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In the dynamical systems approach to turbulence, unstable periodic orbits (UPOs) provide
valuable insights into system dynamics. Such UPOs are usually found by shooting-based
Newton searches, where constructing sufficiently accurate initial guesses is difficult. A
common technique for constructing initial guesses involves detecting recurrence events
by comparing past and future flow states using their L2-distance. An alternative method
uses dynamic mode decomposition (DMD) to generate initial guesses based on dominant
frequencies identified from a short time series, which are signatures of a nearby UPO.
However, DMD struggles with continuous symmetries. To address this drawback, we
combine symmetry-reduced DMD (SRDMD) introduced by Marensi et al. (2023, J. Fluid
Mech., vol. 954, A10), with sparsity promotion. This combination provides optimal low-
dimensional representations of the given time series as a time-periodic function, allowing
any time instant along this function to serve as an initial guess for a Newton solver. We also
discuss how multi-shooting methods operate on the reconstructed trajectories, and we ex-
tend the method to generate initial guesses for travelling waves. We demonstrate SRDMD
as a method complementary to recurrent flow analysis by applying it to data obtained
by direct numerical simulations of three-dimensional plane Poiseuille flow at the friction
Reynolds number Reτ ≈ 51 (Re = 802), explicitly taking a continuous shift symmetry in
the streamwise direction into account. The resulting unstable relative periodic orbits cover
relevant regions of the state space, highlighting their potential for describing the flow.
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1. Introduction
The dynamical systems approach to turbulence, which considers the evolution of the flow
as a chaotic trajectory in the infinite-dimensional state space of the governing equations,
has provided remarkable insights into the complex nature of turbulent flows (Kawahara,
Uhlmann & van Veen 2012; Graham & Floryan 2021). This approach has proven to be
a particularly powerful framework for characterising and understanding weakly chaotic
flows and transitional turbulence (Eckhardt & Faisst 2005; Kerswell 2005; Eckhardt et al.
2007). Central to this approach are unstable invariant solutions such as unstable equilibria
and unstable periodic orbits (UPOs) that are transiently visited by the chaotic trajectory,
shaping the turbulent dynamics of the flow. While the idea of characterising chaotic flow
in terms of its state-space structure has a long history (Hopf 1948), it is only in the past
three decades that the numerical computation of unstable invariant solutions has made the
practical application of this approach to chaotic fluid flows possible.

Following the numerical computation of the first unstable equilibrium solution by
Nagata (1990) in plane Couette flow, Kawahara & Kida (2001) discovered two UPOs
related to spatial and temporal coherent structures in this flow. Further periodic solutions
were found later (Viswanath 2007; Cvitanović & Gibson 2010; Kreilos & Eckhardt
2012), demonstrating their importance for understanding physical mechanisms behind the
formation of coherent structures in plane Couette flow. Since then, growing interest in
the dynamical systems approach to turbulence has spread to other flow configurations;
invariant solutions have been found in the transitional and weakly turbulent regimes of pipe
flow (Faisst & Eckhardt 2003; Waleffe 2003; Wedin & Kerswell 2004; Duguet, Pringle
& Kerswell 2008; Willis, Cvitanović & Avila 2013; Budanur et al. 2017), Taylor–Couette
flow (Krygier, Pughe-Sanford & Grigoriev 2021), Kolmogorov flow (Chandler & Kerswell
2013; Lucas & Kerswell 2015; Suri et al. 2017, 2018, 2020; Yalnız et al. 2021), inclined
layer convection (Reetz & Schneider 2020) and magnetoconvection (McCormack et al.
2023), and recently also in parallel shear flows of viscoelastic fluids (Page, Dubief &
Kerswell 2020; Morozov 2022). Somewhat surprisingly, much less work has been done
in channel flow (Waleffe 2001; Toh & Itano 2003; Zammert & Eckhardt 2014; Rawat,
Cossu & Rincon 2014). In addition to steady and time-periodic solutions, efforts have
been made towards more complete descriptions of chaotic flows in terms of state-space
structures using heteroclinic and homoclinic orbits (van Veen & Kawahara 2011; Suri et al.
2019), as well as more complex invariant solutions such as invariant tori (Parker, Ashtari
& Schneider 2023). Evidence for the relevance of invariant solutions to flow dynamics
has also been obtained in the laboratory for canonical shear flows (Hof et al. 2004;
de Lozar et al. 2012) and quasi two-dimensional (2-D) Kolmogorov-like flow (Suri et al.
2017, 2018, 2020). As the Reynolds number increases far beyond the transitional regime,
the relevance of individual invariant solutions for describing the flow as a sequence of
transitions between these elementary building blocks decreases. Nevertheless, invariant
solutions of the fully nonlinear as well as filtered Navier–Stokes equations have been
computed for high-Reynolds-number flows, and have offered new perspectives (see e.g.
van Veen, Kida & Kawahara (2006), Hwang, Willis & Cossu (2016), Cossu & Hwang
(2017) and Azimi & Schneider (2020), among others).

While individual UPOs may capture essential features of coherent flow structures and
thus provide a means to investigate their underlying mechanisms, the ensemble of UPOs
holds promise for a quantitative framework relating the long-time statistics of the flow
to those of the UPOs: the system’s chaotic attractor (or chaotic saddle) is expected to be
covered densely by UPOs, implying that a chaotic trajectory shadows a UPO at any time.
Consequently, ergodic averages over these invariant sets can be reproduced as properly
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weighted sums of one-cycle statistics of all UPOs, where the weights are independent of
the statistical quantity of interest. Periodic orbit theory (POT) defines the weights in these
‘cycle expansions’ based on the stability properties and period of the UPOs (Cvitanović
et al. 2016). With UPOs ordered by these weights, cycle expansions become exponentially
convergent series. However, in general, UPOs cannot be identified systematically in the
order of their contribution to cycle expansions. In practice, therefore, the application of
cycle expansions relies on collecting sufficiently large sets of UPOs, with the hope that no
significantly relevant UPOs are missing for the desired accuracy. Developing sufficiently
large databases of UPOs is challenging in high-dimensional dynamical systems, including
fluid flow problems. Previous studies provide evidence that representing flow statistics via
cycle expansions is viable for chaotic fluid flows (Kazantsev 1998; Chandler & Kerswell
2013; Cvitanović 2013; Lucas & Kerswell 2015; Suri et al. 2020; Yalnız et al. 2021;
Page et al. 2024; Redfern, Lazer & Lucas 2024). However, this objective remains largely
unexplored for three-dimensional (3-D) wall-bounded shear flows.

Further progress in explaining complex turbulent phenomena using invariant solutions,
or in predicting chaotic statistics with large sets of UPOs, is hindered by challenges in
the numerical computation of these solutions, even for weakly chaotic flows. A commonly
used procedure to obtain UPOs from direct numerical simulations (DNS) begins with
recurrent flow analysis. In this analysis, the L2-distance between future and past flow
states is monitored to identify recurrence events, defined as instances when the distance
between two flow states falls below a certain threshold. Such a recurrence event suggests
that the chaotic trajectory has followed a UPO for at least one of its cycles (Kawahara &
Kida 2001; Chandler & Kerswell 2013). Subsequently, either of the two flow fields that
exhibit a close distance, along with the time interval between them as an estimate for the
period of the nearby UPO, are passed as initial conditions to a shooting-based Newton (–
Raphson) search (Viswanath 2007). The main drawback of this procedure lies in the need
for recurrence events, which require the chaotic trajectory to follow a UPO for at least
one complete cycle. This becomes less likely with increasing Reynolds number, rendering
many UPOs inaccessible with this approach.

To circumvent the need for following a UPO for a complete cycle, an alternative
approach based on dynamic mode decomposition (DMD) was introduced by Page &
Kerswell (2020) to produce initial conditions for the Newton search. Using the DMD-
based approach, Page & Kerswell (2020) successfully detected and converged multiple
UPOs in plane Couette flow at Re = 400. The DMD (Schmid & Sesterhenn 2008; Schmid
2010) is a dimensionality reduction technique applicable to numerical or experimental
flow data. It approximates a time series as a superposition of the so-called dynamic
modes, which represent relevant spatial structures in the flow, each evolving exponentially
in time. The DMD-based method of Page & Kerswell (2020) identifies dynamic modes
whose exponential time evolution shows nearly neutral growth or decay, but also
oscillations as repeated harmonics of a fundamental frequency. The identification of such
periodic dynamic modes suggests the presence of a nearby UPO, which can be readily
approximated using the identified dynamic modes and their frequencies. Any snapshot of
the approximated periodic trajectory, together with its approximated time period, can be
used to initialise a shooting-based Newton search. This method is able to detect frequencies
corresponding to oscillatory structures with periods longer than the DMD observation
time window (Schmid et al. 2011). As such, the DMD-based method bypasses the need
for recurrence events, providing a promising alternative and complementary approach to
recurrent flow analysis when searching for UPOs. The DMD-based method enables us to
access UPOs that, due to their high instability, are not likely to be followed for a complete
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cycle at a given Reynolds number. It also extends the range of Reynolds numbers over
which we can practically study the flow in terms of its unstable periodic solutions, as
recurrence events become less probable with higher Reynolds numbers.

While the DMD-based approach has proven effective in detecting nearby periodic orbits
from short segments of a chaotic trajectory, in the presence of continuous symmetries,
DMD is known to perform poorly. This drawback arises because continuous symmetries
lead to spurious dynamic modes representing features affected by the symmetries rather
than the underlying physically relevant dynamics (Kutz et al. 2016; Sesterhenn &
Shahirpour 2019). A number of approaches to address continuous symmetries in the
context of DMD have been developed, including physics-informed DMD considering
the Fourier transformations of flow fields (Baddoo et al. 2023), and characteristic DMD,
which operates on flow fields within an appropriately chosen reference frame (Sesterhenn
& Shahirpour 2019). Recently, Marensi et al. (2023) introduced symmetry-reduced DMD
(SRDMD) by combining DMD with the method of slices (Willis et al. 2013; Budanur
et al. 2015), where the chaotic trajectory is first restricted to a symmetry-reduced lower-
dimensional state space before utilising DMD. Marensi et al. (2023) applied this method to
two translationally invariant flows. These applications include plane Couette flow at Re =
400, where they search for unstable relative periodic orbits (URPOs), and plane Poiseuille
flow at friction Reynolds numbers Reτ ≈ 98 (Re = 2000) and Reτ ≈ 205 (Re = 5000),
where they approximate turbulent episodes by low-dimensional linear expansions. Engel,
Ashtari & Linkmann (2023) applied SRDMD to provide low-dimensional representations
of the large-scale structures of the asymptotic suction boundary layer, identifying
potentially self-sustaining ejections and sweeping events. For plane Couette flow, and most
relevant in the context of the present work, Marensi et al. (2023) converged two out of 16
initial conditions produced by SRDMD to periodic orbits, where the first was an already
known solution with zero translational drift, and the second one reported as yet unknown
URPO with streamwise drift.

Here, we combine the SRDMD method for computing URPOs with the sparsity-
promoting optimisation proposed by Jovanović et al. (2012). This technique allows us
to isolate and select the most important dynamic modes necessary for reconstructing the
trajectory. The effectiveness of sparsity promotion has been demonstrated for the robust
identification of coherent flow features and understanding their underlying mechanisms
using DMD in several settings, including near-wall turbulence (Schmid & Sayadi 2017),
the 2-D cylinder wake and 3-D turbulent ship–air wake flows (Pan, Arnold-Medabalimi &
Duraisamy 2021), wind turbine wakes (Dai et al. 2022; De Cillis et al. 2022), and vortex
ropes in hydraulic turbines (Salehi & Nilsson 2024). We discuss how the guesses generated
by the SRDMD method in combination with sparsity promotion – comprising space–time
fields with prescribed periodic behaviour in time, rather than single snapshots – can be
used to initialise multi-shooting methods, which typically achieve higher success rates than
the standard single-shot alternative. We also adapt the introduced DMD-based method to
generate initial guesses for computing travelling wave (TW) solutions. We apply these
methods to weakly turbulent channel flow at a low friction Reynolds number Reτ ≈ 51
(Re = 802), and present six new URPOs and two TW solutions with streamwise drifts.
Additionally, we apply POT using these URPOs to analyse the mean velocity profile,
Reynolds stresses, and the distributions of the energy input and dissipation rates, providing
new insights into the role of these structures in the turbulent dynamics.

The paper is organised as follows. In § 2, we review the DMD and slicing methods, and
how they can be combined to generate initial conditions for Newton searches for periodic
solutions. In § 3.1, we briefly discuss the method validation, followed by an extensive
SRDMD and Newton search in § 3.2. In order to connect converged URPOs with the actual
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chaotic fluid flow, we describe the application of POT to predict statistical flow properties
in § 4. We also highlight the complementary role of the SRDMD method in relation to
traditional recurrent flow analysis – its ability to reconstruct a global estimate of a URPO
over its entire period, as demonstrated in § 5, enabling multi-shooting methods to operate
on a global object. The extension of the method to provide initial guesses for TWs is
discussed in § 6. We summarise our results and provide suggestions for further work in § 7.

2. Methods

2.1. Dynamic mode decomposition
Here, we give a review of the well-established DMD method, where a time series is
approximated by a linear combination of exponentially evolving modes, and its sparsity-
promotion extension, which identifies a minimal subset of modes most relevant to the
approximation. For key contributions to DMD and its extensions, the significance of this
method in the broader context of model reduction and modal analysis, and an overview of
its applications in fluid flows, see e.g. Schmid & Sesterhenn (2008), Rowley et al. (2009),
Schmid (2010, 2022), Jovanović et al. (2012), Tu et al. (2014), Hemati, Williams & Rowley
(2014), Kutz et al. (2016), Taira et al. (2017), Rowley & Dawson (2017), Le Clainche &
Vega (2017), Brunton et al. (2022) and Baddoo et al. (2023).

Suppose that a discrete time series of spatially resolved velocity fields {u(t)}t∈T is
given, where T is a set of discrete indices, and the spatial dependence of the flow
fields is suppressed in the notation for brevity. We sample a subset of M flow fields
{u(t1), . . . , u(tM )} with a fixed spacing�t = t j − t j−1 in time to construct the data matrix

X = [ f (u(t1)), . . . , f (u(tM ))]. (2.1)

Here, we denote with f (u(t j )) the state-space representation of the flow field u(t j ) at time
t j , with respect to an observable f . Shifting the time indices t j forwards by a fixed time
step δt leads to a second data matrix

X ′ = [ f (u(t1 + δt)), . . . , f (u(tM + δt))], (2.2)

whose columns are obtained by evolving the respective states in the matrix X over a time
interval δt . The choice of f and the fixed sample rate 1/�t are free and should depend
on the characteristics of the system under consideration. In the present work, f is chosen
as the identity operator, meaning that the columns of X and X ′ correspond to the grid
values of the velocity field for the spatial discretisation used. The two data matrices can
be related by a linear relation X ′ = AX + E, where E represents the error in the linear
approximation

X ′ ≈ AX . (2.3)

It can be shown that the best-fit linear operator A, which minimises the Frobenius norm
of the error E, is given by

A = X ′X+, (2.4)

where + denotes the Moore–Penrose pseudo-inverse. The size of the system studied can be
prohibitively large to construct the matrix A directly using (2.4). In practice, therefore, the
projection of this matrix onto a feasibly low-dimensional basis is considered. To achieve
such a reduction without explicitly constructing A, the singular-value decomposition
(SVD) of the data matrix X is first computed:

X = UΣV ∗, (2.5)
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where the matrix Σ contains the singular values of X , the matrices U and V contain
the left- and right-singular vectors of X , respectively, and ∗ indicates the Hermitian
transposition. For a fully resolved fluid mechanics problem, the dimension of the u vectors
is significantly larger than the number of snapshots, implying that X and X ′ are tall
matrices. In this work, the SVD is truncated to the number of snapshots M , with no further
rank reduction. This choice will become evident later in the context of sparsity-promoting
DMD.

The projection of A onto the low-dimensional orthonormal basis formed by the left-
singular vectors is computed as

Ã = U∗ AU = U∗X ′VΣ−1, (2.6)

where X+ is expressed based on the SVD in (2.5), and the result is substituted into the
definition (2.4).

The matrix Ã defines the linear discrete-time evolution of u projected onto the column
space of U . The corresponding linear continuous-time evolution, whose δt-sampling
yields the linear discrete system defined by Ã, is reconstructed using the eigenvalue
decomposition of this matrix:

u(t)≈
m−1∑

k=−m+1

ak e(σk+iωk)t ψk . (2.7)

Here,ψk are the eigenvectors of Ã, mapped from the column space of U to the original full
space. These vectors are referred to as the dynamic modes, and represent spatial structures.
The complex-valued frequencies μk = σk + iωk are related to the respective eigenvalues
λk of Ã through the relation

μk = ln λk

δt
. (2.8)

When DMD analysis is done on a purely periodic time series, the expression (2.7)
represents a linear combination of m � M distinct modes. These include the temporal
mean and (m − 1) complex conjugate pairs of ψk . In the case of a periodic time series,
the μk lie on the imaginary axis, and equivalently, the λk lie on the unit circle in the
complex plane (see the validation test case in § 3.1).

The complex-valued amplitudes ak are not obtained directly from the DMD analysis;
instead, they must be determined such that the resulting superposition of exponential
evolutions approximates the given time series optimally with respect to an appropriately
chosen objective function. The amplitudes can be computed by performing a least squares
fit of the DMD reconstruction (2.7) to the original data, minimising the objective function

J (a) := 1
M

M∑
j=1

∥∥∥∥∥∥u(x, t j )−
m−1∑

k=−m+1

ak e(σk+iωk)t j ψk(x)

∥∥∥∥∥∥
2

L2

, (2.9)

where a is the vector of amplitudes ak .
For a given SVD truncation, the absolute values of ak obtained by minimising J (a)

do not necessarily reflect the relevance of the respective modes to the approximation.
To identify an optimal subset of the most relevant modes, we augment the objective
function with the L1-norm of the vector of amplitudes. The amplitudes are determined by
solving the following convex optimisation problem using the alternating direction method
of multipliers (ADMM), as detailed in Jovanović et al. (2012):
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min
a

J (a)+ γ

m−1∑
k=−m+1

|ak |. (2.10)

The sparsity-promoting optimisation consists of two steps. First, the ADMM algorithm
iteratively determines the sparsity structure, with convergence determined by the primal
residual εprim and the dual residual εdual, which assess the solution’s accuracy. The
iteration stops when both are less than or equal to 10−6. Next, an optimisation step
refines the remaining non-zero DMD amplitudes in a best fit to the data. As a result,
when the sparsity structure remains unchanged, different γ values lead to identical
DMD amplitudes. The augmented term does not explicitly enforce sparsity by penalising
the number of non-zero entries in a. Instead, it acts as a proxy to promote sparsity
by suppressing the amplitudes of modes with minimal influence on the quality of the
reconstruction. The penalty parameter γ controls the trade-off between the approximation
quality and sparsity.

The sparsity-promoting approach eliminates the need to determine an optimal cut-off
for truncated SVD, which is essential to exclude spurious dynamic modes caused by over-
fitting, but cannot be predefined. Instead, the sparsity constraint automatically selects the
most physically meaningful dynamic modes that best represent the system’s dynamics.

2.2. The DMD-based identification of periodic structures
Here, we are interested in finding initial guesses for the Newton search of UPOs. If the
trajectory segment processed by DMD shadows a UPO, then the sparsity constraint selects
the near-neutral dynamic mode with ω0 = 0, dynamic modes related to the fundamental
frequency ω1, and those corresponding to its higher harmonics, {ω2, . . . , ωn}. Following
Page & Kerswell (2020), we can then estimate the UPO’s period Tg = 2π/ω f by
calculating the averaged fundamental frequency

ω f (n) := 2
n(n + 1)

n∑
k=1

ωk, (2.11)

with its residual defined as

εω(n) := 1
n |ω f |2

n∑
k=1

|ωk − kω f |2. (2.12)

If εω falls below a chosen threshold, then we reconstruct the best-fit periodic function
for the given trajectory segment using the steady mode and the n periodic modes. This
procedure is shown schematically in figure 1. The initial flow field for the Newton solver
can be chosen as any instant from the time-periodic reconstruction. It is not a priori clear
which of the reconstructed flow fields is best suited as an initial guess. In § 3.2, we consider
the reconstructed flow field that is closest to the processed trajectory segment, using the
L2-distance as a global measure of the approximation quality. In § 5, we discuss how
treating the reconstruction as a global object facilitates the use of multi-shooting methods.

In this context, DMD offers a complementary approach by detecting nearby UPOs even
in the absence of recurrence events in the data. This contrasts with the commonly used
recurrent flow analysis (Cvitanović & Gibson 2010), which identifies UPOs based on
repeated flow patterns. Therein, the relative residual

R(t, T ) := ‖u(t + T )− u(t)‖L2

‖u(t)‖L2

(2.13)
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u(t1)

u(tM)

u(t)

Figure 1. Schematic of the DMD-based method for constructing initial guesses for UPOs. The solid black
curve represents a trajectory u(t) in the abstract state space of the system. This trajectory follows a UPO,
shown in solid blue, for a time interval shorter than its period. A time window of fixed length is slid along
this trajectory, and DMD is done on the covered trajectory segment. The nearby UPO results in dominant
frequencies in the DMD spectrum of the trajectory between the time instants t1 and tM , where the UPO is
followed closely, providing an estimate of its period. Using the extracted DMD modes and frequencies, the
best-fit periodic function to the processed trajectory segment is constructed, shown in dashed red. Any section
of this periodic function, together with the approximated period, can then be used to initialise a shooting-based
Newton search to compute the exact UPO.

is used to flag the flow states that exhibit a near recurrence after a time interval T . If R
falls below a small threshold, then either u(t) or u(t + T ), together with T as a guess for
the period, is used to initialise a Newton search for a UPO.

In the presence of continuous translational symmetries, the solution can drift in
space. Consequently, periodic structures may manifest as URPOs, where the periodicity
condition is satisfied up to a spatial shift. In this case, DMD performs poorly, as
a potentially low-dimensional evolution in a co-moving frame of reference would be
obscured by spurious modes generated to capture spatial drifts. Therefore, continuous
symmetries must be removed before attempting to identify time-periodic structures in the
data using the DMD-based method described above. Details of the symmetry-reduction
technique are provided in the next subsection. In the presence of continuous translational
symmetries, recurrent flow analysis is also modified either by reducing the continuous
symmetry in the time series prior to computing R (Cvitanović & Gibson 2010), or
by modifying definition (2.13) to consider the smallest L2-distance between u(t) and
u(t + T ) among all possible relative phases (Chandler & Kerswell 2013).

2.3. First Fourier mode slicing technique
In this study, we consider flow fields in a channel geometry that are periodically extended
in the streamwise x and spanwise z directions, and bounded in the wall-normal direction
y. Based on this construction, we can represent the flow fields numerically in a Fourier ×
Chebyshev × Fourier basis, taking the form

u(x)=
∑

kx ,kz∈Z
n∈W

ũkx ,n,kz Tn(y) e2πi(kx x/Lx+kz z/Lz). (2.14)

In this expression, we denote by ũkx ,n,kz the complex Fourier/Chebyshev/Fourier
coefficients, and by Tn the nth Chebyshev polynomial that is a function of the wall-normal
coordinate. In the non-dimensional form, the spatial extents of the computational domain
in the streamwise and spanwise directions are denoted by Lx and Lz , respectively, while
the wall-normal direction spans y ∈ [−h, h].
1013 A45-8
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Flows in this geometry can have continuous translation symmetries in the streamwise
and/or spanwise direction, leading to additional degrees of freedom in the underlying
flow dynamics. Budanur et al. (2015) explored the problem of reducing the symmetry in
systems with Fourier space discretisation and SO(2) symmetry. Their symmetry reduction
technique has recently been extended to flows in channel geometries (Marensi et al. 2023),
which is particularly relevant to our numerical set-up. Using this method, we restrict
the flow’s state-space trajectory to a linear approximation of a symmetry-reduced lower-
dimensional sub-manifold, a so-called slice. Mathematically, a slice is the quotient space
M/G, which represents the original manifold M after accounting for the symmetry
group G. This quotient space consists of equivalence classes where points in M that
can be transformed into each other by the actions of G (in this case, translations in the
streamwise and spanwise directions) are considered equivalent. In the factor space, these
points are identified as the same, effectively removing the continuous symmetry of the
system.

To construct the slice, we begin by introducing a coordinate system based on a template
function for each direction having a continuous translation symmetry. Specifically, we
define two flow field components: one for the x direction, and one for the z direction,
which are given by

û′
x := f (y) cos(2πx/Lx ) x̂ and û′

z := f (y) cos(2πz/Lz) ẑ, (2.15)

where f (y) is a function that defines the variation of the template flow field in the
y direction. The form of f (y) is chosen based on the specific system being studied,
particularly its discrete symmetries. Following similar considerations, the alignment
direction of the template functions can also be chosen differently from (2.15) (see § 3.1).
We next introduce a tangent vector at the corresponding group orbit, obtained by a quarter-
domain shift of the template flow field. The symmetry reduction is then achieved by
applying the shift operators Sx and Sz to the flow fields of the full state-space trajectory
u. These shift operators are defined using the function g(�x, �z), which shifts the flow
field by �x and �z in the x and z directions, respectively:

Sx (u) := g(−(φx/2π)Lx , 0) u and Sz(u) := g(0,−(φz/2π)Lz) u. (2.16)

The polar angles φx and φz , corresponding to the spatial shifts necessary for symmetry
reduction, are defined as

φx := arg
(〈

u, û′
x

〉 + i
〈
u, g(Lx/4, 0) û′

x
〉)

(2.17)

and

φz := arg
(〈

u, û′
z

〉 + i
〈
u, g(0, Lz/4) û′

z
〉)
. (2.18)

The slicing phase velocities φ̇x and φ̇z can be obtained either by finite differences using
the time series of the slice phases φx and φz , or alternatively by using the reconstruction
equations derived by Rowley & Marsden (2000):

φ̇x (t)=
(

2π

Lx

) 〈
∂x û′

x , ∂t u|u=û(t)
〉

〈
∂x û′

x , ∂x û(t)
〉 (2.19)

and

φ̇z(t)=
(

2π

Lz

) 〈
∂z û′

z, ∂t u|u=û(t)
〉

〈
∂z û′

z, ∂z û(t)
〉 . (2.20)

Here, û(t) denotes the symmetry-reduced counterpart of u(t) on the slice, namely û(t)=
Sx (Sz(u(t))). The slice velocities φ̇x and φ̇z are crucial for tracking the evolution of the
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Re Reτ h Lx Lz Nx Ny Nz

Test case 3000 151 1 2π 0.77π 16 41 16
Study case 802 51 1 2π 0.77π 48 65 48

Table 1. Numerical details. The Reynolds number is denoted by Re, and the friction Reynolds number by Reτ .
The streamwise, spanwise and wall-normal dimensions of the computational domain are denoted by Lx , Lz
and 2h, respectively. The number of grid points in the streamwise, spanwise and wall-normal directions are
denoted by Nx , Nz and Ny , respectively. The test case is adopted from the work of Rawat et al. (2014).

slice phases φx and φz , and they allow linking the full-state dynamics to the symmetry-
reduced dynamics.

3. Search for URPOs in 3-D plane Poiseuille flow
In this section, we present invariant solutions obtained by Newton searches initialised
using SRDMD reconstructions for incompressible channel flow. The computational
domain consists of two stationary parallel plates at wall-normal positions y = ±h, which
are periodically extended in the streamwise and spanwise directions with periods Lx
and Lz , respectively. The flow is driven by a constant mass flux and is characterised by
the Reynolds number Re = U0h/ν based on the laminar centreline velocity U0 and the
kinematic viscosity ν. The flow is governed by the Navier–Stokes equations, which in
their non-dimensional form read

∂t u + (u · ∇)u = −∇ p + 1
Re
�u, (3.1)

together with the continuity equation

∇ · u = 0, (3.2)

where u and p are the velocity and pressure, respectively. The Navier–Stokes equations
are subject to no-slip and no-penetration boundary conditions at the walls,

u(x, y = ±h, z, t)= 0, (3.3)

and periodic boundary conditions in x and z. This system admits the one-dimensional
laminar velocity ul = U (y) x̂, with the parabolic profile

U (y)= 1 − y2. (3.4)

This profile corresponds to the choices h = 1 and U0 = 1, which are used throughout this
paper. We study the flow in a channel with a streamwise length Lx = 2π and a spanwise
width Lz = 0.77π. For numerical integration of the Navier–Stokes equations and Newton
searches for invariant solutions, we used the channelflow 2.0 library (Gibson 2014; Gibson
et al. 2019). Numerical details for this study are summarised in table 1.

The DNS trajectories were produced using an initial flow field based on the work of
Rawat et al. (2014). The initial flow field consists of the laminar profile (3.4), perturbed
by streamwise counter-rotating vortices of amplitude A1 and a sinusoidal perturbation of
amplitude A2 in the spanwise direction:

u0 = {U (y), 0, 0} + A1

{
0,
∂ψ

∂z
,−∂ψ

∂y

}
+ A2{0, 0,Wsin}, (3.5)

where

ψ(y, z)= (1 − y2) sin (πy) sin (2πz/Lz) (3.6)
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0 500 1000 1500 2000 2500 3000 3500 4000

t

0.01

0.14

0.27
‖u

(t)
‖ L 2 Chaotic trajectory

Shadowed URPO

Figure 2. The L2-norm of the velocity as a function of time for the DNS of the chaotic trajectory (blue) and
the trajectory that shadows the URPO for approximately four cycles between t ≈ 1000 and 4000 (orange). Both
DNS correspond to Reynolds number Re = 3000.

and

Wsin(x, y)= (1 − y2) sin (2πx/Lx ). (3.7)

The initial flow field (3.5) has the discrete symmetries

[u, v, w](x,−y, z)= [u,−v, w](x, y, z), (3.8)
[u, v, w](x + Lx/2, y,−z)= [u, v,−w](x, y, z), (3.9)
[u, v, w](x + Lx/2,−y, z)= [u,−v, w](x, y, z), (3.10)

which were explicitly imposed during the simulations. Although the governing equations
and boundary conditions are equivariant under continuous translations in either of the
periodic wall-parallel directions, the imposed discrete symmetries prevent the solution
from drifting in the spanwise direction z. However, the flow is not constrained in the
streamwise direction x . The flow’s continuous symmetry in this direction allows for time-
dependent drift, leading to poor performance of the DMD method, and necessitating the
reduction of the continuous symmetry. In order to reduce the continuous symmetry, we
applied the first Fourier mode slicing technique described in § 2.3. To ensure that all
involved scalar products in (2.17) and (2.18) are well defined at all times when applying
the slicing technique, we utilise the symmetries (3.8)–(3.10) for all velocity components
and their relation to the symmetries of the template functions (Engel et al. 2023).

3.1. Method validation
To validate SRDMD, we applied both slicing and DMD to the URPO in the channel flow
identified by Rawat et al. (2014). This solution is obtained with the friction Reynolds
number Reτ ≈ 151 (Re = 3000), and has period T = 739. We used the same computational
domain size and resolution as Rawat et al. (2014) (see table 1). With one unstable
direction in the invariant subspace formed by the discrete symmetries (3.8)–(3.10),
this solution serves as an ideal candidate for validating the methods, since it can be
identified using a bisection method, as described in Rawat et al. (2014). The bisection
method iteratively adjusts the perturbation amplitudes A1 and A2 in the initial condition
(3.5) to generate progressively longer trajectories that neither become turbulent nor decay
to the laminar state. This is accomplished by performing a bisection on the amplitudes
from two preceding bisection steps: one that leads to decay to the laminar state, and the
other that leads to turbulent behaviour after a sufficiently long time. In this way, we tracked
a trajectory shadowing the URPO of interest for approximately four cycles. Figure 2
illustrates the evolution of the velocity L2-norm for both a chaotic trajectory and the
trajectory shadowing the URPO. Inspection of the data reveals that the corresponding flow
field shows a streamwise drift, since the plane Poiseuille flow has a continuous translation
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1000 1500 2000 2500 3000 3500 4000

t

−0.86

−0.83

−0.80

φ̇
x (

t)

Figure 3. Phase velocity for the global drift in the streamwise direction as a function of time, obtained by
applying the first Fourier mode slicing technique to the DNS dataset. Snapshots were sampled with time
resolution �t = 1. The flow does not have a global drift in the spanwise direction, as it is constrained by a
discrete symmetry.

a1

a2

a3

(a) (b)

a1

a2

a3

Figure 4. State-space projections of the trajectory following a URPO over one period Tp ≈ 742. The state
space is projected onto the first three dominant POD modes, with a1, a2, a3 representing the corresponding
amplitudes. (a) Trajectory of the original dataset. (b) The symmetry-reduced trajectory after applying the first
Fourier mode slicing technique. The black dots mark the start and end points of the trajectories.

symmetry in the streamwise direction. However, the system is prevented from drifting in
the spanwise direction through the imposed shift–reflect symmetry (3.9).

To validate the methodology introduced in § 2, we first applied the slicing technique
to reduce the drift from the flow. We used a slicing template function û′

x aligned in the
spanwise direction z, with a profile function f (y)= 2.5 T2(y)− 1.25 T3(y)− 1.25 T5(y)
(see § 2.3). Our choice of alignment direction and Chebyshev polynomials was based on
the flow field’s discrete symmetries, ensuring that the slice velocity (2.19) is well defined
at all times. Figure 3 shows the slicing phase velocity obtained via reconstruction equation
(2.19) for the last 3000 advective time units. We observe that the slicing phase velocity
is well defined over the whole time window. A failure of the slicing method at a specific
moment in time would be indicated by discontinuities in φ̇x (t), resulting in non-physical
jumps of the flow field through the computational domain in the streamwise direction.

The result of the symmetry reduction is best illustrated by inspecting a 3-D state-
space projection of the trajectory. Figure 4(a) presents the trajectory before symmetry
reduction, and figure 4(b) after symmetry reduction, following the URPO for one of
its cycles. The flow fields are projected onto the first three dominant modes of proper
orthogonal decomposition (POD). The POD modes in the non-symmetry-reduced case
were calculated for a data matrix corresponding to a segment of the original trajectory
following the URPO for one full cycle. Columns of the data matrix contain the grid values
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Figure 5. Comparison of (a) the classical DMD spectra and (b) the SRDMD spectra for the trajectory
shadowing the oscillating structure. The observation window when applying the SRDMD was set to be 680
advective time units, which represents approximately 92 % of the converged period. The snapshot separation
was set to 17 advective time units. The red line represents the unit circle. The eigenvalues selected by the
sparsity constraint for the reconstruction are highlighted with filled markers.

of instantaneous velocity fields in the physical domain, separated by a �t = 1 advection
time unit. For the symmetry-reduced case, we applied the same procedure, but the POD
modes were calculated from the symmetry-reduced segment of the flow fields. Clearly
visible is the more complicated state-space trajectory for the DNS with no post-processing
in comparison to the symmetry-reduced case, due to the additional degree of freedom. In
contrast to the DNS without post-processing, the start and end points of the symmetry-
reduced trajectory (indicated by black dots) coincide after a time period that matches the
URPO period reported in Rawat et al. (2014).

After ensuring the success of the symmetry reduction, we proceeded with the DMD
analysis of the DNS and symmetry-reduced data. All parameters used for producing
the period guess and the low-dimensional flow field representation in this case were
determined through experimentation. This includes the observation time window Tw =
680 advective time units as well as the snapshot sampling separation �t and spacing δt
of 17 advective time units. The sparsity-promoting SRDMD algorithm utilises a bisection
method to determine the penalty parameter γ – calculated as 12.5 in this case – ensuring
a low-dimensional reconstruction by selecting five optimal DMD modes. This choice is
based on the study of Page & Kerswell (2020), where five DMD modes were found to be
sufficient to construct initial guesses for UPOs that converge successfully in a Newton
search. Figure 5 compares the DMD spectra obtained by applying sparsity-promoting
DMD to the DNS and symmetry-reduced data. The red line indicates the unit circle around
which the eigenvalues are distributed. Eigenvalues selected by the sparsity-promoting
DMD are highlighted in blue.

For both the original and the symmetry-reduced data, the neutral DMD mode
corresponding to the temporal mean is selected, as well as the DMD mode corresponding
to the fundamental frequency. In sparsity-promoting DMD without symmetry reduction,
the third pair of eigenvalues lies off the unit circle and relates to fast and small-
scale dynamics as its imaginary part is large in absolute value. In contrast, the
sparsity-promoting SRDMD selects the third DMD mode corresponding to the first
higher harmonic of the fundamental frequency. This is plausible because the processed
trajectory, which closely shadows the URPO, already represents a low-dimensional flow.
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0 500 1000 1500 2000 2500

t
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‖ L 2

Figure 6. The L2-norm of the velocity along a trajectory at the friction Reynolds number Reτ ≈ 51 as a
function of time. The time series shows chaotic behaviour for approximately 2600 advective time units.

The symmetry reduction enabled the DMD-based analysis to capture this characteristic
as expected. By selecting the fundamental frequency and its higher harmonics, both the
fundamental frequency and its residual can be calculated, as given in (2.11) and (2.12),
yielding Tg = 741.979 and εω ≈ 10−9.

The low-dimensional reconstruction of the flow (2.7) provides a closed curve in state
space, which is not a solution trajectory of the governing equations but approximates
the DNS data over the processed time window. Any time section along this curve can
serve as an initial condition for the Newton solver (see figure 1). However, we followed
Page & Kerswell (2020) and initialised the Newton searches using the reconstructed flow
field closest to the original trajectory, considering the L2-norm as the metric. The drift in
the streamwise direction, which needs to be taken into account when applying a Newton
search, can be derived from the slice phase tracked during the symmetry reduction by

δx = φt0 − φtp

2π
, (3.11)

where t0 refers to the starting time of the SRDMD observation time window, and tp =
t0 + Tg corresponds to the time instant after one estimated period. The Newton search
converges after seven iterations, reaching a residual O(10−14), and yielding the predicted
URPO with period TURPO = 742.017. The period of the converged URPO matches the
period of the URPO reported in Rawat et al. (2014) by a relative error 0.4 %.

3.2. Search for previously unknown URPOs
In this subsection, we present previously unknown URPOs buried in the chaotic repeller
of channel flow at friction Reynolds number Reτ ≈ 51 (Zammert & Eckhardt 2015).
The choice of the Reynolds number is motivated by producing a weakly turbulent but
long enough trajectory with a state space feasible for a SRDMD study. The discrete
symmetry (3.9) breaks the continuous translational symmetry in the spanwise direction,
preventing the solution from drifting in that direction. As a result, the present study
focuses on handling the drifts due to the mean advection in the streamwise direction
only. The spatial resolution of the simulation was increased from the test case in § 3.1
to (Nx , Ny, Nz)= (48, 65, 48). We tested the existence of all obtained solutions with a
higher resolution (Nx , Ny, Nz)= (60, 81, 60), and found changes in their period to be
below relative error 0.01 %.

We obtained sufficiently long, weakly chaotic trajectories by applying the same
bisection method used in § 3.1 to an initial condition according to (3.5). This procedure
was necessary, since initial conditions of random perturbations can quickly laminarise.
Figure 6 shows the L2-norm of the simulated velocity fields as a function of time,
exhibiting a chaotic character for approximately 2600 advective time units. Figure 7 shows
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Figure 7. Velocity contour plots of the flow field taken from the DNS at t = 1000 advective time units
(see figure 6). The colour code indicates the deviation of the streamwise velocity from the laminar profile.
(a) The velocity contour in a 3-D plot. (b) The velocity field averaged in the streamwise direction. The black
lines indicate the streamwise-averaged y–z streamfunction.
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Figure 8. Phase velocity for the global drift in the streamwise direction as a function of time for the chaotic
trajectory over a duration of 2600 advective time units. The zoomed inset highlights a peak in the phase velocity,
illustrating that the projection onto the symmetry-reduced slice remains well defined at this point. In contrast,
the five dominant peaks correspond to singularities in the phase velocity, occurring when the denominator in
the reconstruction equation (2.19) vanishes as the trajectory approaches the slice border.

velocity contour plots of the snapshot taken from the DNS at time t = 1000. The colour
code indicates the deviation of the streamwise velocity from the laminar profile (3.4).
Figure 7(a) shows the 3-D flow field, and figure 7(b) shows the flow field averaged
in the streamwise direction. The black lines indicate the streamwise-averaged y–z
streamfunction. The flow is dominated by a low-momentum region around its centre,
which extends in the streamwise direction and is accompanied by four near-wall high-
momentum streamwise streaks. Similar to the test case, the flow drifts fast in the
streamwise direction, while it is prohibited from drifting in the spanwise direction due
to the imposed shift–reflect symmetry (3.9). To remove the streamwise drift from the flow,
we followed our procedure from the test case, using the same template profile.

Figure 8 shows the slice phase velocity in the streamwise direction as a function of time.
The inset magnifies a peak in the slice phase velocity, demonstrating that the projection
onto the symmetry-reduced slice remains well defined at this point. In contrast, the five
dominant peaks correspond to singularities in the phase velocity, which occur when the
denominator in the reconstruction equation (2.19) vanishes as the trajectory approaches
the slice border. However, these peaks are rare cases. Therefore, the template choice is
sufficient, as we can reject initial guesses from SRDMD whose observation windows
include a change of sign in the denominator of (2.19), resulting in a singularity in the
phase velocity.
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ti Tw Tg TURPO % error Tg NHits N
∑N

j=1 Re(λ j ) max Re(λ j )

217.00 100 92.63 94.09 1.6 1 13 0.2116 0.0417
1070.75 120 124.83 119.95 4.1 1 11 0.1319 0.0281
1065.50 80 92.02 93.86 2.0 1 13 0.2184 0.0342
1446.75 80 86.18 86.08 0.1 27 10 0.1522 0.0274
2215.25 60 62.17 67.02 7.2 2 8 0.1565 0.0373
2383.75 100 114.68 115.67 0.9 3 9 0.1116 0.0271

Table 2. Distinct URPOs converged using SRDMD to estimate periods and construct initial flow fields for
Newton searches. We denote by ti the time at which the L2-distance between the DNS and the SRDMD
reconstruction is minimal. The reconstructed flow field at time ti was used as the initial flow field for the
Newton search. The length of the time window in the respective SRDMD analysis is denoted by Tw . The
estimated period is Tg , and TURPO is the period of the converged URPO. We give the deviation of Tg from
TURPO in per cent. The number of distinct initial data points resulting in the same converged URPO is denoted
by NHits. Also shown are N , the number of unstable directions,

∑N
j=1 Re(λ j ), the sum of the real parts of all

the unstable eigenvalues (growth rates), and max Re(λ j ), the real part of the eigenvalue corresponding to the
dominant unstable direction.

The DMD analysis was performed by scanning the symmetry-reduced flow with
observation time window sizes Tw ∈ {60, 80, 100, 120} advective time units. The scan
started at t = 0, with each time window shifted in steps of one unit to t = 2600, and
snapshot spacing �t = 3 was used. To ensure the convergence of the DMD algorithm,
we focused on the distribution of the resulting eigenvalues, expecting them to lie on
the unit circle in the complex plane when the observation windows shadow a URPO,
as these are stationary on average. In practice, a range of parameter values typically
satisfies this criterion. By setting the residual acceptance threshold for the estimated
fundamental frequency to εω < 10−3, we constructed 354 initial guesses, each comprising
a flow field, an estimated period, and the shift information from the slicing analysis. In
the subsequent Newton search, 35 out of the 354 initial conditions converged to a URPO,
resulting in a success rate of approximately 10 %. Among these 35 cases, we identified
six distinct URPOs, which were found at several positions in the time series, suggesting
their importance for the flow dynamics. Table 2 summarises the properties of the distinct
URPOs found within the chaotic flow.

Figure 9 shows a 2-D state-space projection of the URPOs listed in table 2. The
projection shows the total energy input I against the total dissipation D, normalised by
their respective laminar values I0 and D0. The grey shaded area represents the probability
density function (p.d.f.) of the dynamics obtained from the DNS, where density decrease
is represented by a grey scale from black to white. The majority of URPOs cover the
dense part of the p.d.f. and therefore represent the typical dynamics. This is important
since we aim to provide appropriate predictions of flow properties based on those of the
identified URPOs. The URPO with the shortest period T ≈ 67 is embedded in a low-
probability region of low energy input and dissipation, and is only barely visited by the
chaotic trajectory.

Figure 10 shows a classical recurrent flow analysis on the symmetry-reduced dataset (see
§ 2.2). The grey scale represents the L2-distance between future flow states and previous
ones. Possible recurrences are indicated in dark regions as a function of simulation time on
the horizontal axis and possible periods on the vertical axis. The scattered circles represent
URPOs converged using the sparsity-promoting SRDMD method. Markers filled in red
correspond to distinct URPOs listed in table 2. Each marker shows the period of the
respective converged solution and the time location of the initial flow field used for the
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Figure 9. The 2-D state-space projection of the identified URPOs with respect to the total energy input I
and dissipation D, normalised by their laminar values I0 and D0, respectively. The dashed line represents the
diagonal in the D–I plane, indicating states where energy input I and dissipation D are exactly balanced. The
grey shaded area corresponds to the p.d.f. of the dynamics, where the density decrease is represented by a grey
scale from black to white.
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Figure 10. Recurrent flow analysis of the DNS. The greyscale colour code represents the L2-distance of DNS
snapshot pairs separated by the time interval T . Dark regions reflect close distances, suggesting possible
recurrence events. Black circles show URPOs converged using the sparsity-promoting SRDMD method as
a function of time t , when initial flow fields were passed to the Newton solver, and their converged periods T .
Red-filled black circles indicate a selection of distinct URPOs from table 2. Multiple guesses have successfully
converged to a URPO despite the absence of a recurrence signal, highlighting the complementary role of the
DMD approach, which eliminates the need to track the entire URPO over a complete cycle.

Newton search, taken from the SRDMD reconstruction of the DNS. At several points
in time, URPOs with periods TURPO ∈ {86.08, 93.86} are identified in the absence of a
recurrence event. This highlights the complementary role of symmetry-reduced DMD
in the search for URPOs compared to recurrent flow analysis, as a URPO would likely
have gone undetected in these cases. The complementary role of the DMD-based method
is further supported by the results of Newton searches initialised using guesses from
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recurrent flow analysis. Our guesses from recurrent flow analysis consist of the velocity
field at time t , and the period T corresponding to the (t, T ) coordinate where R takes
a local minimum value. The initial guess for the spatial shift is taken as the difference
between the shifts applied to u(t) and u(t + T ) to bring them to the slice (see (2.16)).
We selected the local minima where Rmin < 0.2, yielding twelve guesses, of which two
successfully converged (not shown in figure 10). Both successful searches converged to the
URPO with period TURPO = 86.08, to which the DMD-based method converged 27 times.
Therefore, guesses from recurrent flow analysis do not result in any additional URPOs
compared to the DMD-based approach for the analysed time series.

In what follows, we connect the set of successfully predicted and converged invariant
solutions to the physical properties of the flow.

4. The URPOs and statistical properties of the flow
In order to use the set of URPOs to predict the statistical properties of the flow, we
investigated two different periodic orbit averaging approaches. First, we utilised POT and
followed Cvitanović et al. (2016) by applying a simplified averaging equation for bounded
flows:

ΓPrediction := 〈Γ 〉
〈T 〉 , (4.1)

where

〈T 〉 :=
∑
π

(−1)k+1
∑k

i=1 Tpi

Λp1Λp2 · · ·Λpk

(4.2)

is the mean cycle period, and

〈Γ 〉 :=
∑
π

(−1)k+1
∑k

i=1 TpiΓpi

Λp1Λp2 · · ·Λpk

. (4.3)

Here, we sum over so-called pseudo-cycles π = (p1, p2, . . . , pk), each consisting of
combinations of prime cycles pi . For each i th URPO, the quantity Γi represents the
temporal average of the desired physical quantity, such as the mean flow, over one cycle.
Additionally, (4.2) and (4.3) incorporate the URPOs’ periods Ti and their corresponding
Floquet multipliers

Λ
(i)
k = exp

(
Re

(
λ
(i)
k

)
Ti

)
, (4.4)

where we take into account unstable directions only. As a truncation criterion for the sums
in (4.2) and (4.3), Cvitanović et al. (2016) suggest using the pseudo-cycle period and the
stability ordering of the pseudo-cycle expansion. The latter is easily feasible using

|Λp1 · · ·Λpk |�Λmax (4.5)

as the truncation criterion, ignoring pseudo-cycles of greater instability than Λmax. In
the second approach, we followed Chandler & Kerswell (2013) and applied the averaging
formula

ΓPrediction :=
∑N

i=1 ωiΓi∑N
i=1 ωi

, (4.6)
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Figure 11. (a) Mean streamwise velocity profile 〈u〉, and (b) Reynolds stress 〈uu〉, both for the DNS
(grey line) in comparison with the predictions using POT (blue) and the escape-time weighting (orange).

where the weights

ωi = Ti∑
k∈Ki

Re
(
λ
(i)
k

) (4.7)

incorporate the period Ti and positive real parts of the i th URPO’s spectra. Though purely
heuristic in nature, this approach, referred to as escape-time weighting, is intuitively under-
standable. First, it states that chaotic trajectories should spend less time in the vicinity of
more unstable URPOs. Second, it assigns greater weight to URPOs with longer periods, as
these occupy a larger proportion of the state space compared to those with shorter periods.

In the following, we present predictions of statistical flow properties provided by both
approaches. We start with the mean streamwise velocity profile 〈u〉 and Reynolds stresses
〈ui u j 〉, where the angle brackets indicate averaging in the x and z directions as well
as in time. These quantities, as evaluated from the DNS along with their predictions,
are shown in figures 11 and 12. Both the POT and the escape-time weighting show
promising predictions for each quantity. In a direct comparison, the escape-time weighting
outperforms the POT approach. To explain why POT provides less accurate predictions
than the escape-time weighting, we follow the argument of Chandler & Kerswell (2013)
and refer to a very strong variation of the amplitudes Λi used in the pseudo-cycle
expansion, which can differ by a factor of 104; in contrast, the terms

∑
k∈Ki

Re(λ(i)k ) used
in the escape-time weighting lie much closer together. Furthermore, the accuracy of all
predictions is restricted by the number of URPOs present in this study. More challenging
is the p.d.f. prediction for energy input I and dissipation D. Figure 13 shows the p.d.f.s
of I and D, normalised by their respective laminar values, for the DNS as well as their
predictions using POT and escape-time weighting. We observe that the p.d.f. predictions
for I/I0 and D/D0 exhibit shapes similar to those obtained from the DNS. However, they
over-predict high energy input (I/I0 > 2.4) and dissipation (D/D0 > 2.4) regions, while
under-predicting the mid-range energy input (1.8< I/I0 < 2.1) and dissipation (1.8<
D/D0 < 2.1) regions. This discrepancy arises from the absence of URPOs that correspond
to these specific energy input and dissipation ranges, as illustrated in figure 9. Similarly, the
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Figure 12. (a) Reynolds stress 〈uv〉 and (b) Reynolds stress 〈vv〉, both for the DNS (grey line) in comparison
with the predictions using POT (blue) and the escape-time weighting (orange).
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Figure 13. P.d.f.s for normalised (a) energy input I/I0 and (b) dissipation D/D0. The solid grey line represents
the p.d.f. for the DNS. The dash-dotted lines represent the prediction using POT in blue and the escape-time
weighting in orange. The p.d.f.s were calculated via kernel density estimation.

predictions based on the single URPO with Tp = 67.02 in the low energy input and
dissipation regions fail to accurately capture the p.d.f. tails in those low-value ranges, as
expected. Notably, the p.d.f. predictions based on POT and escape-time weighting show
qualitatively similar results, reinforcing the consistency of these heuristic approaches.

5. Enabling multi-shooting to find URPOs
The state-space complexity of turbulent flow makes finding URPOs with the Newton
method challenging, as initial conditions {u0, T } that are not close to the expected solution
diverge further when integrated over time. A multi-shooting method can stabilise initial
deviations by dividing the time interval [0, T ] into smaller intervals, and therefore leads
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f T (u0)

f T/3(u0)

f 2T/3(u0)

u0

σ3

σ1

σ2

Figure 14. Initialisation of a multiple-shot Newton search using the SRDMD technique. The schematic sketch
illustrates the state space, where a symmetry-reduced DNS trajectory segment (solid grey line) serves as the
observation window for the SRDMD method. This method reconstructs the trajectory as a periodic function of
time, appearing as a closed loop on the slice (dashed blue line). Integration of the reconstruction equation along
the loop (5.1) determines the relative phase of each snapshot with respect to a reference snapshot, denoted as u0.
This provides an approximation of the URPO in the full state space (dashed grey line), which does not close
on itself. Filled markers represent three snapshots equally spaced in time along the reconstructed trajectory.
These snapshots, when transformed to the unconstrained state space (empty markers), are used to initialise a
multiple-shot Newton search. For an exact URPO, these snapshots lie on a single integral curve f t (u0) of the
vector field induced by the Navier–Stokes equations.

to improvements over the single-shot method (Sánchez & Net 2010). In this context,
SRDMD provides a complementary approach by producing an entire object shadowing
the suspected URPO, even in the absence of recurrences. Rather than choosing a single-
shot method and taking as the initial guess the reconstructed flow field closest to the DNS
trajectory with respect to a specific norm, we enable multi-shooting by incorporating
reconstructed flow fields that are potentially not covered by the processed trajectory
segment. Figure 14 shows a state-space sketch illustrating multi-shooting with three shots.
The grey solid line represents a segment of the symmetry-reduced trajectory shadowing
a symmetry-reduced URPO (not shown), whose period guess is T . The blue dashed line
represents the SRDMD reconstruction of the global object incorporating initial guesses
that lie beyond the trajectory. The dashed grey line represents the trajectory resulting
from time-forward integration f T of the initial flow field u0. Its deviation from the
symmetry-reduced trajectory represents the effect of the system’s underlying continuous
symmetry. The pull-back operator σ(t) maps between the original and the symmetry-
reduced trajectories. For an M-shot search, the pull-back operator σm , associated with the
mth flow field, represents the spatial shift corresponding to the phase difference given by

�φm :=
∫ mT/M

0
φ̇(t) dt, m = 0, 1, 2, . . . , M. (5.1)

The relevant phase velocity φ̇ is given by (2.19) or (2.20), and results from symmetry
reduction using the first Fourier slicing technique. Suppose that u0, u1 . . . , uM−1 are M
snapshots from the reconstructed trajectory (2.7), equally spaced over the time interval
t ∈ [0, T ]. The multiple-shot Newton method solves the root-finding problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f T/M(v0)− v1 = 0,
f T/M(v1)− v2 = 0,
...

f T/M(vM−1)− σMv0 = 0,

(5.2)
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Figure 15. Results of two variants of Newton iterations for computing a URPO. The searches are initialised
with a guess generated using the SRDMD method, that has guessed period Tg = 62.1673. The standard single-
shot Newton iterations fail to converge when initialised with snapshots corresponding to t = 0 and t = Tg/2
along the reconstructed periodic trajectory (2.7) (red and grey circle markers). The two-shot Newton search,
initialised with these two snapshots, converges successfully in 28 iterations (blue square markers). The vertical
axis shows the L2-norm of the to-be-zeroed vector G(x) in the respective root-finding problem, where x
denotes the vector of unknowns.

where vm := σm um, m = 0, 1, . . . , M − 1. The unknowns in this search include
{v0, . . . , vM−1, σM , T }. For this vector of unknowns, a closed system of nonlinear
equations is obtained by augmenting (5.2) with appropriate phase-locking constraints
(Viswanath 2009).

We demonstrate our approach with an example using a two-shot Newton search. We
consider a guess identified by the SRDMD method described in § 2, with guessed period
Tg = 62.1673. The standard single-shot Newton search failed to converge when initialised
with snapshots corresponding to different phases along the reconstructed periodic function
u(t), defined by (2.7). We did a two-shot search using snapshots at t = 0 and t = Tg/2
from the reconstructed flow. The choice of the snapshots is not unique, and any pair of
snapshots separated in time by Tg/2 can be used for a two-shot search, as (2.7) provides
an explicit continuous function of time. The two-shot Newton search converges within
28 iterations to an exact solution. Figure 15 shows the convergence result. In this plot, G
represents the to-be-zeroed vector in the respective root-finding problem, and x represents
the vector of unknowns in the discretised problem. We consider an exact solution to be
achieved within machine accuracy if the L2-norm of G(x) falls below 10−13. The single-
shot search starting from the snapshot at t = 0 could not converge within 200 iterations,
after which the search was terminated. The single-shot search starting from the snapshot at
t = Tg/2 stopped after 117 iterations because the hook-step trust-region method could no
longer improve the residual. These two failed searches are shown too in figure 15, where
the residual stagnates after approximately 50 Newton iterations. To save computational
time, the multiple-shot Newton search was done at a lower resolution (Nx , Ny, Nz)=
(16, 41, 16) (convergence shown in figure 15). The converged URPO was then continued to
the original resolution (Nx , Ny, Nz)= (48, 65, 48) to confirm that it is structurally stable
and to determine its accurate period T = 67.0226.
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6. Search for unstable TWs in 3-D plane Poiseuille flow
The simplest category of invariant solutions to the Navier–Stokes equations (3.1) and (3.2)
that can provide new insights into the flow are TWs. In this section, we demonstrate
using two examples how the sparsity-promoting SRDMD can be used to construct initial
conditions for the Newton search of TWs.

When a chaotic trajectory visits the neighbourhood of a steady state, the evolution is
nearly linear; hence SRDMD is able to reconstruct trajectory segments accurately in the
vicinity of a TW. In addition, when the trajectory is repelled from (or attracted to) the
TW’s neighbourhood along its unstable (stable) manifold, the DMD spectrum is expected
to be dominated by a few leading eigenvalues of the linearised dynamics. Therefore, we
consider the trajectory segment processed by SRDMD to potentially be in the vicinity of a
TW if the low-dimensional linear reconstruction is sufficiently accurate while the selected
set of SRDMD eigenvalues includes one neutral eigenvalue with the remaining ones
being repelling (attracting). In such cases, we can approximate the nearby TW solution
by sending t → −∞ (or t → +∞) in the reconstruction.

Here, we specifically consider the case of purely real eigenvalues. If complex-valued
eigenvalues were considered too, then SRDMD could detect a spiralling trajectory,
suggesting oscillatory behaviour while the trajectory is being repelled from or attracted
to a steady solution. However, since only the SRDMD spectra with real eigenvalues are
considered, the trajectory instead resembles a star-type or a saddle-type solution, without
oscillations. In this case, (2.7) for the SRDMD reconstruction simplifies to

u(t j )≈
l−1∑
k=0

ak eσk t j ψk, (6.1)

where only the growth or decay rate σk determines the temporal behaviour of the
SRDMD reconstruction. The amplitudes ak of the purely real dynamic modes ψk are
again determined via sparsity-promoting optimisation as introduced in § 2. With l,
we denote the number of dynamic modes being selected for the reconstruction. This
approach is motivated by the idea that the sparsity-promoting optimisation selects
dynamic modes hierarchically in accordance with their contribution to an optimal flow
reconstruction, and therefore selects purely real dynamic modes prior to dynamic modes
with fundamental frequencies, when the flow can be well captured by a non-oscillating
SRDMD approximation.

To provide a proof of concept, we chose two distant SRDMD observation time windows
near state-space locations where energy input and dissipation balance out, and thus
TW solutions can be expected. The SRDMD observation time windows were set to be
short: each window spanned 7.5 advective time units, with snapshot sampling �t and
spacing δt of 0.5 advective time units, to ensure that the flow could be well captured
by the linear approximation. Furthermore, we found two real dynamic modes to be
sufficient for reconstructing successful initial conditions. Figure 16(a) shows the resulting
SRDMD spectra for both cases, where purely real eigenvalues selected through sparsity-
promoting optimisation for the flow reconstruction are coloured in blue and orange. In
both cases, the neutral eigenvalue λ0 = 1 (σ0 = 0) corresponds to the time-independent
part of the reconstruction (6.1), while the other eigenvalue λ1 < 1 (σ1 < 0) corresponds to
a decaying mode as t → +∞. Taking into account the phase shift �φ from the symmetry
reduction, the reconstructed initial conditions converged quickly to TW solutions by
Newton iteration. Figure 16(b) shows the location of both TWs in a 2-D I –D state-space
projection, with both quantities normalised by their respective laminar values I0 and D0.
The colour coding of the markers relates the TWs to the dynamic modes in figure 16(a) that

1013 A45-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10255


M. Engel, O. Ashtari, T.M. Schneider and M. Linkmann

(a) (b)

0 0.5 1.0

Re (λ)

−1

0

1
Im

 (
λ

)

1.8 2.0 2.2 2.4 2.6

I/I0

1.8

2.0

2.2

2.4

2.6

D
/
D

0

TW 1

TW 2

Figure 16. (a) The SRDMD spectra obtained from the analysis of two segments of the chaotic trajectory
in figure 6, each located at different times within the DNS. Marked in blue and orange are purely real
eigenvalues corresponding to the two cases, automatically selected by the sparsity-promotion optimisation
when reconstructing the flow. (b) The location of the converged unstable TWs in a state-space projection of
energy input I and dissipation D, normalised by their respective laminar values I0 and D0. The grey-shaded
area represents the p.d.f. of the dynamics, as described in figure 9. The marker colours relate the dynamic
modes from the SRDMD in (a), selected to construct an initial condition for the Newton search, to the respective
converged solutions indicated in (b).

Nx Ny Nz c N
∑N

j=1 Re(λ j ) max Re(λ j )

TW 1 48 65 48 1.2335 11 0.2362 0.0548
TW 2 48 65 48 1.3263 8 0.1217 0.0269

Table 3. The unstable TWs converged from initial data constructed through SRDMD. The spatial resolutions
of the computational domain in the streamwise, wall-normal and spanwise direction are Nx , Ny and Nz ,
respectively, and c is the phase velocity of the TW. Stability properties of the TWs are summarised with
the number of unstable directions N , the sum

∑N
j=1 Re(λ j ) of real parts of the corresponding eigenvalues, and

their maximal values max Re(λ j ).

were used for constructing the initial conditions. In table 3, we summarise the numerical
details and stability properties of both TWs.

7. Conclusion
In this paper, we applied and extended SRDMD – a method recently developed by Marensi
et al. (2023) that combines classical DMD with the method of slices for symmetry
reduction – to construct initial data for Newton searches to find unstable invariant solutions
in systems with continuous symmetries. Since continuous symmetries lead to spurious
DMD modes and complicate flow reconstruction, symmetry reduction is essential for
constructing optimal flow approximations used to generate such initial data. As SRDMD
provides global-in-time guesses for periodic solutions, namely closed loops in state space,
we demonstrated how it can be used in conjunction with multi-shooting methods. We also
extended the method to construct initial guesses for unstable travelling waves (TWs).
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We applied SRDMD in conjunction with sparsity promotion to select an optimal set of
DMD modes for a weakly turbulent channel flow at Reτ ≈ 51, aiming to construct initial
conditions for the Newton search for unstable relative periodic orbits (URPOs) and TWs.
Using single-shot Newton searches, we converged 10 % of all initial conditions to exact
URPOs. These include states that were identified even in the absence of a recurrence
event. In total, we found 35 URPOs, six of which are distinct. That is, several URPOs
were converged multiple times using initial data from different locations along the chaotic
trajectory, indicating their dynamical importance. The importance of these orbits is also
reflected in the fact that they cover regions of the state space visited most frequently by the
dynamics, at least in an energy input–dissipation projection.

To estimate the dynamical importance of our solutions in a more quantitative manner, we
computed cycle averages of all distinct URPOs to predict statistical properties of the flow
using periodic orbit theory (POT). As an alternative approach, we also applied heuristic
escape-time weighting. We found that the mean velocity profile 〈u〉 and the Reynolds
stresses 〈uu〉, 〈uv〉 and 〈vv〉 of the chaotic trajectory can be predicted by escape-time
weighting of the URPOs very well, both qualitatively and quantitatively. The POT results
in a good qualitative approximation; however, it quantitatively deviates significantly from
the DNS results. Unsurprisingly, the p.d.f.s of energy input and dissipation proved to be
much more difficult to predict.

To improve the quality of the predictions of statistical quantities substantially, we would
need to find a larger number of URPOs. One way to achieve this is by utilising multi-
shooting Newton searches initialised with guesses generated using the introduced SRDMD
technique. An SRDMD reconstruction, possibly shadowing the suspected URPO, provides
viable initial guesses for the Newton search at any desired location along the estimated
trajectory. Thereby, this approach enables multi-shooting Newton methods to operate on
the resulting global object. This potentially leads to a higher yield of converged URPOs.
We demonstrated this approach using a guess identified by the SRDMD method, in a
case where the standard single-shot Newton search fails to converge when initialised with
snapshots corresponding to different temporal phases of the reconstructed data. However,
a two-shot Newton search converges successfully by stabilising the error growth. Higher
success rates are also anticipated by combining the SRDMD method, which generates
global-in-time guesses for periodic solutions, with more robust convergence algorithms
that leverage such global structures to eliminate the need for time-marching the chaotic
dynamics. These include variational methods in which a cost function penalises the
deviation of a loop from being a solution trajectory in the system’s state space, and
minimising the cost function deforms the loop until it converges to an exact periodic
solution trajectory (Lan & Cvitanović 2004; Azimi, Ashtari & Schneider 2022; Parker
& Schneider 2022).

Finally, we demonstrated how sparsity-promoting SRDMD can be used to detect TW
solutions. In this case, the reconstructed flow comprises the neutral SRDMD mode, which
represents the asymptotic state of the flow, as well as a second SRDMD mode with a
purely real eigenvalue, that decays in either forward or backward time. The reconstruction,
with both modes selected by the sparsity-promoting algorithm, provides an optimal low-
dimensional representation of the flow and exhibits non-oscillatory behaviour. We showed
this technique using two exemplary choices of SRDMD modes, whose resulting initial
guesses converged successfully to unstable TWs.

In summary, we showed that SRDMD is an effective tool for the construction of initial
data, complementary to recurrent flow analysis, for the numerical computation of unstable
invariant solutions in weakly chaotic 3-D fluid flows. By relaxing the requirement that a
chaotic trajectory must follow a UPO for an entire cycle, the DMD-based approach allows
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us to access more unstable UPOs, identify greater numbers of them, and extend the range
of Reynolds numbers over which the dynamical systems approach can be successfully
applied, compared to solely relying on recurrent flow analysis. In the context of flow
control and stabilisation of invariant solutions (Willis et al. 2017; Linkmann et al. 2020;
Lucas & Yasuda 2022; Yasuda & Lucas 2025), an aspect worthy of further investigation
is the application of DMD- or SRDMD-based flow reconstruction within feedback control
approaches to stabilise invariant solutions.
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