://dx.doi.org/10.1007/BF01473875
[16] M. Teragaito, Left-orderability and exceptional Dehn surgery on twist knots. Canad. Math. Bull., to appear. http://dx.doi.org/10.4153/CMB-2012-011-0
[17] J. W. Wood, Bundles with totally disconnected structure group. Comment. Math. Helv. 46(1971), 257-273. http://dx.doi.org/10.1007/BF02566843

Graduate School of Education, Hiroshima University, Higashi-hiroshima, Japan 739-8524
Department of Mathematics and Mathematics Education, Hiroshima University, Higashi-hiroshima, Japan 739-8524
e-mail: teragai@hiroshima-u.ac.jp

[^0]: Received by the editors August 13, 2012; revised August 7, 2013.
 Published electronically September 10, 2013.
 The second author is partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 22540088.

 AMS subject classification: 57M25, 06F15.
 Keywords: left-ordering, Dehn surgery.

