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Departamento de Matemática, Instituto Superior Técnico,
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Abstract We introduce the notion of wide representation of an inverse semigroup and prove that with
a suitably defined topology there is a space of germs of such a representation that has the structure of an
étale groupoid. This gives an elegant description of Paterson’s universal groupoid and of the translation
groupoid of Skandalis, Tu and Yu. In addition, we characterize the inverse semigroups that arise from
groupoids, leading to a precise bijection between the class of étale groupoids and the class of complete
and infinitely distributive inverse monoids equipped with suitable representations, and we explain the
sense in which quantales and localic groupoids carry a generalization of this correspondence.
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1. Introduction

The local bisections of a topological étale groupoid G can be identified with the open
subsets of the space of arrows on which the domain and the range maps are injective.
The set of all the local bisections of G forms an inverse semigroup, denoted by I(G).
This inverse semigroup is equipped with a natural representation on the space G0 of
units of G, i.e. a homomorphism to the inverse semigroup of partial homeomorphisms on
the space of units. This representation is full in the sense that the idempotents of I(G)
bijectively correspond to the open sets of G0.

On the other hand, for any inverse semigroup S equipped with a full representation on
a topological space X, its space of germs with a sheaf-like topology can be given an étale
groupoid structure with X as unit space. The first objective of this paper is to extend the
aforementioned germ groupoid construction to the following more general case, where an
inverse semigroup S represented on a topological space X will be called wide over X if
the images of the idempotents in S under the representation cover X.

Theorem 1.1. For any wide inverse semigroup over a topological space X, its space
of germs can be given the structure of an étale groupoid with object space X.
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An immediate application of Theorem 1.1 is the following extension procedure for étale
groupoids:

(1) start with an étale groupoid G plus the full representation of I(G) on G0;

(2) define an extension X of the space G0 in such a way that I(G) becomes a wide
inverse semigroup over X;

(3) apply Theorem 1.1 in order to obtain an étale groupoid that is the required ‘base
extension’ of the original one.

The second objective of this paper is to describe how two classical constructions in the
theory of étale groupoids can be achieved using the germ groupoid approach.

The first example is the universal groupoid of Paterson: a certain étale groupoid asso-
ciated to a countable inverse semigroup, with the properties that the C∗-algebras (both
the full and the reduced ones) for the semigroup and its groupoid are the same. The
original construction [5] relies on so-called localization techniques due to [3]; we show
that it can be described more succinctly in terms of Theorem 1.1, as the germ groupoid
associated to a wide representation.

Concerning the second example, suppose we start with a discrete groupoid G (this
is the same as an étale groupoid whose unit space is discrete). The representation of
the underlying inverse semigroup can then be extended to a representation by partial
homeomorphisms on the Stone–Čech compactification of the unit space of G. Taking the
germs of this extension, we obtain an étale groupoid β0G, which extends G in such a
way that its unit space is the Stone–Čech compactification of the unit space of G. The
arrows of β0G are simply the arrows of G and the other necessary ones required by the
structure laws (hence β0G can be viewed as the most economical extension of G with the
required space of units).

This result is closely related to work of Skandalis et al ., who established the connection
between étale groupoids and coarse metric spaces in [9] (see also [8]). They defined
the translation groupoid of a boundedly discrete coarse space as the maximal possible
principal étale extension of the pair groupoid on that space such that the unit space of
the extension is the Stone–Čech compactification of the space we started with. The coarse
Baum–Connes conjecture for the original space is then equivalent to the Baum–Connes
conjecture for its translation groupoid. One consequence of this fact is that the Hilbert
space embeddability for a discrete space implies the coarse Baum–Connes conjecture for
such a space, and, via the Higson descent technique, one gets an elegant proof of the
Novikov conjecture for discrete groups equipped with the Hilbert space embeddings.

If we take the inverse semigroup generated by controlled partial bijections of X [8]
with its tautological representation on X and extend it via the Stone–Čech technique
described above, the resulting inverse semigroup represented on βX is often wide: when
the coarse space X is unital for example (e.g. this happens when the coarse structure
comes from the equivalence class of metrics, which is particularly relevant for the Novikov
conjecture). In such a case the translation groupoid can be obtained by our germ groupoid
construction.
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Finally, as a third objective we obtain a precise characterization of the inverse semi-
groups of the form I(G) and a bijection (up to isomorphisms) between the class of étale
groupoids with unit space X and the class of complete inverse semigroups equipped with
full representations on X. The particular case where X is a sober space leads, via [7], to
a connection with localic groupoids (internal groupoids in the category of locales) and
quantales, whose significance in the context of the present paper we also describe.

The paper is structured as follows. In § 2 we recall the notions of inverse semigroup,
inverse semigroup representation, étale groupoid and germs. We continue with the struc-
ture theorems connecting these notions and then introduce wide representations. The
main result of this section is Theorem 1.1. Section 3 is devoted to a discussion of the
universal groupoid of Paterson. In § 4 we present the Stone–Čech extension technique for
discrete groupoids. We review the translation groupoid of Skandalis et al . and discuss
how it arises as a germ groupoid. Finally, in § 5 we close the circle by characterizing the
inverse semigroups that arise from étale groupoids (as described in § 2). This requires
us to address the order-theoretic properties of inverse semigroups and, in particular, the
notion of complete inverse semigroup. We conclude with the remarks on localic groupoids
and quantales that establish the relation to [7].

2. Germ groupoids of inverse semigroups

2.1. Inverse semigroups

Definition 2.1. Let S be a semigroup. An element t ∈ S is said to be an inverse of
s ∈ S if

sts = s and tst = t.

An inverse semigroup S is a semigroup such that for all s ∈ S there is a unique inverse
of s, which we shall denote by s∗. Equivalently, an inverse semigroup is a semigroup for
which each element has an inverse and for which any two idempotents commute [4]. The
set of idempotents is denoted by E(S). An inverse monoid is an inverse semigroup that
has a multiplicative unit, which we shall denote by e.

A few simple but useful facts about inverse semigroups are as follows.

(1) In any inverse semigroup the inverse operation defines an involution.

(2) The set of idempotents forms a semilattice with the operation of binary meet given
by multiplication: f ∧ g = fg; this semilattice has a greatest element if and only if
S is a monoid.

(3) The idempotents are precisely the elements of the form ss∗.

(4) A semigroup homomorphism between inverse semigroups automatically preserves
inverses.

Let X be a topological space and let I(X) be the set of all the partial homeomorphisms
on X, by which we mean the homeomorphisms h : U → V with U and V open sets of
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X. This set has the structure of an inverse semigroup; its multiplication is given by
composition of partial homeomorphisms wherever this composition is defined: if h : U →
V and h′ : U ′ → V ′ are partial homeomorphisms, then their product is the partial
homeomorphism

hh′ : h−1(V ∩ U ′) → h′(V ∩ U ′)

defined at each point of its domain by (hh′)(x) = h′(h(x)), and the semigroup inversion
is the usual inverse of a homeomorphism:

h : U → V �→ h∗ = h−1 : V → U.

Definition 2.2. Let X be a topological space. We shall refer to any subset P ⊂ I(X)
that is closed under the multiplication and the inverse of I(X) as a pseudogroup over
X. A pseudogroup P over X is full if it is also closed under identities in the sense that
idU ∈ P for every open set U ⊂ X; and it is complete if it is full and for all h ∈ I(X)
and every open cover (Uα) of dom(h) we have h ∈ P if h|Uα

∈ P for all α.

The Wagner–Preston Theorem [4] asserts that every inverse semigroup is isomorphic
to a pseudogroup. However, we shall need more precise terminology.

Definition 2.3. Let S be an inverse semigroup. We shall call a semigroup homomor-
phism ρ : S → I(X) a representation of S on a topological space X. The representation is
full if ρ restricts to an isomorphism E(S) → E(I(X)) ∼= Ω(X). We shall call a pair (S, ρ)
consisting of an inverse semigroup S equipped with a representation ρ : S → I(X) an
inverse semigroup over X. If ρ is full (in this case S is necessarily a monoid), then (S, ρ)
is said to be a full inverse semigroup over X. Finally, an inverse monoid representation
is called unital if it preserves the unit.

2.2. Étale groupoids

To start, let us briefly fix notation for groupoids.

Definition 2.4. A (topological) groupoid G is a pair of topological spaces, the space
of arrows G1 and the space of objects G0, equipped with continuous maps

G2
m �� G1

i

�� r ��

d
�� G0,u��

where G2 is the set G1 ×G0 G1 of composable pairs of arrows,

G2 = {(x, y) ∈ G1 × G1 | r(x) = d(y)},

equipped with the subspace topology relative to the product topology on G1×G1 (i.e. the
pullback of d and r in the category of topological spaces). The maps m, d, r, i and u

are the multiplication, domain, range, inverse and unit maps, respectively. To shorten
notation, we shall contract m(x, y) to xy, i(x) to x−1 and u(x) to 1x. We require these
maps to satisfy the usual groupoid axioms.
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We shall mostly be concerned with étale groupoids: in other words, with those for
which the domain map d is a local homeomorphism or, equivalently, for which d is open
and u(G0) is open in G (see [7] for the latter characterization).

What is usually meant when one talks of a local bisection of an étale groupoid G is a
local section s : U → G1 of the domain map d on an open set U ⊂ G0 such that r ◦ s

is an open embedding of U into G0. Often, and usually without any comment, we shall
identify the local bisections s with their images s(U), which are the open subsets V of
G1 such that the restrictions d|V and r|V are both injective (these sets are called G-sets
in [5], following terminology introduced in [6], but we shall avoid this because it clashes
with the established terminology for sets equipped with an action of a group G).

Definition 2.5. Let G be an étale groupoid. The inverse semigroup of G, I(G), is
the set of local bisections of G, with multiplication given by pointwise multiplication of
(images of) local bisections, and the inverse being similarly calculated pointwise.

We remark that I(G) acts partially on G0 and in fact is a full inverse semigroup over
G0, with the representation ρG : I(G) → I(G0) defined by

ρG(V ) : d(V )
∼=−−→ r(V ),

ρG(V )(d(x)) = r(x)

for each V ∈ I(G) and x ∈ V .

Definition 2.6. Let (S, ρ) be a full inverse semigroup over a topological space X. We
define the germ of s ∈ S at x ∈ dom(ρ(s)) to be

germx s = {t ∈ S | ∃f ∈ E(S) : ft = fs, x ∈ dom(ρ(t)) ∩ dom(ρ(f))}

and the set of germs of (S, ρ) to be

Germs(S, ρ) = {(x, germx s) | x ∈ X, s ∈ S}.

We equip Germs(S, ρ) with the sheaf topology, whose basis consists of open sets of the
form

Us = {(x, germx s) | x ∈ dom(ρ(s))} (2.1)

for each s ∈ S. These two constructions can be regarded as inverses of each other, with
the connection given by the following theorems (in § 5 we shall describe conditions on the
inverse semigroups under which the two constructions really are inverse to each other).

Theorem 2.7. Let (S, ρ) be a full inverse semigroup over a topological space X.
Then the space Germs(S, ρ) can be given the structure of an étale groupoid with object
space X.

Proof. This construction is an essentially straightforward adaptation of the construc-
tion of a local homeomorphism of a sheaf and is done in [5] in a slightly more general
setting, namely when ρ(E(S)) is only a basis of X rather than the whole topology.
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Although also subject to restrictions pertaining to the space X, which in [5] has to be
Hausdorff, second countable and locally compact, these restrictions are irrelevant, so we
shall describe the construction for full inverse semigroups here.

The groupoid G = Germs(S, ρ) has the set of arrows∗

G1 = {(x, germx s) | s ∈ S and x ∈ dom(ρ(s))}.

Note that the projection d : Germs(S, ρ) → X defined by (x, germx s) �→ x is a local
homeomorphism. Also, the subspace topology on X ⊂ Germs(S, ρ) coincides with the
original topology on X. Keeping all these things in mind, we can introduce the topological
groupoid structure on the space of germs. Namely, the operations are defined as follows:

d(x, germx s) = x,

r(x, germx s) = ρ(s)(x),

1x = (x, germx e),

(x, germx s)(ρ(s)(x), germρ(s)(x), t) = (x, germx(st)),

(x, germx s)−1 = (ρ(s)(x), germρ(s)(x)(s
∗)).

This groupoid is étale, because the domain map d is a local homeomorphism as mentioned
above. We do not give a direct proof of the soundness of this construction here, since it
is similar to that of [5]. �

Now we prove that every étale groupoid arises in this way.

Theorem 2.8. Let G be an étale groupoid and let ρG : I(G) → I(G0) be its full
representation. Then Germs(I(G), ρG) ∼= G.

Proof. The standard identification of the total space E of a local homeomorphism
p : E → X with the space of stalks (germs of continuous local sections) of the sheaf of
local sections of p gives us a homeomorphism between Germs(I(G), ρG) and G, since it
is clear that every local section is locally a local bisection: if x ∈ U and s : U → G1 is a
local section of d, then there is an open set V ⊂ U such that x ∈ V and s|V is a local
bisection. It is then routine to check that the groupoid operations in Germs(I(G), ρG)
correspond to those in G. �

2.3. Unital representations of inverse monoids

We have seen that any étale groupoid G is determined by a full representation of
I(G) on the unit space G0, but we will need to extend this relationship to encompass
more general inverse semigroup representations: in particular, in this section we shall see

∗ The arrows are pairs (x, germx s) rather than just the actual germs germx s because unless X is a
T0-space we may have germx s = germy s with x �= y (see also § 5).
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explicitly how any unital representation of an inverse monoid can be turned into a full
representation of a larger inverse monoid.

Let M be an inverse monoid, let X be a topological space and let ρ : M → I(X) be a
monoid homomorphism: that is, a unital representation in our terminology.

Define

(Ω(X) ↓ M) = {(U, s) | U ∈ Ω(X), s ∈ M, U ⊂ dom(ρ(s))},

where the pair (U, s) should be thought of as a formal restriction of s to the subspace U

of its domain.

Lemma 2.9. The set (Ω(X) ↓ M) can be given the structure of an inverse monoid.

Proof. The multiplication can be defined by

(U, s)(V, t) = (U ∩ ρ(s)−1(V ∩ ρ(s)(U)), st),

the inverse by

(U, s)∗ = (ρ(s)(U), s∗)

and the unit is (X, e). The rest is straightforward. �

The monoid (Ω(X) ↓ M) is too large for the purposes we have in mind because we will
need the submonoid of idempotents to be isomorphic to Ω(X), whereas in E(Ω(X) ↓ M)
there are in general many copies of each open set, namely (U, f) for each idempotent f of
M such that U ⊂ dom(ρ(f)). Hence, we shall define a quotient of (Ω(X) ↓ M) in order
to get a full inverse monoid over X.

To do this, define an equivalence relation on (Ω(X) ↓ M) by

(U, s) ∼ (V, t)

if U = V and there is f ∈ E(M) such that U ⊂ dom ρ(f) and fs = ft.
It is easy to see that this is indeed a congruence relation. We shall denote the congru-

ence class of (U, s) by [U, s] and the quotient (Ω(X) ↓ S)/∼ by MX .

Lemma 2.10. MX is an inverse monoid and it is equipped with a full representation
ρX : MX → I(X) given by

ρX([U, s]) = ρ(s)|U , s ∈ M, U ⊂ dom(ρ(s)). (2.2)

Proof. If (U, s) ∼ (U, s′) and (V, t) ∼ (V, t′), then we have f, g ∈ E(M) with fs = fs′

and gt = gt′, and U and V are inside dom(ρ(f)) and dom(ρ(g)) respectively.
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We first claim that the compositions (U, s)(V, t) and (U, s′)(V, t) represent the same
class in MX . Indeed, ρ(fs) = ρ(fs′) implies

ρ(s)|U = ρ(s′)|U ,

so that
U ∩ ρ(s)−1(V ∩ ρ(s)(U)) = U ∩ ρ(s′)−1(V ∩ ρ(s′)(U)),

which means that the ‘domain’ of the composition is well defined.
Next, fst = fs′t and clearly f is an idempotent for which the domain U ∩ ρ(s)−1(V ∩

ρ(s)(U)) of the compositions under consideration lies inside U , which, in turn, is inside
dom(ρ(f)) by assumption.

By a similar computation, now involving g and the appropriate domains, we obtain
(U, s′)(V, t) ∼ (U, s′)(V, t′) and, together with our previous observation, this leads to
(U, s)(V, t) ∼ (U, s′)(V, t′), as desired.

For inverses, take (U, s) ∼ (U, s′) with f ∈ E(M) as above. A trivial computation
reveals that

(s′∗fs′)(s∗fs)s∗ = (s′∗fs′)(s∗fs)s′∗,

so that (U, s)∗ ∼ (U, s′)∗ using an idempotent s′∗fs′s∗fs whose ‘domain’ clearly con-
tains ρ(s)(U).

The congruence class [X, e] provides the unit, and so we do indeed have an inverse
monoid.

Now we prove that the map ρX of (2.2) is a representation. It is well defined because
ρX [U, s] gives us a partial homeomorphism of X by definition. Moreover, it preserves
multiplication, inverses and the unit; for instance, for the multiplication we have

ρX([U, s][V, t]) = ρX [ρ(s)−1(V ∩ ρ(s)(U)), st] = ρ(st)|ρ(s)−1(V ∩ρ(s)(U)),

and
ρX [U, s]ρX [V, t] = ρ(s)|Uρ(t)|V ,

and these two partial homeomorphisms of X are the same in I(X).
Furthermore, the representation ρX is full, since for every U ∈ Ω(X) the class [U, e]

gives an idempotent in MX whose image is idU . �

Note that we have the following commuting square of inverse monoid homomorphisms
with the vertical homomorphism Ω(X) → MX mapping an open set U to [U, e] and the
horizontal homomorphism M → MX mapping s to [dom(ρ(s)), s]:

E(M)

⊂
��

dom ρ �� Ω(X)

��
M �� MX

We remark that MX in general is not a pushout in the category of inverse monoids.
However, it has the following universal property.
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Lemma 2.11. Let M ′ be an inverse monoid for which there exist inverse monoid
homomorphisms α and β making the outer square of the diagram

E(M)

⊂
��

dom ρ �� Ω(X)

�� β

��

M ��

α
��

MX

ρ′

��
M ′

(2.3)

commutative. Suppose also that

β(U ∩ ρ(s−1)(V ∩ ρ(s)(U)))α(s) = β(U)α(s)β(V )

and
α(s∗)β(U) = β(ρ(s)(U))α(s∗)

for all U, V ∈ Ω(X) and s ∈ M with U ⊂ dom(ρ(s)). There then exists a unique inverse
monoid homomorphism ρ′ : MX → M ′ as depicted in (2.3).

Proof. First note that in M we have a decomposition

(U, s) = (U, e)(dom(ρ(s)), s), U ∈ Ω(X), s ∈ M, U ⊂ dom(ρ(s)),

which in turn provides us with a similar decomposition for MX :

[U, s] = [U, e][dom(ρ(s)), s].

Thanks to this decomposition, ρX [U, s], if it exists, has to be

ρ′[U, e]ρ′[dom(ρ(s)), s],

but both of the terms [U, e] and [dom(ρ(s)), s] come from the preimages U in Ω(X) and
s in M respectively, so that we can define the results of applying ρ′ to them using β and
α:

ρ′[U, s] = β(U)α(s), U ∈ Ω(X), s ∈ M, U ⊂ dom(ρ(s)).

Thus we obtain uniqueness of ρ′. To check existence—that is, to see that the formula
above gives us a homomorphism—we check that

ρ′([U, s][V, t]) = ρ′([U ∩ ρ(s−1)(V ∩ ρ(s)(U)), st])

= β(U ∩ ρ(s−1)(V ∩ ρ(s)(U)))α(st)

= β(U)α(s)β(V )α(t)

= ρ′([U, s])ρ′([V, t])
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and

ρ′([U, s])∗ = (β(U)α(s))∗

= α(s∗)β(U)

= β(ρ(s)(U))α(s∗)

= ρ′([ρ(s)(U), s∗])

= ρ′([U, s]∗).

The commutativity of the resulting diagram comes automatically: starting with U ∈
Ω(X), it is being mapped to [U, e] in MX and then to β(U)α(e) in M ′. But the latter
product coincides with β(U), for α(e) is the unit of M ′. For another side of the diagram,
an element s in M is being mapped first to [dom(ρ(s)), s] in MX and after that via ρ′ to
β(dom(ρ(s)))α(s). Consider an idempotent ss∗ whose ‘domain’ clearly covers the one of
s (in fact, they are the same) and trace it through the outer square in (2.3) to obtain

β(dom(ρ(s))) = β(dom(ρ(ss∗))) = α(ss∗).

Multiplying this identity by α(s) on the right, we get β(dom(ρ(s)))α(s) = α(s) as
required. �

Of course, a pushout in the category of inverse monoids also exists, but any concrete
description of such a pushout would require adding a new idempotent sfs∗ for each
element s of M and each ‘old’ idempotent f of M .

2.4. Germ groupoids revisited

The germ groupoid of (MX , ρX) from the previous section has a direct description
in terms of the germ groupoid of (M, ρ), as we shall now see. Further, we exhibit this
correspondence in an even more general context.

Definition 2.12. Let (M, ρ) be an inverse monoid over a topological space X (as
usual, we assume that ρ is a unital representation). As in Definition 2.6, define the germ
of s ∈ M at x ∈ dom(ρ(s)) to be

germx s = {t ∈ M | ∃f ∈ E(M) : ft = fs, x ∈ dom(ρ(t)) ∩ dom(ρ(f))}

and the space of germs to be

Germs(M, ρ) = {(x, germx s) | x ∈ X, s ∈ M}.

Further, we topologize the space of germs Germs(M, ρ) by making a topology basis out
of the sets

Vs,U = {(x, germx s) | x ∈ U}

for s ∈ M and U ⊂ dom(ρ(s)), U ∈ Ω(X). Note that this sheaf topology is different from
the one introduced before, in Theorem 2.7.
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We have a straightforward counterpart of Theorem 2.7.

Theorem 2.13. Let (M, ρ) be a unital inverse monoid representation over a topologi-
cal space X. Then the space Germs(M, ρ) can be given the structure of an étale groupoid
with object space X.

We shall not give a detailed proof of this theorem here, but we do mention that
one defines all the structure maps exactly as we did before in Theorem 2.7 and thus
obtains a groupoid with object space X. The only non-trivial part is to show that this
groupoid is étale. We shall see that the groupoid in question is the same as that for a
full representation ρX obtained from ρ and thus reduce it to the case already discussed.

Theorem 2.14. Let (M, ρ) be a unital inverse monoid representation over a topologi-
cal space X and (MX , ρX) (an induced full inverse monoid as constructed in the previous
section). Then

Germs(M, ρ) ∼= Germs(MX , ρX).

Proof. We start by an explicit expression for the elements of Germs(MX , ρX). Take
[U, s] ∈ MX and x ∈ dom(ρX([U, s])) = dom(ρ(s)|U ) = U . Then

germx[U, s] = {[V, t] ∈ MX | ∃[F, f ] ∈ E(MX)

with x ∈ F, [F ∩ U, fs] = [F ∩ V, ft]}. (2.4)

In order to identify this germ with germx s ∈ Germs(M, ρ), we check that t from [V, t]
above also belongs to germx s. This is true, because clearly x ∈ V ⊂ dom(ρ(t)) and
gfs = gft for some g ∈ E(M) covering F ∩ U � x. This shows that the mapping

Germs(MX , ρX) → Germs(M, ρ) : germx[U, s] �→ germx s

is surjective and well defined. To check the injectivity of such a correspondence, take
germx[U, s] and germx[V, s], which are both mapped to germx s. In fact, for an idempotent
[U ∩ V, e] of MX , its domain under ρX contains x and one has

[U ∩ V, e][U, s] = [U ∩ V, e][V, s],

which means that the germs are indeed the same, according to (2.4).
Next, we clarify why the groupoid structure maps in Germs(M, ρ) and Germs(MX , ρX)

are the same. This is so because in the correspondence between germs established above
the domains are x and the ranges are ρ(s)(x) = ρX([U, s])(x). The inverses are

germρ(s)(x) s∗ and germρX([U,s])(x)[ρ(s)U, s∗],

which clearly correspond to each other, and the units 1x are defined using the germs
of e and [X, e] respectively, which also correspond to each other. Finally, the composi-
tion is preserved as well: for two composable arrows germx[U, s] and germρ(s)(x)[V, t] in
Germs(MX , ρX) their composition is

germx[U ∩ ρ(s)−1(V ∩ ρ(s)(U)), st],

which corresponds to germx(st) in Germs(M, ρ) as expected.
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We finish by checking that the topologies imposed on the sets of germs Germs(M, ρ)
and Germs(MX , ρX) are compatible. An elementary open set in the latter space,

V[U,s] = {germx[U, s] | x ∈ dom(ρX([U, s])) = U},

corresponds to Vs,U in the former one, and vice versa, which completes the proof. �

2.5. Wide representations of inverse semigroups

Finally, we want to treat the following slightly more general case.

Definition 2.15. A representation ρ : S → I(X) of an inverse semigroup S on a
topological space X will be called wide if ρ(E(S)) covers E(I(X)). We shall refer to S

as a wide inverse semigroup over X.

In particular, any full representation is wide. More generally, any inverse monoid rep-
resentation is a wide representation. For a rather extreme example, the Wagner–Preston
representation of any inverse semigroup is wide.

Given a wide inverse semigroup (S, ρ) over a topological space X, define the germ of
s ∈ S at x ∈ dom(ρ(s)) and the space of germs exactly as above to be

germx s = {t ∈ S | ∃f ∈ E(S) : ft = fs, x ∈ dom(ρ(t)) ∩ dom(ρ(f))}

and
Germs(S, ρ) = {(x, germx s) | x ∈ X, s ∈ S}

respectively. The topology on the space of germs is generated by the basis consisting of

Vs,U = {(x, germx s) | x ∈ U}

for s ∈ S and U ⊂ dom(ρ(s)), U ∈ Ω(X), as for the unital monoid representation above.
One can extend Theorem 2.13 to the following.

Theorem 2.16. For a wide inverse semigroup (S, ρ), the space Germs(S, ρ) can be
given the structure of an étale groupoid with object space X.

Again, our goal is not to prove this theorem independently, but rather by means of
connecting it with other constructions we have studied.

Theorem 2.17. Let (S, ρ) be a wide inverse semigroup over a topological space X

and let the inverse monoid Se be the result of adjoining a unit to S. Furthermore, extend
ρ to a monoid representation ρe:

S
⊂ ��

ρ
����

��
��

��
Se

ρe

��
I(X)

Then
Germs(S, ρ) ∼= Germs(Se, ρe).
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Proof. Since we impose the same topology on the space of germs in both cases, all we
need to check is that the spaces of germs are the same as sets. And this is indeed true,
because ρ is wide and thus we just add the unit e to the germs that contain idempotents
(this will ‘enrich’ some germs, but it will not add any new ones). �

Note that for Germs(Se, ρe) all the units can be written as germs of e as in the full
representation case, which was not the case right away for wide representations.

Corollary 2.18. Any wide inverse semigroup (S, ρ) over a topological space X deter-
mines an inverse monoid with a full representation on X, and their germ groupoids are
isomorphic.

We finish this section by mentioning that the notion of a wide inverse semigroup is
more general than the localizations of [3,5], since we do not impose any conditions on
the topology of X and also do not require the idempotents to provide a basis for the
topology—just a cover.

3. Example: the universal groupoid of Paterson

We shall show that the universal groupoid of an inverse semigroup introduced in [5] can
be obtained using our wide representation techniques. This section is intended to be as
self-contained as possible, so we start by describing the construction and then comment
on the properties of the universal groupoid and some motivations behind it.

Let S be a countable inverse semigroup. Consider the set

X = {non-zero multiplicative functions x : E(S) → {0, 1}}.

For each s in S let Ds denote the subset of X consisting of all the functions x for which
x(ss∗) = 1. We topologize X by specifying as a basis for the topology the collection of
all the sets

Df ∩ (X\Df1) ∩ (X\Df2) ∩ · · · ∩ (X\Dfn
),

where f, f1, f2, . . . , fn are idempotents of S such that ffi = fi for all i = 1, . . . , n. In this
way X becomes a locally compact totally disconnected space (and hence Hausdorff).

Now we construct a representation ρu of S on X. For s ∈ S we define a homeomorphism

ρu(s) : Ds → Ds∗

by sending x ∈ Ds to y ∈ Ds∗ defined by y(f) = x(sfs∗).
It is easy to see that this representation is wide: for any x ∈ X there ought to be an

idempotent f with x(f) = 1, since x is not identically 0. Then ρu(f) is a partial identity
of X with domain Df that tautologically contains x. Therefore, we can construct the
germ groupoid Gu corresponding to S and ρu as prescribed in the previous section. This
groupoid is called the universal groupoid of S. It enjoys the following properties:

(1) C∗(S) = C∗(Gu);

(2) C∗
red(S) = C∗

red(Gu);
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(3) for any other ample S-groupoid G [5], its unit space G0 is homeomorphic to a
closed invariant subspace Y of (Gu)0, and there exists a continuous open surjective
S-equivariant homomorphism

φ : Gu|Y → G, φ|Y = id.

We comment that our construction, unlike the original one of Paterson in [5], does not
appeal to the localization techniques and therefore does not require the inverse semigroup
S to be countable (and the germ groupoid construction from the previous section does
not require the space X to be locally compact Hausdorff in general). Of course, for the
proof of the analytic properties of the universal groupoid listed above, these constraints
are still required.

4. Example: the translation groupoid of Skandalis et al .

4.1. The Stone–Čech compactification via ultrafilters

We start by briefly reviewing some elements of the construction of the Stone–Čech com-
pactification of a discrete space, mostly to fix the notation. For more details the reader
is referred to [2].

Definition 4.1. Let X be a space with the discrete topology. A collection F of subsets
of X is called a filter if the following conditions are satisfied:

(1) ∅ /∈ F ;

(2) V ∈ F whenever U ⊂ V for some subsets U , V of X and when U ∈ F ;

(3) for U, V ∈ F , U ∩ V ∈ F .

One can identify the Stone–Čech compactification of a discrete space X with the space
of ultrafilters, which are by definition maximal (with respect to inclusion) filters of subsets
of X. The topology on this space is generated by the sets

Ũ = {F | U ∈ F}, U ⊂ X.

The embedding of X into βX for our discrete space case in this model is done by
mapping x ∈ X to Fx, the principal filter at x, which is defined to consist of all subsets
of X which contain x.

Furthermore, if one identifies X with the image of its embedding into βX, any basic
open set Ũ of βX has U as its trace on X. Moreover, given a set U in X, its closure in
βX is precisely Ũ .

We conclude this review with the following technical result.

Lemma 4.2. Let U be a subset of a discrete space X. There then exists a canonical
homeomorphism between βU and Ũ (the latter one being a subset of the ambient space
βX with the induced topology).
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Proof. If we take some ultrafilter F in Ũ , then the family

FU := {F ∩ U | F ∈ F}

is an ultrafilter in U . Conversely, given an ultrafilter G of subsets of U , one can formally
define

GX = {G ∪ A | G ∈ G, A ⊂ X\U},

which turns out to be an ultrafilter on X extending U . This correspondence between
ultrafilters on U and the ones on X within Ũ is bijective (the ‘shrinking’ and ‘enlarging’
procedures are inverse to each other).

Under this correspondence the standard basis of the topology on βU , namely the one
comprising the sets

Ã = {G ∈ βU | A ∈ G}, A ⊂ U,

corresponds (element-wise) to

{F ∈ βX | A ∈ F}. (4.1)

We claim that the latter sets are the intersections of the elements of the standard basis
for βX with Ũ . Indeed, given V ⊂ X, Ũ ∩ Ṽ = ˜U ∩ V , so that taking A = U ∩ V the
condition that V runs over all subsets of X is equivalent to that of A running over all
subsets of U . This shows that the sets in (4.1) form a basis for Ũ in βX and, moreover, the
correspondence that we established respects the aforementioned bases of the topologies,
and hence it is a homeomorphism. �

4.2. The Stone–Čech compactification of the unit space

Having a partial homeomorphism h : U → V between two subsets U , V of X, we can
extend it to a homeomorphism βh : βU → βV or, equivalently, by virtue of Lemma 4.2,
to a homeomorphism h̃ : Ũ → Ṽ .

Now we are in position to prove the Stone–Čech extension theorem for discrete
groupoids.

Theorem 4.3. Let G be a discrete groupoid. Then there exists an étale groupoid
(which we shall denote by β0G) such that G is a subgroupoid of β0G and (β0G)0 = βG0.

Proof. The inverse semigroup I(G) has a representation ρG on G0 (notice that all
the partial homeomorphisms in this presentation are just partial bijections). We extend
it to ρ̃G : I(G) → I(βG0) by means of taking every partial homeomorphism h : U → V

on G0 from ρG(I(G)) and extending it to a partial homeomorphism h̃ : Ũ → Ṽ on βG0.
It is easy to see that by doing such an extension we indeed obtain a representation:
(h̃)−1 = ˜(h−1) and h̃h̃′ = h̃h′.

Notice that while the representation ρG is full (so that ρG(E(I(G))) ∼= Ω(G0)), ρ̃G is
wide, due to the fact that ρ̃G(E(I(G))) contains all the sets Ũ with U ∈ Ω(G0), which
form a basis for Ω(βG0) and hence cover it.
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The statement now follows from a direct application of Corollary 2.18. To see that
G is a subgroupoid of β0G, recall that G can be identified with the germ groupoid
Germs(I(G), ρG). For any x ∈ G0 and any s ∈ I(G) with x ∈ dom(ρG(s)), the germ of
s at x as an arrow in G can be viewed as an arrow in β0G, since the representation ρ̃G

coincides with ρG on X. (More specifically, for x ∈ X, the conditions that x belongs to
the domain of ρ̃G(t) and to the domain of ρ(t) for some t ∈ I(G) are equivalent. But
aside from domain conditions, the definitions of the germs forming G and β0G are the
same.) �

Remark 4.4. In general, (β0G)1 �= βG1, so that the newly constructed groupoid is
not the Stone–Čech compactification of the original groupoid G.

4.3. Digression: the translation groupoid

We shall discuss one more specialized case of the germ groupoid construction and
the Stone–Čech extension when the inverse semigroup is a pseudogroup over a discrete
topological space. The motivation for such a digression is that Skandalis et al . have
proven that the coarse Baum–Connes conjectures for the discrete coarse space and the
resulting groupoid (which they called the translation groupoid) are equivalent.

Here we present a brief account of the ideas involved. For more details on the construc-
tion and the ambient context consult the original paper [9] of Skandalis et al .; a more
comprehensive account on coarse geometry can be found in [8].

Let X be an infinite set endowed with the discrete topology. In what follows, it is
convenient to regard X × X as a pair groupoid, that is, the groupoid with object space
X, arrow space X×X, d and r being the first and second projections π1, π2 : X×X → X,
etc.

Definition 4.5. A coarse structure on X is a collection E of non-empty subsets of
X × X, called controlled sets, such that every singleton of X × X belongs to E and E is
closed with respect to taking

(1) subsets,

(2) finite unions,

(3) inverses (forming a new set consisting of the inverses of the elements of the original
set in the pair groupoid sense) and

(4) products (forming a new set out of the products of all composable elements from
two controlled sets).

The set X together with a coarse structure is called a coarse space.

One important example of coarse spaces comes from a metric. Starting from a metric
space X, one can define the coarse structure to contain all sets

E ⊂ X × X such that ∃N : ∀(x, y) ∈ E, dist(x, y) < N.
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Not all coarse structures come from a suitable metric, however; in some important cases
one can in principle impose different, yet equivalent, metrics on the same space (the
standard example is the word metric on a finitely generated group with respect to different
choices of the generating set; all metrics in this example are bi-Lipschitz equivalent)—
it turns out that the resulting coarse structures are the same. Thus the coarse space
approach allows one to study finitely generated groups as metric spaces without explicit
reference to a particular generating set.

When the diagonal {(x, x) | x ∈ X} of a coarse space (X, E) is controlled, the coarse
structure is called unital. This happens, for instance, for coarse structures that arise from
a metric.

Given a coarse space (X, E), the set S = I(X) ∩ E of controlled partial bijections on
X is a pseudogroup with a naturally defined representation on X. The subtle issue is
that while this representation is indeed wide, it does not have to be full, and therefore its
extension to a representation on βX by extending all partial bijections to the Stone–Čech
compactification as in the previous subsection is not necessarily wide.

In the case where the original coarse structure E comes from a metric, it is unital and
therefore every subset E of the diagonal of X × X is controlled. Since for each such
subset both coordinate projections are injective, E belongs to E(S) and, being viewed
as a partial identity on X, it extends to an idempotent on βX. It is clear that for every
subset U of X the identity on U can be represented by such a controlled set E, and the
sets Ũ that are the domains of the extended idempotents form a basis for βX, and so
the extended representation is wide. By applying Corollary 2.18 we can produce an étale
groupoid G(X), the translation groupoid of X, with the unit space being the Stone–Čech
compactification of the space X.

Notice that the original representation of S on X is wide (even for the general non-
unital case), and this allows us to construct the germ groupoid for it right away. In
fact, since each germ in the discrete topology is simply a singleton bijection {(x, y)},
the resulting germ groupoid is the pair groupoid X × X. For the unital case this means
that X × X is a subgroupoid of G(X), because the natural representation of S is a
subrepresentation of the extended one.

5. Complete inverse semigroups

In this section we shall close the circle by providing a characterization of the inverse
semigroups of the form I(G) for étale groupoids G, thereby establishing an equivalence
(non-functorial) between étale groupoids over X and full representations of such inverse
semigroups over X. In addition we shall provide a brief account of the relation between
these results and those of [7] concerning localic groupoids and quantales.

5.1. Characterization of the monoids of local bisections

In what follows, we shall make use of the natural order on an inverse semigroup. Given
an inverse semigroup S, this is a partial order and it is defined as follows:

s � t ⇐⇒ s = ft for some f ∈ E(S).
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Furthermore, the join of a subset Z ⊂ S is an element
∨

Z of S that is the least upper
bound of the elements of Z. For more details on these notions and the relevant discussion
we refer the reader to [4].

Definition 5.1. Let S be an inverse semigroup. Two elements s, t ∈ S are said to be
compatible if both st∗ and s∗t are idempotents. A subset Z ⊂ S is compatible if any two
elements in Z are compatible. Then S is said to be complete if every compatible subset
Z has a join

∨
Z in S (hence, S is necessarily a monoid with e =

∨
E(S)).

We are interested in the following class of inverse semigroups.

Definition 5.2. We call a complete inverse semigroup S equipped with a full repre-
sentation S → I(X) a complete inverse semigroup over a space X.

The existence of the full representation in this definition has an important consequence
for S: namely, the semilattice of idempotents E(S) is isomorphic to the topology of a
space and thus it is a locale [2]. It follows [4] that the inverse semigroup is infinitely
distributive in the sense that for all compatible subsets Z ⊂ S and all s ∈ S the set sZ

is compatible and we have
s
∨

Z =
∨

(sZ).

Another important fact related to joins, which in particular implies that any full
representation of a complete inverse semigroup preserves joins of compatible sets, is
that a homomorphism of complete inverse semigroups h : S → T whose restriction
h|E(S) : E(S) → E(T ) preserves arbitrary joins necessarily preserves joins of all the com-
patible sets [7, Proposition 2.10-3]; that is, for all compatible sets Z ⊂ S, the image set
h(Z) is compatible and we have

∨
h(Z) = h(

∨
Z).

We are now ready to give a characterization of the inverse semigroups that arise from
étale groupoids.

Theorem 5.3. Let G be an étale groupoid with unit space X. Then (I(G), ρG) is a
complete inverse semigroup over X. Any complete inverse semigroup over X arises in a
similar way from an étale groupoid with unit space X.

Proof. It is easy to see that I(G) is a complete inverse semigroup. For the converse,
let (S, ρ) be an arbitrary complete inverse semigroup over X and let G = Germs(S, ρ).
We shall show that S and I(G) are isomorphic, in much the same way as one shows that
a sheaf is isomorphic to the sheaf of local sections of its local homeomorphism. First let
us consider the map s �→ Us, defined as in (2.1):

Us = {(x, germx s) | x ∈ dom(ρ(s))}.

This assignment is clearly a semigroup homomorphism S → I(G), and it is injective due
to infinite distributivity, for if dom(ρ(s)) = dom(ρ(t)) (equivalently, ss∗ = tt∗), then the
condition germx s = germx t for all x ∈ dom(ρ(s)) implies that there is a cover (fx) of
ss∗ such that for each x ∈ dom(ρ(s)) we have fxs = fxt, and thus

s = ss∗s =
( ∨

x

fx

)
s =

∨
x

(fxs) =
∨
x

(fxt) =
( ∨

x

fx

)
t = tt∗t = t.
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Now let U be an open subset of G such that both the domain and range maps are
injective when restricted to U . Then, by definition of the topology of G, U is a union of
sets Us. Let Us and Ut be two such sets. For all x ∈ dom(ρ(s))∩dom(ρ(t)) we must have
a unique arrow of G in U with domain x. But Us ∪ Ut ⊂ U , and thus both (x, germx s)
and (x, germx t) belong to U , therefore implying that germx s = germx t; that is, there is
an idempotent fx � ss∗tt∗ such that x ∈ dom(ρ(fx)) and fxs = fxt, and thus

(ss∗tt∗)s =
( ∨

x

fx

)
s =

∨
x

(fxs) =
∨
x

(fxt) = (ss∗tt∗)t.

Hence we have s∗t ∈ E(S). Similarly, considering any point x ∈ cod(ρ(s)) ∩ cod(ρ(t))
we conclude, because there must be a unique element in U with codomain x, that
s(s∗st∗t) = t(s∗st∗t) (this is immediate from the previous argument because x ∈
dom(ρ(s∗)) ∩ dom(ρ(t∗))), and thus st∗ ∈ E(S). We have thus proved that the set Z

that indexes the cover U =
⋃

s∈Z Us is compatible. Since S is complete, we have a join∨
Z in S, and it is now clear that U∨

Z = U , for

U∨
Z =

⋃
s∈Z

Us = U,

where we have used the fact that the assignment U(·) : s �→ Us preserves all the joins of
compatible sets, which is a consequence of the fact that its restriction to the idempotents
does, since that restriction is an isomorphism. Finally, we obviously have ρ(s) = ρG(Us)
for all s ∈ S; that is, U(·) commutes with the representations ρ and ρG, and thus (S, ρ)
and (I(G), ρG) are the same up to isomorphism. �

Hence, we have arrived at a bijection.

Corollary 5.4. Let X be a topological space. The notions of complete inverse semi-
group over X and of étale groupoid with unit space X are equivalent up to isomorphisms.

5.2. Localic germ groupoids

It is easy to see that if the space X is sober (i.e. X is homeomorphic to the spectrum
of a locale—equivalently, the assignment x �→ {x} from X to the set of irreducible closed
subsets of X is a bijection [2]), then any full representation ρ : S → I(X) of a complete
inverse semigroup is uniquely determined by the isomorphism E(S) ∼= Ω(X) because it
follows from a representation by conjugation on the locale E(S): each s ∈ S determines
an isomorphism of open sublocales

↓(ss∗) → ↓(s∗s),

whose inverse image homomorphism sends each f ∈ ↓(s∗s) to sfs∗. Hence, Corollary 5.4
restricts to an equivalence that generalizes in a nice way, albeit non-functorially, the
well-known duality between spatial locales and sober spaces [2]. In order to state it, let
us follow the terminology of [7] and call any complete and infinitely distributive inverse
semigroup an abstract complete pseudogroup (ACP), and let us say that an ACP is spatial
if its locale of idempotents is spatial. We shall abbreviate Germs(S, ρ) to Germs(S).
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Corollary 5.5. The notions of spatial ACP and of sober étale groupoid (an étale
groupoid whose unit space is sober) are equivalent: if S is an ACP and G is a sober étale
groupoid, then we have isomorphisms

G ∼= Germs(I(G)),

S ∼= I(Germs(S)).

This correspondence is a particular instance of the more general correspondence
between localic étale groupoids and ACPs in [7], which does not depend on spatiality
and uses quantales as a mediating structure.

(1) If S is an ACP, then its full join completion, denoted by L∨(S), is a quantale of a
kind known as an inverse quantal frame.

(2) Any inverse quantal frame Q determines an associated localic étale groupoid G(Q).

(3) Any localic étale groupoid G has an associated ACP I(G).

(4) If S is an ACP, then S ∼= I(G(L∨(S))).

(5) If Q is an inverse quantal frame, then Q ∼= L∨(I(G(Q))).

(6) If G is a localic étale groupoid, then G ∼= G(L∨(I(G))).

Theorem 5.6. If S is a spatial ACP, then G(L∨(S)) is spatial and its spectrum is
homeomorphic to Germs(S).

Proof. If S is a spatial ACP, it is easy to verify that both L∨(S) and Ω(Germs(S))
are inverse quantal frames whose associated inverse semigroups of partial units [7] are
isomorphic to S. Hence, the two quantales L∨(S) and Ω(Germs(S)) are isomorphic and
the intended result follows. �

This explains how the results in [7] can be regarded as being a generalization of those
of Corollary 5.5 in the sense of allowing one to define the notion of ‘germ groupoid’ in
the absence of spatiality, and in toposes beyond the category of sets: G(L∨(S)) is the
required generalization of Germs(S). It also suggests localic versions of the examples seen
in this paper: a suitable generalization of the universal groupoid of an inverse semigroup
is likely to involve the patch construction for locales [1], whereas translation groupoids
should rely on Stone–Čech compactification for locales, as described in [2] for example.

We conclude with a simple observation regarding germs and the points of inverse
quantal frames.

Corollary 5.7. Let S be an ACP. The germs of S can be identified with the filters
F of S that are compatibly prime in the sense that, for all compatible sets Z ⊂ S, if∨

Z ∈ F , then z ∈ F for some z ∈ Z.
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Proof. The germs of S correspond to the locale points of L∨(S), which are the homo-
morphisms of locales L∨(S) → 2, where 2 is the two-element chain. The universal prop-
erty of the principal ideal embedding S → L∨(S) [7] identifies the points with the
non-zero maps p : S → 2 that preserve binary meets and joins of compatible sets, and
thereby with the subsets p−1(1), which are the intended filters. �

By direct computation it can be verified that this identification is strict: the germs,
which are subsets of S, are precisely the compatibly prime filters.
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