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Abstract

Let p be an odd prime. The unary algebra consisting of the dihedral group of order 2p, acting on itself by
left translation, is a minimal congruence lattice representation of Mp+1.
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1. Introduction

The finite lattice representation problem asks whether every finite lattice is isomorphic
to the congruence lattice of a finite universal algebra. This problem is one of the oldest
[12] and most important in universal algebra [1, 2, 4, 10, 14, 16]. Pálfy and Pudlák
[15] have reduced the problem to the question, is every finite lattice isomorphic to an
interval in the subgroup lattice of a finite group? Many believe this question has a
negative answer [3], and much work has been directed toward finding a height-two
lattice which has no such representation.

Consequently, the principal objects of this study will reside among the lattices Mn
consisting of a least, a greatest, and n pairwise incomparable elements. That is, Mn =

(Mn,∧,∨) where Mn = {0, η1, . . . , ηn, 1}, ηi ∧ η j = 0, and ηi ∨ η j = 1 if 1 ≤ i < j ≤ n.
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Definition 1.1. A lattice L is called finitely representable if there is a finite algebra
A = (A,F) such that Con(A) � L. In this case we write L ∈ R and call R the class of
finitely representable lattices. Define a function % from R into the natural numbers N
by

%(L) = min{n ∈ N : L � Con(A), |A| = n}.

If L ∈ R then any algebra A for which L � Con(A) and %(L) = |A| is called a minimal
representing algebra for L.

See [13] for a survey of those values of n for which it is known that Mn ∈ R.
Currently, n = 16 is the smallest value for which it is unknown if Mn is finitely
representable [14]. For the particular case when n = p + 1 where p is prime, Mp+1
is known to be finitely representable and the extant literature (e.g. [13] and [14]) uses
a binary algebra with p2 elements to represent Mp+1. That is, %(Mp+1) ≤ p2. Our main
result is the following theorem.

Theorem 1.2. If p is an odd prime, then %(Mp+1) = 2p.

In addition to obtaining optimal objects which are of intrinsic mathematical interest,
the proof of the result for the infinite family Mp+1 brings to the fore an interesting
connection between the minimal representing algebras and automorphism groups of
associated families of regular graphs (cf. [17]). Specifically, the geometric objects
considered in our work are graphs, whereas previously the fundamental geometric
structures used to obtain congruence lattice representations were vector spaces over
finite fields. The operations in our case form subgroups of the automorphism groups
of the graphs. On the other hand, the operations used for the previous representations
constructed from vector spaces do not form subgroups of the automorphism groups of
the vector spaces.

Numerical work by the authors on specific lattices Mn outside the Mp+1
family suggests that this connection between minimal representing algebras and
automorphism groups of regular graphs may be quite widespread. If so, it could
significantly reduce the complexity of the search for a counterexample to the finite
congruence lattice representation problem among the height-two lattices.

The rest of this paper is organized in the following manner. In Section 2 we
introduce fundamental definitions and notation. In Section 3 we prove Theorem 3.4:
if p is an odd prime then the dihedral group of order 2p, acting on itself by left
translation, forms a unary algebra whose congruence lattice is isomorphic to Mp+1.
Section 4 is devoted to demonstrating Theorem 4.6: if p is an odd prime andA = (A,F)
is a finite algebra such that Con(A) �Mp+1 then A has at least 2p elements. Theorem
1.2 is then is an immediate consequence.

2. Definitions and notation

For unexplained notation, definitions, and background results on universal algebras
and lattices see [6, 7]. The reference [9] contains further information about graphs. For
the elements of group theory, see [8].
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Definition 2.1. Let A be a nonempty set. A nonempty subset θ of the cartesian product
A × A is called an equivalence relation on A if θ is reflexive, symmetric, and transitive;
that is, (a, a) ∈ θ for all a ∈ A, if (a, b) ∈ θ then (b, a) ∈ θ, and if (a, b) ∈ θ and (b, c) ∈ θ
then (a, c) ∈ θ. The set Eq(A) of all equivalence relations on A forms a lattice, Eq(A),
with meet operation defined by θ1 ∧ θ2 = θ1 ∩ θ2 and join operation defined as follows:
(a, b) ∈ θ1 ∨ θ2 if and only if there exists a finite sequence c1, c2, . . . , cn of elements
of A such that (ci, ci+1) ∈ θ1 or (ci, ci+1) ∈ θ2 for i ∈ {1, 2, . . . , n − 1} with a = c1
and b = cn. Furthermore, Eq(A) is a bounded lattice with least element the diagonal
∆ = {(a, a) : a ∈ A} and greatest element ∇ = A × A. If S ⊆ A × A then S σ will denote
the symmetric closure of S ; that is, S σ = S ∪ {(b, a) : (a, b) ∈ S }.

Definition 2.2. Let A = (A,F) be an algebra of type F on a set A. A congruence
θ on A is an equivalence relation on the set A with the following compatibility
property: for every n-ary symbol f ∈ F and ai, bi ∈ A, if (ai, bi) ∈ θ for i ∈ {1, 2, . . . , n}
then ( f (a1, a2, . . . , an), f (b1, b2, . . . , bn)) ∈ θ. The lattice Con(A) is the set consisting
of all congruences on A with the equivalence relation meet and join operations. If
(a, b) ∈ A × A then θ(a, b) denotes the principal congruence in Con(A) generated by
(a,b). That is, θ(a,b) is the intersection of all the congruences in Con(A) which contain
(a, b). The θ-equivalence class [x]θ of x ∈ A is {a ∈ A|(a, x) ∈ θ}.

Definition 2.3. Let K and L be lattices. A mapping ϕ : K → L which preserves the
lattice operations (i.e. ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) and ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) for all x, y ∈ K)
is called a homomorphism. In addition, if K and L are bounded lattices then we will
insist such a homomorphism preserves the least and greatest elements: ϕ(0K) = 0L and
ϕ(1K) = 1L. If the homomorphism is bijective then it is called an isomorphism and
we write K � L; if it is merely injective then it is called an embedding and we write
K ↪→ L.

Definition 2.4. For each integer n > 2, the dihedral group Dn of order 2n consists of
all distance-preserving mappings of a regular polygon with n sides onto itself.

Remark 2.5. Equivalently, Dn is the finite group whose generators a and b have orders
n and 2, respectively, and ba = a−1b. Therefore

Dn = {aib j : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 1},

and hence |Dn| = 2n. Also Dn can be characterized as the automorphism group of an
n-element cycle. As is standard in group theory, the notation 〈a1, . . . , an〉 will denote
the subuniverse of a given group generated by the set of elements {a1, . . . , an}. For
example, Dn = 〈a, b〉. We will abuse notation and denote the subuniverse generated by
{a1, . . . , an} and the corresponding subgroup itself by this same notation: 〈a1, . . . , an〉.

3. The algebra (Dp, T(Dp)) and its congruence lattice

In this section the symbol G will always denote a group, with underlying set G. The
identity of G will be represented by e.
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Definition 3.1. If g ∈ G, then define τg, the left translation by g operator, to be the
mapping from G into G given by τg(x) = gx for all x ∈ G. Denote by T (G) = {τg :
g ∈ G} the subuniverse of the transitive group of permutations acting on the set G
and form the unary algebra (G, T (G)). If ξ is a congruence in Con(G, T (G)), let
S ξ = {x ∈ G : (e, x) ∈ ξ}. If K is a subgroup of G, let χK = {(a, ax) : a ∈ G, x ∈ K}.

The next two lemmas are part of a special case of [15, Lemma 3]. They are well
known and proofs can be found in [11, Lemma 4.20] and [5, Lemma 1.5A].

Lemma 3.2. Let ξ ∈ Con(G,T (G)) and let K be a subgroup of G. Then Sξ is a subgroup
of G, χK is a congruence in Con(G,T (G)), χS ξ

= ξ, and S χK = K.

Lemma 3.3. If H and K are subgroups of G with H ⊆ K then χH ⊆ χK . If η and ξ are
congruences in Con(G,T (G)) with η ⊆ ξ then S η ⊆ S ξ.

Theorem 3.4. If p is an odd prime then Con(Dp,T (Dp)) �Mp+1.

Proof. It follows from the previous two lemmas that the congruence lattice of
(G,T (G)) is isomorphic to the lattice of all subgroups ofG. Now let p be an odd prime.
The elements of Dp may be presented as permutations of the set A = {0, 1, . . . , p − 1}
given by

{e, σ, σ2, . . . , σp−1, τ, τσ, τσ2, . . . , τσp−1},

where above e = idA, σ = (0, 1, . . . , p − 1), and τ = (1, p − 1)(2, p − 2) · · · ((p − 1)/2,
(p + 1)/2). The nontrivial subgroups of Dp have S = {σk : 0 ≤ k < p} as their
subuniverses and T j = {e, τσ j} for 0 ≤ j < p so the subgroup lattice of Dp has the
form Mp+1. �

4. A lower bound for %(Mp+1)

The following two lemmas are well known and have straightforward proofs. We
include the proofs for completeness.

Lemma 4.1. If Con(Dn,T (Dn)) �Ml for some integers n > 2 and l > 1, then n is prime.

Proof. Suppose not: suppose n = uv where u and v are integers such that 1 < u, v < n.
Write Dn = 〈a, b〉 where o(a) = n, o(b) = 2, and ba = a−1b. Then

〈e〉 ( 〈au〉 ( 〈a〉 ( Dn,

so Lemmas 3.2 and 3.3 imply χ〈au〉 and χ〈a〉 are congruences in Con(Dn, T (Dn)) such
that

∆ = χ〈e〉 ( χ〈au〉 ( χ〈a〉 ( χDn = ∇.

But this contradicts Con(Dn,T (Dn)) �Ml. �

Lemma 4.2. Let (F, ◦) be a group of permutations acting transitively on a set A. Then
for each congruence θ ∈ Con(A,F), the cardinalities of all θ-equivalence classes are
the same.
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Proof. Let θ be a congruence in Con(A,F). Note that [σ(a)]θ = σ[[a]θ] for all σ ∈ F
and all a ∈ A. The desired conclusion is then immediate since (F, ◦) acts transitively
on A. �

Next we introduce a loopless, undirected graph in which edges are two-element
sets. This graph will be crucial in demonstrating Theorem 4.6.

Definition 4.3. Let A = (A,F) be an algebra for which there exist distinct congruences
θ1 and θ2 in Con(A,F) such that

(1) θ1 ∧ θ2 = ∆; and
(2) all equivalence classes modulo θ j ( j = 1, 2) have cardinality 2.

Define a graph Γ(A, θ1, θ2) = (A,E) by setting

E = {[x]θ1 : x ∈ A} ∪ {[y]θ2 : y ∈ A}.

For the convenience of the reader, the following observation is labelled as a lemma.

Lemma 4.4. The graph Γ(A, θ1, θ2) of Definition 4.3 is a loopless graph, each vertex
of which has degree 2, and possesses the property that if {x, y} and {y, z} belong to E,
x , z, and (x, y) ∈ θ1 then (y, z) ∈ θ2.

The next lemma is fundamental to the proof of Theorem 4.6.

Lemma 4.5. Let A = (A,F) be a finite unary algebra with at least three elements and
let (F, ◦) be a group of permutations acting transitively on A. Suppose there exist
distinct congruences θ1 and θ2 in Con(A) such that all equivalence classes modulo
θ j ( j = 1, 2) have cardinality 2, θ1 ∧ θ2 = ∆, and θ1 ∨ θ2 = ∇. Then k = |A| is even and
(F, ◦) is isomorphic to the dihedral group Dk/2.

Proof. Since A is finite,

|A| =
∣∣∣∣∣ ⋃
ε∈A/θ1

ε

∣∣∣∣∣ =
∑
ε∈A/θ1

|ε| = 2|A/θ1|,

so k = |A| is an even integer. Let (A,E) be the graph constructed in Definition 4.3 and
fix an element x1 ∈ A. For each j ∈ {1, . . . , k − 1}, let x j+1 be the unique member of
A \ {x1, . . . , x j} such that the doublet {x j, x j+1} is

[x j]θ1 if j is odd, and [x j]θ2 if j is even.

Note that {xk, x1} ∈ E; in fact, {xk, x1} = [x1]θ2 .
The rest of the proof consists of showing the following:

(1) the elements of A = {x1, x2, . . . , xk} are the vertices of the graph;
(2) the only edges in the graph are between xi and xi+1 for 1 ≤ i ≤ k;
(3) (x2 j−1, x2 j) ∈ θ1 and (x2 j, x2 j+1) ∈ θ2 for 1 ≤ j ≤ k/2;
(4) the graph (A,E) is a cycle.
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(In (2) and (3) we have used the notation xk+1 = x1.)
The component of the graph (A,E) that includes x1 as a vertex is a cycle because A is

finite and the graph is of degree 2. We will show that under the conditions θ1 ∧ θ2 = ∆,
and θ1 ∨ θ2 = ∇, this is the only component of the graph (A,E); that is, (A,E) is a cycle.

Let m be the smallest positive integer such that xm+1 ∈ {x1, x2, . . . , xm}.
Assume, by way of contradiction, that xm+1 , x1. Let xm+1 = x j, where 1 < j < m.
Note that [x j]θ1 ∪ [x j]θ2 = {x j−1, x j, x j+1}. But xm ∈ [x j]θ1 ∪ [x j]θ2 with xm , x j and
xm , x j−1 by minimality of m. Hence xm = x j+1. If (x j, xm) = (x j, x j+1) ∈ θ1 then
(xm, x j) = (xm, xm+1) ∈ θ2. Thus (x j, xm) ∈ θ1 ∩ θ2 = ∆, so x j = xm, a contradiction. A
similar argument when (x j, xm) ∈ θ2 also yields a contradiction. Thus xm+1 = x1, so
(xm, x1) ∈ θ2.

Let q ∈ A. The pair (x1, q) ∈ ∇ = θ1 ∨ θ2 so there is a path from x1 to q of the form

(x1, y1) ∈ θ1, (y1, y2) ∈ θ2, (y2, y3) ∈ θ1, . . . , (yn−1, yn) = (yn−1, q) ∈ θ2

or
(x1, y1) ∈ θ2, (y1, y2) ∈ θ1, (y2, y3) ∈ θ2, . . . , (yn−1, yn) = (yn−1, q) ∈ θ1.

It follows that y1 ∈ {x1, x2, xm} and immediately yi ∈ {x1, . . . , xm} for all i. Consequently,
q ∈ {x1, . . . , xm}, k = m, and A = {x1, x2, . . . , xk}.

To show that (F, ◦) is isomorphic toDk/2, we will first show that up to isomorphism,
(F, ◦) is a subgroup of Dk. Since the graph (A, E) is a cycle, we may identify the
elements of A with the vertices in a regular k-gon in the obvious manner. Let σ ∈ F and
(xi, xi+1) ∈ θl; then (xm, xn) = (σ(xi), σ(xi+1)) ∈ θl, so n ∈ {m + 1,m − 1}. Thus σ maps
adjacent vertices in the graph (A,E) to adjacent vertices. That is, (F, ◦) is (isomorphic
to) a subgroup of Dk, the group of all distance-preserving mappings of a regular k-gon
onto itself.

We will now show that Dk/2 � (F, ◦). We begin by noting that the rotation in Dk

that maps x1 to x2 does not belong to F. For suppose µ ∈ F and µ(x1) = x2. Then
(x1, x2) ∈ θ1 implies (x2, µ(x2)) = (µ(x1), µ(x2)) ∈ θ1. Hence µ(x2) = x1 so µ cannot be
a rotation in Dk since k > 2. Next, we claim that the reflection in Dk that maps x1

to x2 is the only element of F that maps x1 to x2. Since (F, ◦) acts transitively, there
exists σ ∈ F such that σ(x1) = x2. But a previous argument shows that σ(x2) = x1.
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A simple induction argument then shows σ(xi) = xk+3−i and σ(xk+3−i) = xi for all
2 ≤ i ≤ 1 + (k/2). That is, σ is the unique reflection in Dk that maps x1 to x2. It is not
hard to see that the rotation in Dk which maps x1 to x3 belongs to F. For by transitivity
of (F, ◦) acting on A, there exists ρ ∈ F such that ρ(x1) = x3. Suppose ρ : A→ A is a
reflection in Dk. Then ρ2 = idA, so ρ(x3) = x1 and ρ(x2) = x2. But (x2, x3) ∈ θ2 implies
(ρ(x2), x1) = (ρ(x2), ρ(x3)) ∈ θ2. Therefore ρ(x2) = xk and hence x2 = xk, contradicting
k > 2. Since (x1, x2) ∈ θ1, it follows that (x3, ρ(x2)) = (ρ(x1), ρ(x2)) ∈ θ1. Thus, ρ(x2) =

x4. A simple induction shows that ρ is the unique rotation in Dk that maps x1 to x3. In
particular, it follows that ρk/2 = idA and ρi , idA for all 0 < i < k/2. Next, let τ denote
the unique rotation in Dk that maps x1 to x2. Observe that the order of τ is k and recall
that σ is a reflection, so its order is 2. We claim that στ = τ−1σ. This follows from the
fact that if 1 ≤ i ≤ k, then

τστ(xi) = τσ(xi+1) = τ(xk+3−(i+1)) = τ(xk+2−i) = xk+3−i = σ(xi).

Consequently, Dk = 〈τ, σ〉. Since τ2 = ρ, it follows that σρ = στ2 = τ−2σ = ρ−1σ.
Because o(ρ) = k/2 and o(σ) = 2, we have

Dk/2 � 〈 ρ, σ〉 ≤ (F, ◦) � Dk.

Furthermore, [〈 ρ, σ〉 : Dk] = 2, so 〈 ρ, σ〉 is a maximal proper subgroup of Dk. Thus
〈 ρ, σ〉 = (F, ◦). �

Theorem 4.6. If p is an odd prime and A = (A, F) is a finite algebra such that
Con(A) �Mp+1, then A has at least 2p elements.

Proof. Let A = (A,F) be an algebra such that Con(A) �Mp+1 and ρ(Mp+1) = |A|. By
Theorem 1 of Pálfy and Pudlák [15], we may assume that A is a unary algebra and
(F, ◦) is a group of permutations acting transitively on the set A.

We assert that there must be at least two distinct congruences in Con(A) in which
all the congruence class sizes are equal to 2. For 1 ≤ i ≤ p + 1, let ξi denote the p + 1
distinct congruences in Con(A) \ {∆,∇}. Suppose there were just one such congruence,
say ξ1, which had all congruence equivalence classes of size equal to 2. Fix an element
x1 ∈ A and count the number of elements in [x1]ξi for each 1 ≤ i ≤ p + 1. There exists
only one other element in [x1]ξ1 besides x1; label it x2. For each 2 ≤ i ≤ p + 1, there
exist at least two other distinct elements in [x1]ξi different from x1; label them x2i−1 and
x2i. This produces a list of elements x1, x2, x3, x4, . . . , x2p+1, x2p+2 in A. Since ξi ∧ ξ j =

∆ for i , j, it follows that all these elements in A are distinct. Consequently, A has
at least 2p + 2 elements, contradicting minimal cardinality of the representing algebra
for Mp+1 in light of Theorem 3.4. A similar argument shows that if no congruence
among ξ1, ξ2, ξ3, . . . , ξp+1 had all congruence classes of size 2 then |A| ≥ 2p + 3, again
a contradiction.

Thus there exist two distinct congruences θ1 and θ2 in Con(A) such that all
equivalence classes modulo θ j ( j = 1, 2) have cardinality 2. By Lemma 4.5, |A| =
k = |Dk/2| = |F|. Consequently, the algebra (A,F) is isomorphic to (Dk/2, T (Dk/2)). It
follows that

Mp+1 � Con(A,F) � Con(Dk/2,T (Dk/2)).
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Lemma 4.1 shows that k/2 = q for some prime number q. Theorem 3.4 then implies
q = p and hence |A| = k = 2p. �
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