ON THE FIELD OF ORIGIN OF AN IDEAL

H. B. MANN

In this paper we shall consider integral ideals in finite algebraic extensions ($\mathfrak{F}, \mathfrak{F}_{1}, \ldots$) of the field of rational numbers.

Two ideals $\mathfrak{a}, \mathfrak{b}$ in the same field \mathfrak{F} are said to be equal if and only if they contain the same numbers.

Let $\mathfrak{F}_{1} \supset \mathfrak{F}_{2}$ and let \mathfrak{N} be an ideal in \mathfrak{F}_{2}. The numbers of \mathfrak{N} generate an ideal \mathfrak{a} in \mathfrak{F}_{1} and it is known that the intersection $\mathfrak{a} \cap \mathfrak{F}_{2}=\mathfrak{Y}$. (See for instance Hecke, Theorie der algebraischen Zahlen, §37). Also if $\mathfrak{a} \subset \mathfrak{F}_{1}$ and $\mathfrak{b} \subset \mathfrak{F}_{2}$ generate the same ideal in a field containing \mathfrak{F}_{1} and \mathfrak{F}_{2} then they must generate the same ideal in $\mathfrak{F}_{1} \cup \mathfrak{F}_{2}$ and thus in every field containing \mathfrak{F}_{1} and \mathfrak{F}_{2}.

We shall therefore call two ideals \mathfrak{a} and \mathfrak{b} equal if they generate the same ideal in a field containing all the numbers of \mathfrak{a} and of \mathfrak{b}. Two such ideals may therefore be denoted by the same symbol and we shall speak of an ideal a without regard to a particular field. An ideal \mathfrak{a} will be said to be contained in a field \mathfrak{F} if it may be generated by numbers in \mathfrak{F}; in other words, if it has a basis in \mathfrak{F}.

It seems natural to try to characterize those fields which contain a given ideal \mathfrak{a}, and in this paper we shall find such a characterization at least in the case that a power of \mathfrak{a} is a prime ideal in some extension of \mathfrak{F}.

A necessary and sufficient condition for an ideal \mathfrak{a} to be contained in a given field \mathfrak{F} will be derived in the case that \mathfrak{a} is an ideal of order 1 , as defined in this paper. For prime ideals of order greater than 1 a necessary and sufficient condition will also be given.

From now on we shall consider finite algebraic extensions (\mathfrak{F}_{1}, \ldots) over a field \mathfrak{F}_{1} itself a finite algebraic extension over the field of rational numbers. Admissible subfields of \mathfrak{F}_{1} are those containing \mathfrak{F}. Throughout the paper only fields containing \mathfrak{F} will be considered.

Consider an ideal $\mathfrak{a} \subset \mathfrak{F}_{1}$. Either \mathfrak{a} is not contained in any admissible subfield of \mathfrak{F}_{1} or \mathfrak{F}_{1} must contain an admissible subfield \mathfrak{F}_{2} which has the property that \mathfrak{a} is in \mathfrak{F}_{2} but not in any admissible subfield of \mathfrak{F}_{2}. We therefore define:

Definition 1. If \mathfrak{a} is in \mathfrak{F}_{1} but not in any proper admissible subfield of \mathfrak{F}_{1} then \mathfrak{a} is said to originate in \mathfrak{F}_{1} over \mathfrak{F}.

Consider $\mathfrak{F}_{1} \supset \mathfrak{F}_{2}$ and let \mathfrak{a} be an ideal in \mathfrak{F}_{1}. The numbers of \mathfrak{a} which lie in \mathfrak{F}_{2} form an ideal \mathfrak{A} in \mathfrak{F}_{2}. This ideal \mathfrak{A} is said to correspond in \mathfrak{F}_{2} to the ideal \mathfrak{a}. The ideal \mathfrak{N} depends only on \mathfrak{a} but not on \mathfrak{F}_{1}.

Definition 2. If $\mathfrak{A} \subset \mathfrak{F}$ corresponds to \mathfrak{a} in \mathfrak{F}_{1} and

$$
\begin{equation*}
\mathfrak{A}=\mathfrak{a}^{e} \mathfrak{c}, \quad(\mathfrak{a}, \mathfrak{c})=1 \tag{1}
\end{equation*}
$$

then \mathfrak{a} is said to be of order e with respect to \mathfrak{F}.
Received September 1, 1948.

Remark. Not every ideal has an order with respect to \mathfrak{F}; however, every ideal which is a prime ideal in some extension of \mathfrak{F} does.

Theorem 1. If \mathfrak{a} is an ideal of order 1 with respect to \mathfrak{F} then a originates in a unique subfield \mathfrak{F}_{1} over \mathfrak{F}. An extension $\mathfrak{F}^{\prime} \supset \mathfrak{F}$ contains \mathfrak{a} if and only if it contains \mathfrak{F}_{1}.

Proof. If \mathfrak{a} does not originate in \mathfrak{F}^{\prime}, then it must originate in some subfield of \mathfrak{F}^{\prime}. Hence \mathfrak{a} originates in at least one field.

Suppose then that \mathfrak{a} originates in \mathfrak{F}_{1} and also in \mathfrak{F}_{2}. Let \mathfrak{F}_{n} be a normal extension of \mathfrak{F} containing \mathfrak{F}_{1} and \mathfrak{F}_{2} and $\mathfrak{b j}$ the Galois group of \mathfrak{F}_{n} over \mathfrak{F}. Let \mathfrak{S}_{1} and \mathfrak{S}_{2} be the subgroups of \mathfrak{F} leaving \mathfrak{F}_{1} and \mathfrak{F}_{2} respectively fixed. Since \mathfrak{a} has a basis in \mathfrak{F}_{1} and in \mathfrak{F}_{2} it follows that \mathfrak{a} is transformed into itself by the union $\mathfrak{S}_{1} \cup \mathfrak{S}_{2}=\overline{\mathfrak{S}}$. To $\overline{\mathfrak{S}}$ corresponds the field $\overline{\mathfrak{F}}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ which certainly contains \mathfrak{F}. Let $\overline{\mathfrak{a}} \subset \overline{\mathfrak{F}}$ and $\mathfrak{A} \subset \mathfrak{F}$ correspond to $\mathfrak{a} \subset \mathfrak{F}_{1}$ then

$$
\begin{align*}
\overline{\mathfrak{a}} & =\mathfrak{a c ^ { \prime }} \tag{2}\\
\mathfrak{A} & =\overline{\mathfrak{a}} \mathfrak{d}=\mathfrak{a c ^ { \prime }} \mathfrak{d} .
\end{align*}
$$

Since $\mathfrak{c}^{\prime} \boldsymbol{b}=\mathfrak{c}$ by (1) and since $(\mathfrak{c}, \mathfrak{a})=1$ by hypothesis we must have

$$
\begin{equation*}
\left(\mathfrak{c}^{\prime}, \mathfrak{a}\right)=1 \tag{3}
\end{equation*}
$$

If

$$
\begin{equation*}
\overline{\mathfrak{S}}=\mathfrak{S}_{1}+\mathfrak{W}_{1} A_{2}+\ldots+\mathfrak{W}_{1} A_{g} \tag{4}
\end{equation*}
$$

then all relative conjugate fields of \mathfrak{F}_{1} over $\overline{\mathfrak{F}}$ are obtained each once by applying $1, A_{2}, \ldots, A_{g}$ to \mathfrak{F}_{1}. Hence since A_{i} transforms a into itself

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{a}^{A_{2}}=\ldots=\mathfrak{a}^{A g} \tag{5}
\end{equation*}
$$

Thus

$$
\begin{align*}
\overline{\mathfrak{a}} & =\mathfrak{a c}^{\prime A_{i}} \tag{6}\\
\mathfrak{c}^{\prime A_{i}} & =\mathfrak{c}^{\prime} .
\end{align*}
$$

Thus

$$
\begin{equation*}
\mathfrak{a}^{g} \subset \overline{\mathfrak{F}}, \mathfrak{c}^{g} \subset \overline{\mathfrak{F}} \tag{7}
\end{equation*}
$$

Since $\mathfrak{a}^{g} \subset \overline{\mathfrak{F}}$, we must have $\mathfrak{a}^{g} \subset \overline{\mathfrak{a}}$ and

$$
\begin{equation*}
\mathfrak{a}^{g}=\overline{\mathfrak{a}} \mathfrak{D}^{\prime}=\mathfrak{a} \mathfrak{c}^{\prime} \mathfrak{b}^{\prime} \tag{8}
\end{equation*}
$$

Hence $\mathfrak{c}^{\prime}=(1)$ since otherwise $\left(\mathfrak{a}, \mathfrak{c}^{\prime}\right) \neq 1$ contradicting (3). Thus by (2) $\mathfrak{a}=\overline{\mathfrak{a}}$ and since by hypothesis \mathfrak{a} originates in \mathfrak{F}_{1} and \mathfrak{F}_{2} it follows that $\overline{\mathfrak{F}}=\mathfrak{F}_{1}=\mathfrak{F}_{2}$.

If now \mathfrak{a} is in \mathfrak{F}^{\prime} then \mathfrak{F}^{\prime} must contain a field in which \mathfrak{a} originates. Hence \mathfrak{F}^{\prime} must contain \mathfrak{F}_{1}. Conversely if $\mathfrak{F}^{\prime} \supset \mathfrak{F}_{1}$ then $\mathfrak{F}^{\prime} \supset \mathfrak{a}$ since $\mathfrak{a} \subset \mathfrak{F}_{1}$.

Theorem 2. If \mathfrak{p} is an ideal in any field over \mathfrak{F} and g is the largest integer for which \mathfrak{p}^{g} is a prime ideal in some extension of \mathfrak{F} then \mathfrak{p}^{g} originates in a unique extension $\mathfrak{F}^{\prime} \supset \mathfrak{F}$ and is a prime ideal in \mathfrak{F}^{\prime}. Moreover every field that contains a power of \mathfrak{p} contains \mathfrak{F}^{\prime}.

Proof. Let \mathfrak{F} in \mathfrak{F} correspond to \mathfrak{p}. Since \mathfrak{p}^{g} is a prime ideal in some field over \mathfrak{F}, \mathfrak{P} must be a prime ideal. That is to say

$$
\begin{equation*}
\mathfrak{P}=\mathfrak{p}^{e} \mathfrak{a}, \quad(\mathfrak{p}, \mathfrak{a})=1 \tag{9}
\end{equation*}
$$

Thus \mathfrak{p}^{e} satisfies the conditions of Theorem 1. Let \mathfrak{F}^{\prime} be the unique field in which \mathfrak{p}^{e} originates. Let \mathfrak{p}^{g} be a prime ideal in $\mathfrak{F}^{\prime \prime}$. To \mathfrak{p}^{g} corresponds a prime ideal in \mathfrak{F} and since this prime ideal has a common factor with \mathfrak{P} it must be equal to \mathfrak{P}. Thus since $(\mathfrak{p}, \mathfrak{a})=1$

$$
\begin{equation*}
\mathfrak{P}=\left(\mathfrak{p}^{g}\right)^{t} \mathfrak{a}, \quad e \equiv 0(g),\left(\mathfrak{p}^{g}, \mathfrak{a}\right)=1 . \tag{10}
\end{equation*}
$$

Thus $\mathfrak{F}^{\prime \prime}$ contains \mathfrak{p}^{e} hence must also contain \mathfrak{F}^{\prime}. Moreover \mathfrak{p}^{g} is a prime ideal in \mathfrak{F}^{\prime} since it is prime in $\mathfrak{F}^{\prime \prime}$ and since g is the largest power of \mathfrak{p} which is prime in any field. Every field that contains a power of \mathfrak{p} must contain \mathfrak{p}^{e} hence must contain \mathfrak{F}^{\prime}. In particular \mathfrak{p}^{g} cannot be contained in any subfield of \mathfrak{F}^{\prime} and therefore originates in \mathfrak{F}^{\prime}.

Corollary. If \mathfrak{p} is an ideal in some extension \mathfrak{F}^{\prime} of \mathfrak{F} and \mathfrak{p}^{g} is the highest power of \mathfrak{p} which is a prime ideal in an admissible subfield of \mathfrak{F}^{\prime} then \mathfrak{p}^{g} is the highest power of \mathfrak{p} which is a prime ideal in any extension of \mathfrak{F}. (We may take $g=0$ if no power of \mathfrak{p} is a prime ideal in any admissible subfield of \mathfrak{F}^{\prime}.)

A simple example is the ideal $(\sqrt{2})$, when f is the field of rational numbers. Here $g=e=2, f=f^{\prime}$.

Theorem 3. If \mathfrak{p} is a prime ideal in some extension of \mathfrak{F} and \mathfrak{p}^{9} is the largest power of \mathfrak{p} which is a prime ideal of any extension of \mathfrak{F} and if \mathfrak{p}^{h} is a prime ideal in some extension \mathfrak{F}_{1} of \mathfrak{F} then

$$
\begin{equation*}
g \equiv 0(h) \tag{11}
\end{equation*}
$$

Let \mathfrak{F}^{\prime} be the unique field in which \mathfrak{p}^{g} originates by Theorem 2. By the same theorem we have

$$
\begin{equation*}
\mathfrak{F}^{\prime} \subset \mathfrak{F}_{1} \tag{12}
\end{equation*}
$$

To \mathfrak{p}^{h} corresponds a prime ideal in \mathfrak{F}^{\prime} which has a common factor with \mathfrak{p}^{g} and therefore must equal \mathfrak{p}^{g} since \mathfrak{p}^{g} is a prime ideal in \mathfrak{F}^{\prime}. Thus

$$
\begin{equation*}
\mathfrak{p}^{g}=\left(\mathfrak{p}^{h}\right)^{t}, g=h t . \tag{13}
\end{equation*}
$$

If \mathfrak{p} is a prime ideal in some extension of \mathfrak{F} but no power of \mathfrak{p} is a prime ideal in any extension of \mathfrak{F} then by Theorem 2 there is a unique extension of \mathfrak{F} in which \mathfrak{p} originates over \mathfrak{F}. Quite in contrast to this we shall show that if p^{g} ($g>1$) is a prime ideal in some extension of \mathfrak{F} then there are infinitely many extensions of \mathfrak{F} in which \mathfrak{p} originates and is a prime ideal. We show this by proving

Theorem 4. If \mathfrak{p} is a prime ideal in \mathfrak{F} then for every $g>1$ there exists an ideal \mathfrak{B} such that $\mathfrak{B}^{g}=\mathfrak{p}$. The ideal \mathfrak{B} originates as a prime ideal in infinitely many fields over \mathfrak{F}.

Proof. Let $\mathfrak{p}=\left(a_{1}, a_{2}\right), a_{1}, a_{2} \subset \mathfrak{F}$. We may choose

$$
\begin{equation*}
\left(a_{2}\right)=\mathfrak{p c}, \quad(\mathfrak{p}, \mathfrak{c})=1 \tag{14}
\end{equation*}
$$

Choose q prime to $a_{1}, a_{2}, \mathfrak{p}$ and to the absolute differente of $\mathfrak{F}(\zeta)$, where ζ is a primitive g th root of unity, and square free. In $\mathfrak{F}\left(\sqrt[g]{q a_{2}}\right)$ the ideal p is the g th power of the ideal $\mathfrak{B}=\left(a_{1},{ }^{g} \sqrt{q a_{2}}\right)$, for a_{1} and ${ }^{g} \sqrt{q a_{2}}$ can have only a divisor $\overline{\mathfrak{B}}$ of \mathfrak{p} in common. Thus

$$
\begin{aligned}
a_{1} & =\mathfrak{p} \mathfrak{M} \\
\sqrt{q a_{2}} & =\overline{\mathfrak{P}} \mathfrak{B} \quad(\mathfrak{p}, \mathfrak{B})=1 \\
q a_{2} & =\overline{\mathfrak{P}}^{g} \mathfrak{B}^{g}=\mathfrak{p c} q, \quad(\mathfrak{p}, \mathfrak{c})=1, \quad \overline{\mathfrak{P}}^{g}=\mathfrak{p} .
\end{aligned}
$$

Hence $\mathfrak{P}^{g}=\left(a_{1},{ }^{g} \sqrt{q a_{2}}\right)^{g}=\overline{\mathfrak{P}}^{g}=\mathfrak{p}$.
We shall show now that $\mathfrak{F}\left({ }^{g} \sqrt{q a_{2}}\right) \neq \mathfrak{F}\left({ }^{g} \sqrt{q^{\prime} a_{2}}\right)$ if $(q) \neq\left(q^{\prime}\right)$. The numbers $q a_{2}$ and $q^{\prime} a_{2}$ are square free in $\mathfrak{F}(\zeta)$ by assumption. Hence the polynomials $x^{g}-q a_{2}, x^{g}-q^{\prime} a_{2}$ are irreducible in $\mathfrak{F}(\zeta)$ by Eisenstein's criterion. Thus 1, $\sqrt[g]{q a_{2}}, \ldots,\left(\sqrt[g]{q a_{2}}\right)^{g-1}$ are independent over $\mathfrak{F}(\zeta)$. If ${ }^{g} \sqrt{q^{\prime} a_{2}} \subset \mathfrak{F}\left({ }^{g} \sqrt{q a_{2}}\right)$ then

$$
\sqrt[g]{ } \sqrt{q^{\prime} a_{2}}=a_{0}+a_{1}^{g} \sqrt{q a_{2}}+\ldots+a_{g-1}\left({ }^{g} \sqrt{q a_{2}}\right)^{g-1}
$$

applying the automorphism ${ }^{g} \sqrt{q a_{2}} \leftrightarrow \zeta^{g} \sqrt{q a_{2}}$ we get

$$
\begin{aligned}
\zeta^{i g} \sqrt{q^{\prime} a_{2}} & =a_{0}+a_{1} \zeta^{g} \sqrt{q a_{2}}+\ldots+a_{g-1} \zeta^{g-1}\left(\sqrt{g} \sqrt{q a_{2}}\right)^{g-1} \\
& =\zeta^{i}\left(a_{0}+a_{1}{ }^{g} \sqrt{q a_{2}}+\ldots+a_{g-1}\left(\sqrt{q a_{2}}\right)^{g-1}\right) .
\end{aligned}
$$

Because of the independence of $1,{ }^{g} \sqrt{q a_{2}}, \ldots,\left(\sqrt{q a_{2}}\right)^{g-1}$ over $\mathfrak{F}(\zeta)$ we must have

$$
\zeta^{i} a_{j}=\zeta^{j} a_{j}, a_{j}=0 \text { for } j \neq \mathrm{i} .
$$

Hence

$$
\begin{aligned}
\sqrt[g]{q^{\prime} a_{2}} & =a_{i}\left(\sqrt[g]{q a_{2}}\right)^{i} \\
q^{\prime} a_{2} & =a_{i}{ }^{g}\left(q a_{2}\right)^{i} .
\end{aligned}
$$

Our choice of q and q^{\prime}, together with equation 14 , imply that $i=1$ and a_{i} must be a unit. Hence $(q)=\left(q^{\prime}\right)$.

Clearly we can choose infinitely many (q) which are square free and prime to $a_{1}, a_{2}, \mathfrak{p}$ and the absolute differente of $\mathfrak{F}(\zeta)$. For instance all but a finite number of rational primes fulfill this condition.

The ideal $\left(a_{1}, \sqrt[g]{q a_{2}}\right)$ is moreover a prime ideal since it lies in a field of degree g over \mathfrak{F} and its g th power is a prime ideal in \mathfrak{F}. For the same reason it also originates in \mathfrak{F} since it cannot lie in any field of degree less than g over \mathfrak{F}.

Theorem 4 shows among other things: If $\mathfrak{p}^{h}, h>1$, is a prime ideal in \mathfrak{F}^{\prime} over \mathfrak{F} then \mathfrak{p} originates in infinitely many fields over \mathfrak{F}. For let \mathfrak{p}^{g} be the highest power of \mathfrak{p} which is a prime ideal in some extension of \mathfrak{F}. Let $\mathfrak{F}^{\prime \prime}$ be the unique field over \mathfrak{F} in which \mathfrak{p}^{g} originates and let \mathfrak{p} originate in some field \mathfrak{F}_{1} over $\mathfrak{F}^{\prime \prime}$. By Theorem 4 there are infinitely many such fields. We must show that \mathfrak{p} originates in \mathfrak{F}_{1} over \mathfrak{F}. If \mathfrak{p} lies in \mathfrak{F}_{2} over \mathfrak{F} where $\mathfrak{F}_{1} \supseteq \mathfrak{F}_{2}$, then $\mathfrak{F}_{2} \supseteq \mathfrak{F}^{\prime \prime}$ by Theorem 2 and hence $\mathfrak{F}_{1}=\mathfrak{F}_{2}$ since \mathfrak{p} originates in \mathfrak{F}_{1} over $\mathfrak{F}^{\prime \prime}$. Thus \mathfrak{p} also originates in \mathfrak{F}_{1} over \mathfrak{F}.

Theorem 2 characterizes completely the fields over \mathfrak{F} which contain a given prime ideal \mathfrak{p} if no power of \mathfrak{p} is a prime ideal in a field over \mathfrak{F}. However in the case that some $\mathfrak{p}^{h}(h>1)$ is a prime ideal in a field over \mathfrak{F} we obtain only the necessary condition that every field containing \mathfrak{p} must contain the field in which \mathfrak{p}^{g} originates where \mathfrak{p}^{g} is defined in Theorem 2. A stronger necessary but still not sufficient condition is as follows:

Theorem 5. If \mathfrak{p} originates in \mathfrak{F}^{\prime} over $\mathfrak{F}, \mathfrak{p}^{g}=\mathfrak{B}$ is the highest power of \mathfrak{p} which is a prime ideal in some subfield of \mathfrak{F}^{\prime} and if \mathfrak{p}^{g} originates in $\mathfrak{F}^{\prime \prime}$ then $\mathfrak{F}^{\prime}=\mathfrak{F}^{\prime \prime}(a)$, where a satisfies an irreducible equation

$$
\begin{equation*}
x^{m}+a_{1} x^{m-1}+\ldots+a_{m}=0 \tag{13}
\end{equation*}
$$

of degree $m=g r(r$ integral $)$ with coefficients in $\mathfrak{F}^{\prime \prime}$ such that

$$
\begin{gather*}
a_{l g+k} \equiv 0\left(\mathfrak{P}^{l+1}\right), k>0, \tag{14}\\
a_{r g} \neq 0\left(\mathfrak{P}^{r+1}\right) .
\end{gather*}
$$

Proof. From Theorem 2 we have $\mathfrak{F}^{\prime \prime} \subset \mathfrak{F}^{\prime}$. Let $a \subset \mathfrak{p}, a$ non $\subset \mathfrak{p}^{2}, a \subset \mathfrak{F}^{\prime}$. Since \mathfrak{p} originates in \mathfrak{F}^{\prime} and since in every field between $\mathfrak{F}^{\prime \prime}$ and \mathfrak{F}^{\prime} the ideal \mathfrak{p} corresponds to a power of \mathfrak{p} we must have $\mathfrak{F}^{\prime}=\mathfrak{F}^{\prime \prime}(a)$. Let $\left(\mathfrak{F}^{\prime} / \mathfrak{F}^{\prime \prime}\right)=m$ and observe that the conjugates of a over $\mathfrak{F}^{\prime \prime}$ are all exactly divisible by \mathfrak{p}. Hence the $(l g+k)$ th, $(k>0)$, symmetric function of these conjugates is divisible by $\mathfrak{p}^{l g+k}$ and since it is in $\mathfrak{F}^{\prime \prime}$ it must be divisible by \mathfrak{P}^{l+1}. Moreover the last coefficient is exactly divisible by \mathfrak{p}^{m}. If $\mathfrak{p}=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{s}{ }^{e_{s}}$ is the prime decomposition of \mathfrak{p} in \mathfrak{F}^{\prime} and f_{i} the degree of \mathfrak{p}_{i} then \mathfrak{p}_{i} is of multiplicity $g e_{i}$ with respect to \mathfrak{P} and hence

$$
\begin{equation*}
m=g e_{1} f_{1}+\ldots+g e_{s} f_{s}=g r \quad(r \text { integral }) . \tag{15}
\end{equation*}
$$

This proves Theorem 5.
Theorem 6. Let $\mathfrak{p}^{g}=\mathfrak{B}$ and let g and $\mathfrak{F}^{\prime \prime}$ be defined as in Theorem 5. The ideal \mathfrak{p} lies in \mathfrak{F}^{\prime} over \mathfrak{F} if and only if $\mathfrak{F}^{\prime} \supset a$ where $a^{g}=\beta$ satisfies an irreducible equation

$$
\begin{equation*}
\beta^{r}+a_{1} \beta^{r-1}+\ldots+a_{r}=0, a_{i} \equiv 0\left(\mathfrak{F}^{i}\right), a_{r} \neq 0\left(\mathfrak{F}^{r+1}\right), \text { over } \mathfrak{F}^{\prime \prime} . \tag{16}
\end{equation*}
$$

First let \mathfrak{p} lie in \mathfrak{F}^{\prime}, then there exists in \mathfrak{F}^{\prime} an a such that $a \equiv 0(\mathfrak{p}), a \neq 0\left(\mathfrak{p}^{2}\right)$. By Theorem 2 we have $a \subset \mathfrak{F}^{\prime} \subset \mathfrak{F}^{\prime \prime}$. Clearly $a^{g}=\beta$ and all its conjugates over $\mathfrak{F}^{\prime \prime}$ are exactly divisible by \mathfrak{F} and the necessity of the condition 16 follows.

On the other hand consider $\mathfrak{F}^{\prime \prime}(a)$ where $a^{g}=\beta$ satisfies an irreducible equation 16. Let γ be a number with ideal denominator \mathfrak{P}. Then $\gamma \beta$ satisfies an equation

$$
\begin{equation*}
(\gamma \beta)^{r}+\gamma a_{1}(\gamma \beta)^{r-1}+\ldots+\gamma^{r} a_{r}=0 \tag{17}
\end{equation*}
$$

with integral coefficients. Hence $\beta \equiv 0(\mathfrak{P})$. Moreover since $a_{r} \neq 0\left(\mathfrak{F}^{r+1}\right)$ it follows that $\beta=\mathfrak{P b},(\mathfrak{F}, \mathfrak{b})=1$. Consider the ideal (a, \mathfrak{P}). If

$$
\begin{align*}
\mathfrak{P} & =\mathfrak{F}_{1}{ }^{e_{1}} \ldots \mathfrak{P}_{s}{ }^{e_{s}} \tag{18}\\
a & =\mathfrak{P}_{1}^{{ }^{h_{1}}} \ldots \mathfrak{P}_{s}{ }^{h_{s}} \mathfrak{c}, \quad\left(\mathfrak{p}_{1}, \mathfrak{c}\right)=1
\end{align*}
$$

it follows that $e_{i}=g h_{i}$. Hence $(a, \mathfrak{P})^{g}=\mathfrak{P}$.

Thus $\mathfrak{F}^{\prime \prime}(a)$ contains \mathfrak{p} and so does every field over $\mathfrak{F}^{\prime \prime}(a)$.
Suppose an ideal \mathfrak{p} a power of which is a prime ideal in some field over \mathfrak{F} is given in any field \mathfrak{F}_{1} over \mathfrak{F} and we are required to find all extensions of \mathfrak{F} which contain \mathfrak{p}. We proceed as follows. We first find the largest power say $\mathfrak{p}^{g}=\mathfrak{P}$ of \mathfrak{p} which is a prime ideal in any admissible subfield of \mathfrak{F}_{1}. Next we determine the smallest admissible subfield containing \mathfrak{F}. Let this field be $\mathfrak{F}^{\prime \prime}$. We then obtain all fields which contain \mathfrak{p} as all extensions of all $\mathfrak{F}^{\prime \prime}(a)$ where a^{g} satisfies an equation of the form 16.

Ohio State University

