ON THE FIELD OF ORIGIN OF AN IDEAL

H. B. MANN

In this paper we shall consider integral ideals in finite algebraic extensions $(\mathfrak{F}, \mathfrak{F}_1, \ldots)$ of the field of rational numbers.

Two ideals \mathfrak{a} , \mathfrak{b} in the same field \mathfrak{F} are said to be equal if and only if they contain the same numbers.

Let $\mathfrak{F}_1 \supset \mathfrak{F}_2$ and let \mathfrak{A} be an ideal in \mathfrak{F}_2 . The numbers of \mathfrak{A} generate an ideal a in \mathfrak{F}_1 and it is known that the intersection $\mathfrak{a} \cap \mathfrak{F}_2 = \mathfrak{A}$. (See for instance Hecke, *Theorie der algebraischen Zahlen*, § 37). Also if $\mathfrak{a} \subset \mathfrak{F}_1$ and $\mathfrak{b} \subset \mathfrak{F}_2$ generate the same ideal in a field containing \mathfrak{F}_1 and \mathfrak{F}_2 then they must generate the same ideal in $\mathfrak{F}_1 \cup \mathfrak{F}_2$ and thus in every field containing \mathfrak{F}_1 and \mathfrak{F}_2 .

We shall therefore call two ideals \mathfrak{a} and \mathfrak{b} equal if they generate the same ideal in a field containing all the numbers of \mathfrak{a} and of \mathfrak{b} . Two such ideals may therefore be denoted by the same symbol and we shall speak of an ideal \mathfrak{a} without regard to a particular field. An ideal \mathfrak{a} will be said to be contained in a field \mathfrak{F} if it may be generated by numbers in \mathfrak{F} ; in other words, if it has a basis in \mathfrak{F} .

It seems natural to try to characterize those fields which contain a given ideal \mathfrak{a} , and in this paper we shall find such a characterization at least in the case that a power of \mathfrak{a} is a prime ideal in some extension of \mathfrak{F} .

A necessary and sufficient condition for an ideal \mathfrak{a} to be contained in a given field \mathfrak{F} will be derived in the case that \mathfrak{a} is an ideal of order 1, as defined in this paper. For prime ideals of order greater than 1 a necessary and sufficient condition will also be given.

From now on we shall consider finite algebraic extensions (\mathfrak{F}_1, \ldots) over a field \mathfrak{F}_1 itself a finite algebraic extension over the field of rational numbers. Admissible subfields of \mathfrak{F}_1 are those containing \mathfrak{F} . Throughout the paper only fields containing \mathfrak{F} will be considered.

Consider an ideal $\mathfrak{a} \subset \mathfrak{F}_1$. Either \mathfrak{a} is not contained in any admissible subfield of \mathfrak{F}_1 or \mathfrak{F}_1 must contain an admissible subfield \mathfrak{F}_2 which has the property that \mathfrak{a} is in \mathfrak{F}_2 but not in any admissible subfield of \mathfrak{F}_2 . We therefore define:

DEFINITION 1. If a is in \mathfrak{F}_1 but not in any proper admissible subfield of \mathfrak{F}_1 then a is said to originate in \mathfrak{F}_1 over \mathfrak{F} .

Consider $\mathfrak{F}_1 \supset \mathfrak{F}_2$ and let \mathfrak{a} be an ideal in \mathfrak{F}_1 . The numbers of \mathfrak{a} which lie in \mathfrak{F}_2 form an ideal \mathfrak{A} in \mathfrak{F}_2 . This ideal \mathfrak{A} is said to correspond in \mathfrak{F}_2 to the ideal \mathfrak{a} . The ideal \mathfrak{A} depends only on \mathfrak{a} but not on \mathfrak{F}_1 .

DEFINITION 2. If $\mathfrak{A} \subset \mathfrak{F}$ corresponds to a in \mathfrak{F}_1 and

(1)
$$\mathfrak{A} = \mathfrak{a}^{e}\mathfrak{c}, \quad (\mathfrak{a}, \mathfrak{c}) = 1$$

then a is said to be of order e with respect to \mathfrak{F} .

Received September 1, 1948.

REMARK. Not every ideal has an order with respect to \mathfrak{F} ; however, every ideal which is a prime ideal in some extension of \mathfrak{F} does.

THEOREM 1. If a is an ideal of order 1 with respect to F then a originates in a unique subfield \mathcal{F}_1 over F. An extension $\mathcal{F}' \supset \mathcal{F}$ contains a if and only if it contains \mathcal{F}_1 .

Proof. If a does not originate in \mathfrak{F}' , then it must originate in some subfield of \mathfrak{F}' . Hence a originates in at least one field.

Suppose then that a originates in \mathfrak{F}_1 and also in \mathfrak{F}_2 . Let \mathfrak{F}_n be a normal extension of \mathfrak{F} containing \mathfrak{F}_1 and \mathfrak{F}_2 and \mathfrak{G} the Galois group of \mathfrak{F}_n over \mathfrak{F} . Let \mathfrak{F}_1 and \mathfrak{F}_2 be the subgroups of \mathfrak{G} leaving \mathfrak{F}_1 and \mathfrak{F}_2 respectively fixed. Since a has a basis in \mathfrak{F}_1 and in \mathfrak{F}_2 it follows that a is transformed into itself by the union $\mathfrak{F}_1 \cup \mathfrak{F}_2 = \mathfrak{F}$. To \mathfrak{F}_2 corresponds the field $\mathfrak{F} = \mathfrak{F}_1 \cap \mathfrak{F}_2$ which certainly contains \mathfrak{F} . Let $\mathfrak{a} \subset \mathfrak{F}$ and $\mathfrak{A} \subset \mathfrak{F}$ correspond to $\mathfrak{a} \subset \mathfrak{F}_1$ then
(2) $\mathfrak{a} = \mathfrak{ac'}$

$$a = ac'$$

$$\mathfrak{A} = \overline{ab} = ac'b.$$

Since c'b = c by (1) and since (c, a) = 1 by hypothesis we must have

(3)
$$(c', a) = 1.$$

If (4)

$$\overline{\mathfrak{H}} = \mathfrak{H}_1 + \mathfrak{H}_1 A_2 + \ldots + \mathfrak{H}_1 A_2$$

then all relative conjugate fields of \mathfrak{F}_1 over $\overline{\mathfrak{F}}$ are obtained each once by applying 1, A_2, \ldots, A_g to \mathfrak{F}_1 . Hence since A_i transforms \mathfrak{a} into itself

(5)
$$\mathfrak{a} = \mathfrak{a}^{A_2} = \ldots = \mathfrak{a}^{A_g}.$$

Thus
(6) $\overline{\mathfrak{a}} = \mathfrak{a}\mathfrak{c}^{\prime A_i}$ $(i = 1, \ldots, g),$
 $\mathfrak{c}^{\prime A_i} = \mathfrak{c}^{\prime}.$

Thus

(7)
$$a^{g} \subset \overline{\mathfrak{F}}, \ \mathfrak{c}'^{g} \subset \mathfrak{F}.$$

Since
$$\mathfrak{a}^{g} \subset \overline{\mathfrak{F}}$$
, we must have $\mathfrak{a}^{g} \subset \overline{\mathfrak{a}}$ and

(8) $a^g = \bar{a}b' = ac'b'.$

Hence $\mathfrak{c}' = (1)$ since otherwise $(\mathfrak{a}, \mathfrak{c}') \neq 1$ contradicting (3). Thus by (2) $\mathfrak{a} = \overline{\mathfrak{a}}$ and since by hypothesis \mathfrak{a} originates in \mathfrak{F}_1 and \mathfrak{F}_2 it follows that $\overline{\mathfrak{F}} = \mathfrak{F}_1 = \mathfrak{F}_2$.

If now a is in \mathfrak{F}' then \mathfrak{F}' must contain a field in which a originates. Hence \mathfrak{F}' must contain \mathfrak{F}_1 . Conversely if $\mathfrak{F}' \supset \mathfrak{F}_1$ then $\mathfrak{F}' \supset \mathfrak{a}$ since $\mathfrak{a} \subset \mathfrak{F}_1$.

THEOREM 2. If \mathfrak{p} is an ideal in any field over \mathfrak{F} and g is the largest integer for which $\mathfrak{p}^{\mathfrak{g}}$ is a prime ideal in some extension of \mathfrak{F} then $\mathfrak{p}^{\mathfrak{g}}$ originates in a unique extension $\mathfrak{F}' \supset \mathfrak{F}$ and is a prime ideal in \mathfrak{F}' . Moreover every field that contains a power of \mathfrak{p} contains \mathfrak{F}' .

Proof. Let \mathfrak{P} in \mathfrak{F} correspond to \mathfrak{p} . Since \mathfrak{p}^g is a prime ideal in some field over \mathfrak{F} , \mathfrak{P} must be a prime ideal. That is to say

(9)
$$\mathfrak{P} = \mathfrak{p}^e \mathfrak{a}, \quad (\mathfrak{p}, \mathfrak{a}) = 1.$$

Thus \mathfrak{p}^e satisfies the conditions of Theorem 1. Let \mathfrak{F}' be the unique field in which \mathfrak{p}^e originates. Let \mathfrak{p}^g be a prime ideal in \mathfrak{F}'' . To \mathfrak{p}^g corresponds a prime ideal in \mathfrak{F} and since this prime ideal has a common factor with \mathfrak{P} it must be equal to \mathfrak{P} . Thus since $(\mathfrak{p}, \mathfrak{a}) = 1$

(10)
$$\mathfrak{P} = (\mathfrak{p}^g)^t \mathfrak{a}, \quad e \equiv \mathbf{0}(g), \ (\mathfrak{p}^g, \mathfrak{a}) = 1.$$

Thus \mathfrak{F}' contains \mathfrak{P}^e hence must also contain \mathfrak{F}' . Moreover \mathfrak{P}^e is a prime ideal in \mathfrak{F}' since it is prime in \mathfrak{F}'' and since g is the largest power of \mathfrak{P} which is prime in any field. Every field that contains a power of \mathfrak{P} must contain \mathfrak{P}^e hence must contain \mathfrak{F}' . In particular \mathfrak{P}^e cannot be contained in any subfield of \mathfrak{F}' and therefore originates in \mathfrak{F}' .

COROLLARY. If \mathfrak{p} is an ideal in some extension \mathfrak{F}' of \mathfrak{F} and \mathfrak{p}^o is the highest power of \mathfrak{p} which is a prime ideal in an admissible subfield of \mathfrak{F}' then \mathfrak{p}^o is the highest power of \mathfrak{p} which is a prime ideal in any extension of \mathfrak{F} . (We may take g = 0 if no power of \mathfrak{p} is a prime ideal in any admissible subfield of \mathfrak{F}' .)

A simple example is the ideal $(\sqrt{2})$, when f is the field of rational numbers. Here g = e = 2, f = f'.

THEOREM 3. If \mathfrak{p} is a prime ideal in some extension of \mathfrak{F} and $\mathfrak{p}^{\mathfrak{g}}$ is the largest power of \mathfrak{p} which is a prime ideal of any extension of \mathfrak{F} and if $\mathfrak{p}^{\mathfrak{h}}$ is a prime ideal in some extension \mathfrak{F}_1 of \mathfrak{F} then

$$g \equiv 0(h).$$

Let \mathfrak{F}' be the unique field in which \mathfrak{p}^g originates by Theorem 2. By the same theorem we have

(12)
$$\mathfrak{F}' \subset \mathfrak{F}_1.$$

To \mathfrak{p}^h corresponds a prime ideal in \mathfrak{F}' which has a common factor with \mathfrak{p}^g and therefore must equal \mathfrak{p}^g since \mathfrak{p}^g is a prime ideal in \mathfrak{F}' . Thus

(13)
$$\mathfrak{p}^{g} = (\mathfrak{p}^{h})^{t}, g = ht.$$

If \mathfrak{p} is a prime ideal in some extension of \mathfrak{F} but no power of \mathfrak{p} is a prime ideal in any extension of \mathfrak{F} then by Theorem 2 there is a unique extension of \mathfrak{F} in which \mathfrak{p} originates over \mathfrak{F} . Quite in contrast to this we shall show that if \mathfrak{p}^g (g > 1) is a prime ideal in some extension of \mathfrak{F} then there are infinitely many extensions of \mathfrak{F} in which \mathfrak{p} originates and is a prime ideal. We show this by proving

THEOREM 4. If \mathfrak{p} is a prime ideal in \mathfrak{F} then for every g > 1 there exists an ideal \mathfrak{P} such that $\mathfrak{P}^g = \mathfrak{p}$. The ideal \mathfrak{P} originates as a prime ideal in infinitely many fields over \mathfrak{F} .

Proof. Let
$$\mathfrak{p} = (\mathfrak{a}_1, \mathfrak{a}_2), \mathfrak{a}_1, \mathfrak{a}_2 \subset \mathfrak{F}$$
. We may choose
(14) $(\mathfrak{a}_2) = \mathfrak{pc}, \quad (\mathfrak{p}, \mathfrak{c}) = 1.$

Choose q prime to a_1 , a_2 , \mathfrak{p} and to the absolute differente of $\mathfrak{F}(\zeta)$, where ζ is a primitive gth root of unity, and square free. In $\mathfrak{F}(\sqrt[a]{qa_2})$ the ideal \mathfrak{p} is the gth power of the ideal $\mathfrak{P} = (a_1, \sqrt[a]{qa_2})$, for a_1 and $\sqrt[a]{qa_2}$ can have only a divisor $\overline{\mathfrak{P}}$ of \mathfrak{p} in common. Thus

$$a_{1} = \mathfrak{p}\mathfrak{A}$$

$${}^{g}\sqrt{qa_{2}} = \overline{\mathfrak{P}}\mathfrak{B} \qquad (\mathfrak{p}, \mathfrak{B}) = 1$$

$$qa_{2} = \overline{\mathfrak{P}}{}^{g}\mathfrak{B}{}^{g} = \mathfrak{p}cq, \qquad (\mathfrak{p}, \mathfrak{c}) = 1, \qquad \overline{\mathfrak{P}}{}^{g} = \mathfrak{p}.$$

$$\sqrt{qa_{2}}{}^{g} = \overline{\mathfrak{B}}{}^{g} = \mathfrak{p}.$$

Hence $\mathfrak{P}^g = (a_1, \sqrt[g]{qa_2})^g = \overline{\mathfrak{P}}^g = \mathfrak{P}^g$

We shall show now that $\mathfrak{F}({}^{g}\sqrt{qa_{2}}) \neq \mathfrak{F}({}^{g}\sqrt{q'a_{2}})$ if $(q) \neq (q')$. The numbers qa_{2} and $q'a_{2}$ are square free in $\mathfrak{F}(\zeta)$ by assumption. Hence the polynomials $x^{g} - qa_{2}, x^{g} - q'a_{2}$ are irreducible in $\mathfrak{F}(\zeta)$ by Eisenstein's criterion. Thus 1, ${}^{g}\sqrt{qa_{2}}, \ldots, ({}^{g}\sqrt{qa_{2}})^{g-1}$ are independent over $\mathfrak{F}(\zeta)$. If ${}^{g}\sqrt{q'a_{2}}\subset \mathfrak{F}({}^{g}\sqrt{qa_{2}})$ then

$$d\sqrt{q'a_2} = a_0 + a_1^{g}\sqrt{qa_2} + \ldots + a_{g-1}({}^{g}\sqrt{qa_2})^{g-1}$$

applying the automorphism
$${}^{g}\sqrt{qa_{2}} \leftrightarrow \zeta {}^{g}\sqrt{qa_{2}}$$
 we get

$$\zeta^{i\,g}\sqrt{q'a_2} = a_0 + a_1\zeta^{g}\sqrt{qa_2} + \ldots + a_{g-1}\zeta^{g-1}({}^g\sqrt{qa_2})^{g-1} \\ = \zeta^i(a_0 + a_1{}^g\sqrt{qa_2} + \ldots + a_{g-1}({}^g\sqrt{qa_2})^{g-1}).$$

Because of the independence of 1, $\sqrt[g]{qa_2}, \ldots, (\sqrt[g]{qa_2})^{g-1}$ over $\mathfrak{F}(\zeta)$ we must have $\zeta^i a_i = \zeta^j a_i, a_i = 0$ for $j \neq i$.

Hence

$${}^{g}\sqrt{q'a_{2}} = a_{i}({}^{g}\sqrt{qa_{2}})^{i}$$
$$q'a_{2} = a_{i}{}^{g}(qa_{2})^{i}.$$

Our choice of q and q', together with equation 14, imply that i = 1 and a_i must be a unit. Hence (q) = (q').

Clearly we can choose infinitely many (q) which are square free and prime to a_1 , a_2 , \mathfrak{p} and the absolute differente of $\mathfrak{F}(\zeta)$. For instance all but a finite number of rational primes fulfill this condition.

The ideal $(a_1, \sqrt[g]{qa_2})$ is moreover a prime ideal since it lies in a field of degree g over \mathfrak{F} and its gth power is a prime ideal in \mathfrak{F} . For the same reason it also originates in \mathfrak{F} since it cannot lie in any field of degree less than g over \mathfrak{F} .

Theorem 4 shows among other things: If \mathfrak{p}^h , h > 1, is a prime ideal in \mathfrak{F}' over \mathfrak{F} then \mathfrak{p} originates in infinitely many fields over \mathfrak{F} . For let \mathfrak{p}^g be the highest power of \mathfrak{p} which is a prime ideal in some extension of \mathfrak{F} . Let \mathfrak{F}'' be the unique field over \mathfrak{F} in which \mathfrak{p}^g originates and let \mathfrak{p} originate in some field \mathfrak{F}_1 over \mathfrak{F}'' . By Theorem 4 there are infinitely many such fields. We must show that \mathfrak{p} originates in \mathfrak{F}_1 over \mathfrak{F} . If \mathfrak{p} lies in \mathfrak{F}_2 over \mathfrak{F} where $\mathfrak{F}_1 \supseteq \mathfrak{F}_2$, then $\mathfrak{F}_2 \supseteq \mathfrak{F}''$ by Theorem 2 and hence $\mathfrak{F}_1 = \mathfrak{F}_2$ since \mathfrak{p} originates in \mathfrak{F}_1 over \mathfrak{F}'' . Thus \mathfrak{p} also originates in \mathfrak{F}_1 over \mathfrak{F} . Theorem 2 characterizes completely the fields over \mathfrak{F} which contain a given prime ideal \mathfrak{p} if no power of \mathfrak{p} is a prime ideal in a field over \mathfrak{F} . However in the case that some \mathfrak{p}^h (h > 1) is a prime ideal in a field over \mathfrak{F} we obtain only the necessary condition that every field containing \mathfrak{p} must contain the field in which \mathfrak{p}^g originates where \mathfrak{p}^g is defined in Theorem 2. A stronger necessary but still not sufficient condition is as follows:

THEOREM 5. If \mathfrak{p} originates in \mathfrak{F}' over $\mathfrak{F}, \mathfrak{p}^g = \mathfrak{P}$ is the highest power of \mathfrak{p} which is a prime ideal in some subfield of \mathfrak{F}' and if \mathfrak{p}^g originates in \mathfrak{F}'' then $\mathfrak{F}' = \mathfrak{F}''(a)$, where a satisfies an irreducible equation

(13) $x^{m} + a_{1}x^{m-1} + \ldots + a_{m} = 0$ of degree m = gr(r integral) with coefficients in \mathfrak{F}'' such that (14) $a_{lg+k} \equiv 0(\mathfrak{P}^{l+1}), \ k > 0,$ $a_{rg} \neq 0(\mathfrak{P}^{r+1}).$

Proof. From Theorem 2 we have $\mathfrak{F}'' \subset \mathfrak{F}'$. Let $a \subset \mathfrak{p}$, $a \text{ non } \subset \mathfrak{p}^2$, $a \subset \mathfrak{F}'$. Since \mathfrak{p} originates in \mathfrak{F}' and since in every field between \mathfrak{F}'' and \mathfrak{F}' the ideal \mathfrak{p} corresponds to a power of \mathfrak{p} we must have $\mathfrak{F}' = \mathfrak{F}''(a)$. Let $(\mathfrak{F}'/\mathfrak{F}'') = m$ and observe that the conjugates of a over \mathfrak{F}'' are all exactly divisible by \mathfrak{p} . Hence the (lg + k)th, (k > 0), symmetric function of these conjugates is divisible by $\mathfrak{p}^{l_{g+k}}$ and since it is in \mathfrak{F}'' it must be divisible by \mathfrak{P}^{l+1} . Moreover the last coefficient is exactly divisible by \mathfrak{p}^m . If $\mathfrak{p} = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_s^{e_s}$ is the prime decomposition of \mathfrak{p} in \mathfrak{F}' and f_i the degree of \mathfrak{p}_i then \mathfrak{p}_i is of multiplicity ge_i with respect to \mathfrak{P} and hence

(15)
$$m = ge_1f_1 + \ldots + ge_sf_s = gr \quad (r \text{ integral}).$$

This proves Theorem 5.

THEOREM 6. Let $\mathfrak{p}^g = \mathfrak{P}$ and let g and \mathfrak{F}'' be defined as in Theorem 5. The ideal \mathfrak{p} lies in \mathfrak{F}' over \mathfrak{F} if and only if $\mathfrak{F}' \supset \mathfrak{a}$ where $\mathfrak{a}^g = \beta$ satisfies an irreducible equation

(16)
$$\beta^r + a_1 \beta^{r-1} + \ldots + a_r = 0, a_i \equiv 0(\mathfrak{P}^i), a_r \neq 0(\mathfrak{P}^{r+1}), \text{ over } \mathfrak{F}''$$

First let \mathfrak{p} lie in \mathfrak{F}' , then there exists in \mathfrak{F}' an \mathfrak{a} such that $\mathfrak{a} \equiv 0(\mathfrak{p})$, $\mathfrak{a} \neq 0(\mathfrak{p}^2)$. By Theorem 2 we have $\mathfrak{a} \subset \mathfrak{F}' \subset \mathfrak{F}''$. Clearly $\mathfrak{a}^g = \beta$ and all its conjugates over \mathfrak{F}'' are exactly divisible by \mathfrak{P} and the necessity of the condition 16 follows.

On the other hand consider $\mathfrak{F}''(\mathfrak{a})$ where $\mathfrak{a}^g = \beta$ satisfies an irreducible equation 16. Let γ be a number with ideal denominator \mathfrak{P} . Then $\gamma\beta$ satisfies an equation

(17) $(\gamma\beta)^r + \gamma a_1(\gamma\beta)^{r-1} + \ldots + \gamma^r a_r = 0$

with integral coefficients. Hence $\beta \equiv 0(\mathfrak{P})$. Moreover since $a_r \neq 0(\mathfrak{P}^{r+1})$ it follows that $\beta = \mathfrak{Pb}$, $(\mathfrak{P}, \mathfrak{b}) = 1$. Consider the ideal (a, \mathfrak{P}) . If

(18)
$$\mathfrak{P} = \mathfrak{P}_{1}^{e_{1}} \dots \mathfrak{P}_{s}^{e_{s}}$$
$$\mathfrak{a} = \mathfrak{P}_{1}^{h_{1}} \dots \mathfrak{P}_{s}^{h_{s}} \mathfrak{c}, \qquad (\mathfrak{p}_{1}, \mathfrak{c}) = 1$$

it follows that $e_i = gh_i$. Hence $(\alpha, \mathfrak{P})^g = \mathfrak{P}$.

ON THE FIELD OF ORIGIN OF AN IDEAL

Thus $\mathfrak{F}''(\mathfrak{a})$ contains \mathfrak{p} and so does every field over $\mathfrak{F}''(\mathfrak{a})$.

Suppose an ideal \mathfrak{p} a power of which is a prime ideal in some field over \mathfrak{F} is given in any field \mathfrak{F}_1 over \mathfrak{F} and we are required to find all extensions of \mathfrak{F} which contain \mathfrak{p} . We proceed as follows. We first find the largest power say $\mathfrak{p}^{\sigma} = \mathfrak{P}$ of \mathfrak{p} which is a prime ideal in any admissible subfield of \mathfrak{F}_1 . Next we determine the smallest admissible subfield containing \mathfrak{P} . Let this field be \mathfrak{F}'' . We then obtain all fields which contain \mathfrak{p} as all extensions of all $\mathfrak{F}''(\mathfrak{a})$ where \mathfrak{a}^{σ} satisfies an equation of the form 16.

Ohio State University