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ON THE STRONG MAXIMUM PRINCIPLE FOR
PARABOLIC DIFFERENTIAL EQUATIONS
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1. Introduction

In a recent paper [2], D. Colton has given a new proof for the strong maximum
principle with regard to the heat equation ut = AM. His proof depends on the analyticity
(in x) of solutions. For this reason it does not carry over to the equation

u, = AM+ c(t,x)u (*)

or to more general equations. But in order to tread mildly nonlinear equations such as
u, = AM +/(U) which are important in many applications, it is essential to have the strong
maximum principle at least for equation (*). It should also be said that this proof uses
nontrivial facts about the heat equation.

In what follows we give a simple proof valid for general linear parabolic equations
which uses only some basic results from calculus.

2. Basic facts about parabolic equations

We consider the linear parabolic equation in n space dimensions

(1)

where the abbreviations

n n
auxx = Z aijuxiXj> bux=YJbiuX(, x = (x!, . . . ,xn)

have been used. The coefficients a, b, c are assumed to depend on (t,x) and the matrix
a = (atj) is assumed to be positive semidefinite, |TaiJ=Z"j=i aij£i£j^Q for ^eR". Things
are a little bit simpler if we restrict ourselves to the equation

U, = AU+CM, (1')

which is referred to as the "simple case". For simplicity, we consider a cylindrical
domain,

G=(0, T]xD and F = {0} xDu(0, T] x8D,
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where D a W. is open and bounded; G is the "parabolic interior" and F the "parabolic
boundary" of G. Let us remark that all results and proofs are also valid in the general
case, where GcR 1 + n is compact. In this case, G consists of all interior points of G and
of those points (t0, x0) e dG for which a lower half-neighbourhood (consisting of those
points (t, x) of a neighbourhood for which t<t0) has only interior points, and F = G\G.

Let Z be the class of functions u continuous in G for which the derivatives ut, ux = (ux.)
and uxx = (ux.x} are continuous in G. The following result is needed.

(A) IfueZ has a local minimum with respect to x at a point (t,x)eG, then auxx^0 (or
Au ̂  0 in the simple case) at this point.

In the simple case the proof is trivial, in the general case it uses (i) uxx is positive
semidefinite at a local minimum, and (ii) if a and a' are positive semidefinite matrices
then £a y a 'y^0 (this is sometimes referred to as Schur's theorem).

First, we prove two basic facts about parabolic differential inequalities. It is assumed
that weZ, but there are no regularity assumptions on a, b, c.

(B) w, > Ew in G, w > 0 on F implies w > 0 in G.

(C) wt^Ew in G, w^O on F and supGc(t,x) <oo implies w^O in G.

Proof. Assume that (B) is false. The set N of all (t, x) e G with w(t, x) ̂  0 is compact,
and there exists a "first" point (t0, x0) e N, which means that t ̂  10 for all ((, x) e N. Since
w > 0 on F, the point (t0, x0) belongs to G, and because of continuity we have w(t0, x0) = 0
and w(to,x)^.0 for xeD. Hence w(£0, x) has a local minimum with respect to x at xo, and
it follows that awxx^Q, bwx = 0 and cw = 0, i.e., Ew^O at (tO)Xo)- Hence w,(t0,xo)>0.
But this inequality together with w(t0, x0) = 0 implies that there are points (t, x0) e G
with t < t0 where w is negative. Hence a contradiction to the definition of t0 is obtained,
and (B) is proved.

(C) is reduced to (B) by a simple trick. It follows from c{t,x)<K that the function
p(t,x) = eKt satisfies p,>Ep. Hence we = w + ep (E>0) satisfies wj>£wE in G and w£>0 on
F. From (B) we get we>0, which in turn leads to w>0 since e>0 is arbitrary.

A simple consequence of (C) is

(D) v, ̂  Ev and w, ^ Ew in G, v^w on F implies v^w in G if sup c < oo and v,weZ.

This follows by applying (C) to u: =w — v.

We use the abbreviations x.y = x1_y1 + \-xnyn, x2 = xx = |x|2 and ir(a) = all+a21-\—
+ ann, in particular bx = b1x1 + ••• +bnxn. Fo r a function v(t,x) = 4>{x2) the operator Ev is
given, in terms of </>(s), s = x 2 , by

(E) Ev = 4xTax<j)"{s) + 2<p'(s)(tr(a) + bx) + c(f>.

3. The strong minimum principle

Assume that a, b, c are bounded and that %Tat;^d£2 (strong ellipticity), where <5>0. If
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weZ,

w,^Ew in G, w^Oon F,

then w^O in G. If w(t0, x0) = 0, where xoeD, then w = 0 in [0, t0] x£>.

Proof. The function F(t,x) = e"A'(i?2-x2)3
+ (+ indicates that F=0 for |x|>K) is of

class C2(R"+1). The inequality V,^EV is obviously true for x2 = s>K2. By (E), this
inequality is for s < R2 equivalent to

- A(R2 - s)3 ̂  24xy ax(R2 -s)-6(R2- s)2(tr (a) + bx) + c(R2- s)3,

which in turn follows from

(R2 -s)2 + 245s-6K(R2 - s ) ^ 0 ,

where K is a bound for |tr(a) + foc| (note that xTax^.ds). The last inequality is true for
large A, since for s close to R2, say, for /?2 — e^s^R2, the term 245s dominates the
other terms, and for O^s^J?2—e the last term is bounded and the first term can be
made large, since R2-s^s>0. Hence V,.^EV in IRn+1.

Now let D = u(t,x;e): = F(t,x — te), where eeR" is arbitrary. The inequality v,^Ev is
equivalent to V,^aVxx + (b + e)Vx + cV, hence it holds in W+1 if in the above reasoning b
is replaced by b + e. Note that r(r, x;e) is positive in an infinite oblique cylinder with
axis (t,x) = t(l,e) (teU); this cylinder consists of all points (t,x) with |x — te\<R.

Now assume that w(0, a)>0, aeD, and choose R so small that BR(a)<zD and
w(0,x)>0 for |x-fl |^U. Then there exists e>0 such that sV(0,x-a)<Lw(0,x) in D. It
follows from (D) that eV(t, x — a)^w(t, x) and hence w>0 in (0, T] x BR(a). The same
reasoning can be carried out with v = V(t,x — a—te), where eelR" is arbitrary. If T0^T
is such that the oblique cylinder 0<t^T 0 , \(t,x)—(t,te)\<R lies in G, then w>0 in this
cylinder. In particular, if the ball Bp(a) is contained in D, then w>0 in (0, T] x Bp(a).

One can apply the same method of proof if, e.g., w(t1,a)>0, where tt<to. As a result,
the inequality w>0 in (tlt T~\'xBf,(a) is obtained. In order to show that w(t0,xo)>0 (this
is the contradiction from which the strong maximum principle follows), one uses a chain
of balls Bi = BR.(£i)aD (i = l,...,p) with ^i+1eBh Z,y=a, £p=x0

 an<l applies the above
result in each ball. A similar chaining argument occurs in other instances, too, e.g., in
the analytic continuation of holomorphic functions by power series.

Remarks. 1. In the case where G is an arbitrary compact set, the strong minimum
principle is formulated in the following way: If w(t0, xo) = O, then w(t, x) = 0 at every
point of G, which can be connected with (to,xo) by a polygonal line (or continuous
curve) along which t is increasing. The above proof carries over to this case (with
obvious changes).

2. Other forms of the strong minimum or maximum principle where w ^ a o
the boundary are derived by considering w = w—a or w = a —w, respectively. There are
no problems when c = 0, but in the general case the sign of c plays a role. Assume, for
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example, that vvr ̂  Aw + cw in G, w ̂  a on F. Then the strong minimum principle holds if
ca^O.

3. The mildly nonlinear case. Assume for simplicity that ueZ,

u, = Au+f(t,x,u) in G, u g a o n F and /(t, x, a) = 0,

where / is Lipschitz continuous in w in bounded subsets of G x U. Then u=a or «<a in
G—for proof, one observes that, since ueZ is bounded,

-f(t, x, u) = f(t, x, <x)-f(t, x, u) = c(t, x)(a - u) (u = u(t, x)),

where c is bounded. Hence w = a — u satisfies wt = Aw + cw in G, vv^O on F, which
implies w = 0 or w>0 by the strong minimum principle. In cases like this it is
convenient to have the strong minimum principle at one's disposal without regularity
assumptions on the coefficients. It follows at once from the Lipschitz property that a
bounded function c exists, but regularity properties are not so easily obtained.

4. The proof described here has been found by the author more than 20 years ago. It
was first published in [3] (in connection with the nonlinear case which complicates
matters somewhat); see also [4; p. 200f.]. Besala has used this method of proof in [1]
(with quotation) for an extension of the strong maximum principle. In [5], Watson
describes it as a "very simple method . . . which seems to originate in [4]". Perhaps the
general nonlinear setting of [4] has prevented this proof from becoming more widely
known.
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