MULTIPLIERS FOR HARDY SPACES ON LOCALLY COMPACT VILENKIN GROUPS

C. W. ONNEWEER and T. S. QUEK

(Received 20 January 1991; revised 10 June 1991)

Communicated by I. Raeburn

Abstract

In a recent paper the authors proved a multiplier theorem for Hardy spaces $H^p(G)$, 0 , defined on a locally compact Vilenkin group G. The assumptions on the multiplier were expressed in terms of the "norms" of certain Herz spaces <math>K(1/p - 1/r, r, p) with r restricted to $1 \le r < \infty$ and p < r. In the present paper we show how this restriction on r may be weakened to $p \le r < \infty$. Furthermore, we present two modifications of our main theorem and compare these with certain results for multipliers on $L^p(\mathbb{R}^n)$ -spaces, 1 , due to Seeger and to Cowling, Fendler and Fournier. We also discuss the sharpness of some of our results.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43 A 22; secondary 43 A 15, 43 A 70.

1. Introduction

Throughout this paper G will denote a locally compact Vilenkin group, that is to say, G is a locally compact Abelian topological group containing a strictly decreasing sequence of open compact subgroups $(G_n)_{-\infty}^{\infty}$ such that

(i) $\sup\{\operatorname{order}(G_n/G_{n+1}): n \in \mathbb{Z}\} < \infty$,

(ii)
$$\bigcup_{n=\infty}^{\infty} G_n = G$$
 and $\bigcap_{n=\infty}^{\infty} G_n = \{0\}$.

The dual group of G is denoted by Γ and for each $n \in \mathbb{Z}$ we set

 $\Gamma_n = \{ \gamma \in \Gamma : \gamma(x) = 1 \text{ for all } x \in G_n \}.$

© 1993 Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00

We choose Haar measures μ on G and λ on Γ such that $\mu(G_0) = \lambda(\Gamma_0) = 1$. Then $(\mu(G_n))^{-1} = \lambda(\Gamma_n) \coloneqq m_n$ for each $n \in \mathbb{Z}$. It is an easy consequence of condition (i) for G that for every $\alpha > 0$ there exists a constant C > 0, C depending only on α , such that for every $k \in \mathbb{Z}$, both

(1.1)
$$\sum_{j=k}^{\infty} (m_j)^{-\alpha} \leq C(m_k)^{-\alpha},$$

and

(1.2)
$$\sum_{j=-\infty}^{k} (m_j)^{\alpha} \leq C(m_k)^{\alpha}.$$

The metric d on $G \times G$ defined by d(x, x) = 0 and $d(x, y) = (m_n)^{-1}$ if $x - y \in G_n \setminus G_{n+1}$ generates the original topology on G. For $x \in G$ we set |x| = d(x, 0). If A is any set then χ_A will denote the characteristic function of A. Also, for each $n \in \mathbb{Z}$ we set $\Delta_n = m_n \chi_{G_n}$. It is easy to see that the Fourier transform of Δ_n is given by $(\Delta_n)^{\wedge} = \chi_{\Gamma_n}$. In [5] the definition and a brief summary of the basic properties of the spaces of test functions $\mathscr{S}(G)$ and distributions $\mathscr{S}'(G)$ are given. We now present the definition of the Herz spaces and the Hardy spaces on G.

DEFINITION 1.1. Let $\alpha \in \mathbb{R}$ and $0 < p, q \le \infty$. A measurable function $f: G \to \mathbb{C}$ belongs to the Herz space $K(\alpha, p, q)$ if

$$\|f\|_{K(\alpha,p,q)} \coloneqq \left(\sum_{l=-\infty}^{\infty} ((m_l)^{-\alpha} \|f\chi_{G_l\setminus G_{l+1}}\|_p)^q\right)^{1/q} < \infty,$$

with the usual modification if $q = \infty$.

DEFINITION 1.2. Let $0 . A distribution <math>f \in \mathscr{S}'(G)$ belongs to the Hardy space $H^p(G)$ if the function $f^* : G \to \mathbb{C}$ defined by $f^*(x) = \sup_l |f * \Delta_l(x)|$ belongs to $L^p(G)$. We set $||f||_{H^p} = ||f^*||_p$.

DEFINITION 1.3. A function $a : G \to \mathbb{C}$ is a (p, ∞) atom, 0 , ifthere exists a set*I* $of the form <math>x + G_n$ such that (i) supp $a \subset I$, (ii) $||a||_{\infty} \le (\mu(I))^{-1/p} = (m_n)^{1/p}$, and (iii) $\int_G a(x) d\mu(x) = 0$.

In [5] it was shown that the Hardy spaces $H^p(G)$ can also be characterized in the usual way in terms of (p, ∞) atoms on G. The space of (Fourier) multipliers of $H^p(G)$ will be denoted by $\mathscr{M}(H^p)$; thus $\phi \in \mathscr{M}(H^p)$ if $\phi \in L^{\infty}(\Gamma)$ and if there exists a constant C > 0 such that for all $f \in H^p(G)$ we have $\|(\phi \hat{f})^{\vee}\|_{H^p} \leq C \|f\|_{H^p}$. We mention here that in order to show that a function $\phi \in L^{\infty}(\Gamma)$ belongs to $\mathscr{M}(H^p)$ it is sufficient to show the existence of a constant C > 0 such that for all $k \in \mathbb{Z}$ and every (p, ∞) atom a with supp $a \subset G_n$ for some $n \in \mathbb{Z}$ and $\|a\|_{\infty} \leq (m_n)^{1/p}$ we have $\|(\phi_k \hat{a})^{\vee}\|_{H^p} = \|(\phi_k)^{\vee} * a\|_{H^p} \leq C$, where $\phi_k = \phi \chi_{\Gamma_k}$; see Remark (4.2) in [5] for further details.

2. Multipliers on Hardy spaces $H^p(G)$

Throughout this section we shall use the notation $\phi_k = \phi \chi_{\Gamma_k}$ and $\phi^k = \phi \chi_{\Gamma_{k+1} \setminus \Gamma_k}$, where $\phi \in L^{\infty}(\Gamma)$ and $k \in \mathbb{Z}$.

Before stating the main result of the paper, Theorem 2.1, we first prove two simple lemmas.

LEMMA 2.1. Let 0 . Let <math>f, g be measurable functions on G such that supp $g \subset G_n$ for some $n \in \mathbb{Z}$ and both f and g are constant on the cosets of G_k in G for some $k \ge n$. Then we have for every $x \in G$, $|f * g(x)|^p \le (m_k)^{1-p} |f|^p * |g|^p(x)$.

PROOF. Let $\{z_{\alpha} + G_k\}$ denote the collection of different cosets of G_k in G_n ; thus $G_n = \bigcup_{\alpha} z_{\alpha} + G_k$. For every $x \in G$ we have

$$f * g(x) = \sum_{\alpha} \int_{z_{\alpha}+G_k} f(x-t)g(t) d\mu(t)$$
$$= \sum_{\alpha} f(x-z_{\alpha})g(z_{\alpha})(m_k)^{-1}.$$

Therefore,

$$|f * g(x)|^{p} \leq \sum_{\alpha} (m_{k})^{-p} |f(x - z_{\alpha})|^{p} |g(z_{\alpha})|^{p}$$

= $(m_{k})^{1-p} \int_{G} |f(x - t)|^{p} |g(t)|^{p} d\mu(t)$
= $(m_{k})^{1-p} |f|^{p} * |g|^{p}(x).$

[3]

LEMMA 2.2. Let $\alpha > 0$, let p, r > 0 and let $(a_j)_{-\infty}^{\infty}$ be any sequence of real numbers. Consider the following conditions:

(2.1)
$$\sup_{k} (m_{k})^{1-p/r} \left(\sum_{j=k}^{\infty} ((m_{k})^{p/r-p} |a_{j}|^{p})^{\alpha} \right)^{1/\alpha} < \infty,$$

(2.2)
$$\sup_{k} (m_k)^{1-p} \left(\sum_{j=k}^{\infty} (|a_j|^p)^{\alpha} \right)^{1/p} < \infty$$

$$(2.3) \qquad \qquad \sup_{k} (m_k)^{1/p-1} |a_k| < \infty$$

Then

- (i) For 0 , (2.1) is equivalent to (2.3).
- (ii) For 0 , (2.2) is equivalent to (2.3).
- (iii) For p = 1 and 1 < r, (2.2) implies (2.1) and, hence, (2.3).

PROOF. (i) Clearly, (2.1) implies (2.3) for all p, r > 0. Conversely, if (2.3) holds then there exists C > 0 so that for all $j \in \mathbb{Z}$, $|a_j|^p < C(m_j)^{p-1}$. Therefore, for 0 ,

$$(m_k)^{1-p/r} \left(\sum_{j=k}^{\infty} ((m_j)^{p/r-p} |a_j|^p)^{\alpha} \right)^{1/\alpha} \leq C(m_k)^{1-p/r} \left(\sum_{j=k}^{\infty} (m_j)^{(p/r-1)\alpha} \right)^{1/\alpha} \leq C,$$

where the last inequality follows from (1.1).

(ii) Clearly, (2.2) implies (2.3) whenever p > 0. If (2.3) holds we see, like in the proof of (i), that

$$(m_k)^{1-p}\left(\sum_{j=k}^{\infty}|a_j|^{p\alpha}\right)^{1/\alpha} \leq C(m_k)^{1-p}\left(\sum_{j=k}^{\infty}(m_j)^{(p-1)\alpha}\right)^{1/\alpha} < C,$$

because p - 1 < 0.

(iii) For $j \ge k$ and 1 < r we have $(m_j)^{1/r-1} \le (m_k)^{1/r-1}$. Thus, assuming (2.2) with p = 1 we immediately obtain (2.1).

THEOREM 2.1. Let $0 and <math>\phi \in L^{\infty}(\Gamma)$. (a) If $p \le r \le 1$ and if

$$\sup_{k} (m_{k})^{1-p/r} \left(\sum_{j=k}^{\infty} ((m_{j})^{p/r-p} \| (\phi^{j})^{\vee} \|_{K(1/p-1/r,r,p)}^{p})^{2/(2-p)} \right)^{(2-p)/2} < \infty,$$

[4]

then $\phi \in \mathcal{M}(H^p)$. (b) If $1 \le r < \infty$ and

$$\sup_{k} (m_{k})^{1-p} \left(\sum_{j=k}^{\infty} (\|(\phi^{j})^{\vee}\|_{K(1/p-1/r,r,p)}^{p})^{2/(2-p)} \right)^{(2-p)/2} < \infty,$$

then $\phi \in \mathcal{M}(H^p)$.

PROOF. Let a be a (p, ∞) atom with supp $a \subset G_n$ and

$$\|a\|_{\infty} \leq (\mu(G_n))^{-1/p}$$

for some $n \in \mathbb{Z}$. Fix $k \in \mathbb{Z}$, let $f = (\phi_k \hat{a})^{\vee}$ and $f^* = \sup_l |f * \Delta_l|$. Then

$$\|f\|_{H^{p}}^{p} = \int_{G_{n}} (f^{*}(x))^{p} d\mu(x) + \int_{G \setminus G_{n}} (f^{*}(x))^{p} d\mu(x)$$

= A + B, say.

We have

$$A \leq \left(\int_{G_n} (f^*(x))^2 d\mu(x)\right)^{p/2} (\mu(G_n))^{1-p/2} \leq C \|f\|_2^p (m_n)^{p/2-1}$$

$$\leq C \|\phi\|_{\infty}^p \|a\|_2^p (m_n)^{p/2-1} \leq C,$$

because a is a (p, ∞) atom and $\phi \in L^{\infty}(\Gamma)$. To find a similar inequality for B we first observe that Kitada proved in [3] that

$$f^*(x) \leq \sum_{j=n}^{\infty} |(\phi^j)^{\vee} * a_j(x)|,$$

where $a_j = a * (\Delta_{j+1} - \Delta_j)$. Therefore,

$$B\leq \sum_{k=-\infty}^{n-1}\sum_{j=n}^{\infty}\int_{G_k\setminus G_{k+1}}|(\phi^j)^\vee\ast a_j(x)|^p\,d\mu(x).$$

In [3] Kitada also showed that for $x \in G_k \setminus G_{k+1}$ with $k \le n-1$ we have

$$(\phi^j)^{\vee} * a_j(x) = (\phi^j)^{\vee} \chi_{G_k \setminus G_{k+1}} * a_j(x),$$

so that, after an application of Hölder's inequality, we obtain

$$(2.4) \quad B \leq \sum_{j=n}^{\infty} \sum_{k=-\infty}^{n-1} \left(\int_{G_k \setminus G_{k+1}} |(\phi^j)^{\vee} \chi_{G_k \setminus G_{k+1}} * a_j(x)|^r d\mu(x) \right)^{p/r} \mu(G_k \setminus G_{k+1})^{1-p/r}$$

(a) Now we assume that $p \leq r \leq 1$. Since $\operatorname{supp} \phi^j \subset \Gamma_{j+1}$ we see that $(\phi^j)^{\vee}\chi_{G_k \setminus G_{k+1}}$ is constant on the cosets of G_{j+1} in G whenever $k+1 \leq j+1$. Also, a_j is constant on the cosets of G_{j+1} in G and $\operatorname{supp} a_j \subset G_n$ for $j \geq n$. Thus it follows from Lemma 2.1 that

$$B \leq C \sum_{j=n}^{\infty} \sum_{k=-\infty}^{n-1} \left((m_j)^{1-r} \int_{G_k \setminus G_{k+1}} |(\phi^j)^{\vee} \chi_{G_k \setminus G_{k+1}}|^r * |a_j|^r (x) \, d\mu(x) \right)^{p/r} \left(m_k \right)^{p/r-1} \\ \leq C \sum_{j=n}^{\infty} (m_j)^{p/r-p} ||a_j||_r^p \sum_{k=-\infty}^{n-1} (m_k)^{p/r-1} ||(\phi^j)^{\vee} \chi_{G_k \setminus G_{k+1}}||_r^p.$$

Thus,

$$B \leq C \sum_{j=n}^{\infty} (m_j)^{p/r-1} \|a_j\|_r^p \|(\phi^j)^{\vee}\|_{K(1/p-1/r,r,p)}^p$$

$$\leq C \left(\sum_{j=n}^{\infty} \|a_j\|_r^2\right)^{p/2} \left(\sum_{j=n}^{\infty} ((m_j)^{p/r-p} \|(\phi^j)^{\vee}\|_{K(1/p-1/r,r,p)}^p)^{2/(2-p)}\right)^{(2-p)/2}.$$

Since $a_j = a * (\Delta_{j+1} - \Delta_j)$ implies that $\hat{a}_j = \hat{a} \chi_{\Gamma_{j+1} \setminus \Gamma_j}$, we see that

$$\sum_{j=n}^{\infty} \|a_j\|_r^2 \le \sum_{j=n}^{\infty} \|a_j\|_2^2 (\mu(G_n))^{2/r-1} = (m_n)^{1-2/r} \sum_{j=n}^{\infty} \|\hat{a}_j\|_2^2$$
$$\le (m_n)^{1-2/r} \|\hat{a}\|_2^2 \le (m_n)^{2/p-2/r}.$$

Therefore, using the assumption of the theorem, we see that $B \leq C$ and we may conclude that $\phi \in \mathcal{M}(H^p)$.

(b) Next, assume that $1 < r < \infty$. Applying Young's inequality in inequality (2.4) we see that

$$B \leq C \sum_{j=n}^{\infty} \sum_{k=-\infty}^{n-1} (m_k)^{p/r-1} \| (\phi^j)^{\vee} \chi_{G_k \setminus G_{k+1}} \|_r^p \| a_j \|_1^p$$

[6]

$$\leq C \sum_{j=n}^{\infty} \|a_{j}\|_{1}^{p} \|(\phi^{j})^{\vee}\|_{K(1/p-1/r,r,p)}^{p}$$

$$\leq C \left(\sum_{j=n}^{\infty} \|a_{j}\|_{1}^{2}\right)^{p/2} \left(\sum_{j=n}^{\infty} \left(\|(\phi^{j})^{\vee}\|_{K(1/p-1/r,r,p)}^{p}\right)^{2/(2-p)}\right)^{(2-p)/2}$$

$$\leq C (m_{n})^{1-p} \left(\sum_{j=n}^{\infty} \left(\|(\phi^{j})^{\vee}\|_{K(1/p-1/r,r,p)}^{p}\right)^{2/(2-p)}\right)^{(2-p)/2} .$$

Thus, by assumption, $B \leq C$ and we may again conclude that $\phi \in \mathcal{M}(H^p)$.

Our first observation is that Theorem 2.1 combined with Lemma 2.2 immediately implies Corollary 2.1 below. Corollaries 2.2 and 2.3 are simply restatements of Theorem 2.1 in case $p = 1 \le r$ and in case 0 , respectively.

COROLLARY 2.1. Let
$$0 and $p < r < \infty$. If $\phi \in L^{\infty}(\Gamma)$ and if

$$\sup_{k} (m_{k})^{1/p-1} \| (\phi^{k})^{\vee} \|_{K(1/p-1/r,r,p)} < \infty,$$$$

then $\phi \in \mathcal{M}(H^p)$.

COROLLARY 2.2. If $\phi \in L^{\infty}(\Gamma)$ satisfies

$$\sum_{j=-\infty}^{\infty} \|(\phi^j)^{\vee}\|_{K(1-1/r,r,1)}^2 < \infty$$

for some $r \geq 1$, then $\phi \in \mathcal{M}(H^1)$.

COROLLARY 2.3. Let $0 . If <math>\phi \in L^{\infty}(\Gamma)$ and if

$$\sum_{j=-\infty}^{\infty} ((m_j)^{1/p-1} \| (\phi^j)^{\vee} \|_p)^{2p/(2-p)} < \infty,$$

then $\phi \in \mathcal{M}(H^p)$.

REMARK 1. Combining the techniques used in the proof of Theorem 2.1 with those used to prove Theorem (4.7) in [5] we can actually show that under the assumptions of Corollary 2.1 the function ϕ is a multiplier on the powerweighted Hardy spaces $H^p_{\alpha}(G)$ for α satisfying $-1 + p/r < \alpha \le 0$. Thus, we can extend Corollary (4.8) in [5] from $0 and <math>1 \le r < \infty$ to 0and <math>p < r.

[7]

REMARK 2. Corollary 2.1 with 0 and <math>r = 1 may be considered as the analogue on G of Theorem 3a in [1], in which Baernstein and Sawyer obtained a comparable result for multipliers on Hardy spaces defined on \mathbb{R}^n .

We now turn to a discussion of the sharpness of the preceding corollaries. We first consider Corollaries 2.1 and 2.2.

THEOREM 2.2. (a) Let $0 and <math>p < r < \infty$. There exists $\phi \in L^{\infty}(\Gamma)$ such that

$$\sup_{k} (m_{k})^{1/p-1} \| (\phi^{k})^{\vee} \|_{K(1/p-1/r,r,q)} < \infty$$

for every q > p and $\phi \notin \mathcal{M}(H^p)$.

(b) Let $1 < r < \infty$. There exists $\phi \in L^{\infty}(\Gamma)$ such that

(2.6)
$$\sum_{j=-\infty}^{\infty} \|(\phi^j)^{\vee}\|_{K(1-1/r,r,q)}^2 < \infty$$

for every q > 1 and $\phi \notin \mathcal{M}(H^1)$.

PROOF. For part (a) we may use the example described in the proof of Theorem (4.9) in [5]. A careful reading of this proof shows that the restriction $1 \le r$ in that theorem can be relaxed to p < r. To prove (b), choose a sequence $(\varepsilon_l)_1^{\infty}$ with each $\varepsilon_l = \pm 1$ such that

$$\sum_{l=1}^{\infty} \frac{\varepsilon_l}{l} \left(1 - \frac{\mu(G_{-l+1})}{\mu(G_{-l})} \right)$$

converges. Define $\psi : \Gamma \to \mathbb{C}$ by

$$\psi(\gamma) = \sum_{l=1}^{\infty} \varepsilon_l l^{-1} \lambda(\Gamma_{-l}) (F_{-l+1} - F_{-l})(\gamma),$$

where $F_k = (\chi_{G_k})^{\wedge} = (\lambda(\Gamma_k))^{-1}\chi_{\Gamma_k}$. If $\gamma \notin \Gamma_0$ then $\psi(\gamma) = 0$, whereas if $\gamma \in \Gamma_{-k+1} \setminus \Gamma_{-k}$ for some $k \ge 1$ then

$$\begin{aligned} |\psi(\gamma)| &\leq |\varepsilon_k k^{-1} \lambda(\Gamma_{-k}) (\lambda(\Gamma_{-k+1}))^{-1}| \\ &+ \left| \sum_{l=k+1}^{\infty} \varepsilon_l l^{-1} \lambda(\Gamma_{-l}) \left((\lambda(\Gamma_{-l+1})^{-1} - (\lambda(\Gamma_{-l}))^{-1}) \right|. \end{aligned}$$

294

Thus, $\psi \in L^{\infty}(\Gamma) \cap L^{1}(\Gamma)$. Next, choose $\gamma_{1} \in \Gamma_{1} \setminus \Gamma_{0}$ and define $\phi : \Gamma \to \mathbb{C}$ by $\phi(\gamma) = \psi(\gamma - \gamma_{1})$. Then $\phi \in L^{\infty}(\Gamma) \cap L^{1}(\Gamma)$ and supp $\phi \subset \Gamma_{1} \setminus \Gamma_{0}$ so that $\phi^{1} = \phi$ and $\phi^{j} = 0$ for $j \neq 1$. Furthermore,

$$\phi^{\vee}(x) = \sum_{l=1}^{\infty} \varepsilon_l l^{-1} \lambda(\Gamma_{-l}) (\chi_{G_{-l+1}} - \chi_{G_{-l}})(x) \gamma_1(x)$$

and for any q > 1 and any r with $1 \le r < \infty$ we have

$$\begin{split} \|\phi^{\vee}\|_{K(1-1/r,r,q)}^{q} &= \sum_{l=1}^{\infty} \left((m_{-l})^{1/r-1} l^{-1} \lambda(\Gamma_{-l}) \|\chi_{G_{-l+1}} - \chi_{G_{-l}}\|_{r} \right)^{q} \\ &\leq \sum_{l=1}^{\infty} l^{-q} (m_{-l})^{(1/r-1+1-1/r)q} < \infty. \end{split}$$

Thus (2.6) holds. Moreover,

$$\|\phi^{\vee}\|_{1} = \sum_{l=1}^{\infty} l^{-1} \lambda(\Gamma_{-l})(\mu(G_{-l+1}) - \mu(G_{-l})) = \infty,$$

that is $\phi^{\vee} \notin L^1(G)$. Next, if we define $g : G \to \mathbb{C}$ by $g(x) = \Delta_1(x) - \Delta_0(x)$ then g is a multiple of a $(1, \infty)$ atom so that $g \in H^1(G)$. Also, $\hat{g} = \chi_{r_1 \setminus r_0}$ and this implies that $(\phi \hat{g})^{\vee} = \phi^{\vee}$ with $\phi^{\vee} \notin H^1(G)$. This proves that $\phi \notin \mathcal{M}(H^1)$.

In the following theorem we consider the sharpness of Corollary 2.3.

THEOREM 2.3. For every p with 0 and every <math>q with $2p/(2-p) < q \le \infty$ there exists $\phi \in L^{\infty}(\Gamma)$ such that

(i) $\sum_{j=-\infty}^{\infty} ((m_j)^{1/p-1} \| (\phi^j)^{\vee} \|_p)^q < \infty,$

(ii)
$$\phi \notin \mathcal{M}(H^p)$$
.

PROOF. For each $j \in \mathbb{N}$ decompose G_0 into the mutually disjoint cosets of G_j in G_0 , say,

$$G_0 = \bigcup_{i=1}^{m_j} b_{j,i} + G_j.$$

Define $g_j : G \to \mathbb{C}$ by

$$g_j(x) = \sum_{i=1}^{m_j} \left(\frac{m_{j+1}}{m_j} \chi_{b_{j,i}+G_{j+1}} - \chi_{b_{j,i}+G_j} \right)(x).$$

Clearly, supp $g_j \subset G_0$, $\int_G g_j(x) d\mu(x) = 0$ and $||g_j||_2 \leq P^{1/2}$, where $P = \sup_j (m_{j+1}/m_j)$. Moreover, since

(2.7)
$$(g_j)^{\wedge}(\gamma) = \sum_{i=1}^{m_j} \overline{\gamma(b_{j,i})} \frac{1}{m_j} (\chi_{\Gamma_{j+1}} - \chi_{\Gamma_j})(\gamma),$$

we see that supp $(g_j)^{\wedge} \subset \Gamma_{j+1} \setminus \Gamma_j$. Next, for each $n \in \mathbb{N}$ define $h_n : G \to \mathbb{C}$ by

$$h_n(x) = \sum_{j=1}^n g_j(x).$$

Then supp $h_n \subset G_0$, $\int_G h_n(x) d\mu(x) = 0$ and $||h_n||_2 \leq P^{1/2} n^{1/2}$. Thus h_n is a multiple of a (p, 2) atom and $||h_n||_{H^p} \leq P^{1/2} n^{1/2}$.

We now turn to the definition of the function $\phi \in L^{\infty}(\Gamma)$ satisfying conditions (i) and (ii). For each $j \in \mathbb{N}$ choose an element $z_j \in G_{-j} \setminus G_{-j+1}$ and define $f_j : G \to \mathbb{C}$ by

$$f_j(x) = j^{-\alpha} (m_{j+1} \chi_{z_j + G_{j+1}} - m_j \chi_{z_j + G_j})(x),$$

where $\alpha = \frac{1}{2}((2-p)/2p + 1/q)$. Then $||f_j||_p \le Cj^{-\alpha}(m_j)^{1-1/p}$ and

(2.8)
$$(f_j)^{\wedge}(\gamma) = j^{-\alpha} \overline{\gamma(z_j)} (\chi_{\Gamma_{j+1}} - \chi_{\Gamma_j})(\gamma),$$

so that supp $(\hat{f}_j)^{\wedge} \subset \Gamma_{j+1} \setminus \Gamma_j$ and $\|\hat{f}_j\|_{\infty} \leq j^{-\alpha} \leq 1$. Define $\phi : \Gamma \to \mathbb{C}$ by

$$\phi(\gamma) = \sum_{j=1}^{\infty} (f_j)^{\wedge}(\gamma).$$

Clearly, $\phi \in L^{\infty}(\Gamma)$, $\phi^{j} = 0$ for $j \leq 0$ and $\phi^{j} = (f_{j})^{\wedge}$ for $j \geq 1$; moreover, ϕ satisfies condition (i). Furthermore, for each $n \in \mathbb{N}$ and $x \in G$ we have

$$(\phi(h_n)^{\wedge})^{\vee}(x) = \left(\sum_{j=1}^{\infty} (f_j)^{\wedge} \sum_{j=1}^{n} (g_j)^{\wedge}\right)^{\vee}(x)$$
$$= \sum_{j=1}^{n} (f_j * g_j)(x).$$

Thus, $(\phi(h_n)^{\wedge})^{\vee} \in L^1(G)$, and it follows immediately from (2.7) and (2.8) that for every $j \ge 1$,

$$(f_j * g_j)(x) = j^{-\alpha} \sum_{i=1}^{m_j} \left(\frac{m_{j+1}}{m_j} \chi_{z_j + b_{j,i} + G_{j+1}} - \chi_{z_j + b_{j,i} + G_j} \right)(x).$$

296

[10]

Finally, assume $\phi \in \mathcal{M}(H^p)$. Then there exists C > 0 so that

$$C \|h_n\|_{H^p}^p \ge \|(\phi(h_n)^{\wedge})^{\vee}\|_{H^p}^p \ge \|\phi(h_n)^{\wedge})^{\vee}\|_p^p$$

$$\ge \sum_{j=1}^n j^{-\alpha p} \mu \left(z_j + \bigcup_{i=1}^{m_j} (b_{j,i} + G_j) \right) = \sum_{j=1}^n j^{-\alpha p}$$

$$> C n^{1-\alpha p},$$

that is, $||h_n||_{H^p} \ge Cn^{1/p-\alpha}$. Since q > 2p/(2-p) implies $1/p - \alpha > 1/2$, we have a contradiction of the inequality $||h_n||_{H^p} \le P^{1/2}n^{1/2}$. This shows that $\phi \notin \mathcal{M}(H^p)$, which completes the proof of Theorem 2.3.

REMARK 3. In Section 4 of [4] it was shown that if $\phi \in L^{\infty}(\Gamma)$ satisfies $\sum_{-\infty}^{\infty} \|(\phi^j)^{\vee}\|_1 < \infty$ then $\phi \in \mathcal{M}(H^1)$, and that there exists $\phi \in L^{\infty}(\Gamma)$ such that $\sup_j \|(\phi^j)^{\vee}\|_1 < \infty$ and $\phi \notin \mathcal{M}(H^1)$. Clearly, the case p = 1 of Corollary 2.3 and of Theorem 2.3 sharpen these results from [4].

In view of the fact that condition (i) in Theorem 2.3 is not sufficient to guarantee that $\phi \in \mathcal{M}(H^p)$ it is of some interest to determine what kind of additional condition would be sufficient to obtain $H^p(G)$ -multipliers. The following theorem gives one type of solution for this problem.

THEOREM 2.4. Let $0 . Let <math>\phi \in L^{\infty}(\Gamma)$ satisfy

$$\sum_{j=-\infty}^{\infty} ((m_j)^{1/p-1} \| (\phi^j)^{\vee} \|_p)^q < \infty$$

for some q with $2p/(2-p) \leq q \leq \infty$. Define β by $\beta = 2pq/((2-p)q-2p)$ (if $q = \infty$ we take $\beta = 2p/(2-p)$, if q = 2p/(2-p) we take $\beta = \infty$). Let $(\alpha_j)_{-\infty}^{\infty} \in l^{\beta}(\mathbb{Z})$ and define $\psi : \Gamma \to \mathbb{C}$ by $\psi(\gamma) = \sum_{-\infty}^{\infty} \alpha_j \phi^j(\gamma)$. Then $\psi \in \mathcal{M}(H^p)$.

PROOF. We have

$$\sum_{j=-\infty}^{\infty} \left((m_j)^{1/p-1} \| (\psi^j)^{\vee} \|_p \right)^{2p/(2-p)} \\ \leq \left(\sum_{j=-\infty}^{\infty} ((m_j)^{1/p-1} \| (\phi^j)^{\vee} \|_p)^q \right)^{2p/(2-p)q} \left(\sum_{j=-\infty}^{\infty} |\alpha_j|^{2pq/(q(2-p)-2p)} \right)^{1-2p/(2-p)q} \\ < \infty.$$

Thus it follows from Corollary 2.4 that $\psi \in \mathcal{M}(H^p)$.

We explicitly state the most interesting case of Theorem 2.4, namely the case when $q = \infty$.

COROLLARY 2.4. Let $0 . Let <math>\phi \in L^{\infty}(\Gamma)$ satisfy

$$\sup_{j}(m_{j})^{1/p-1}\|(\boldsymbol{\phi}^{j})^{\vee}\|_{p}<\infty$$

and let $(\alpha_j)_{-\infty}^{\infty} \in l^{2p/(2-p)}(\mathbb{Z})$. If $\psi = \sum_{-\infty}^{\infty} \alpha_j \phi^j$ then $\psi \in \mathcal{M}(H^p)$.

REMARK 4. Corollary 2.4 is an extension to H^p -spaces, $0 , (and on locally compact Vilenkin groups instead of on <math>\mathbb{R}^n$) of Theorem 2 in [2], in which a similar result was obtained for multipliers on $L^p(\mathbb{R}^n)$ -spaces, 1 .

In the next theorem we show, at least for the case p = 1, the sharpness of Corollary 2.4.

THEOREM 2.5. Let $(\alpha_j)_{-\infty}^{\infty} \in l^{\infty}(\mathbb{Z}) \setminus l^2(\mathbb{Z})$. Then there exists $\phi \in L^{\infty}(\Gamma)$ such that $\sup_j \|(\phi^j)^{\vee}\|_1 < \infty$ and $\psi = \sum_{-\infty}^{\infty} \alpha_j \phi^j \notin \mathcal{M}(H^1)$.

PROOF. We consider the case when $\sum_{1}^{\infty} |\alpha_j|^2 = \infty$. Then there exists a sequence $(\lambda_j)_1^{\infty}$ in $l^2(\mathbb{N})$ such that $\sum_{1}^{\infty} |\alpha_j \lambda_j| = \infty$. Assume $|\alpha_1 \lambda_1| > 0$. We define a sequence $(N_k)_0^{\infty}$ inductively. Let $N_0 = 1$ and, assuming $N_k \in \mathbb{N}$ has been defined, define $N_{k+1} \in \mathbb{N}$ so that $N_{k+1} > N_k$ and

$$\sum_{j=N_k+1}^{N_{k+1}} |\alpha_j \lambda_j| > 2^{k+1} |\alpha_1 \lambda_1|.$$

Next, for each $j \in \mathbb{N}$ choose a character $\gamma_j \in \Gamma_{j+1} \setminus \Gamma_j$ and define $\phi : \Gamma \to \mathbb{C}$ by

$$\phi(\gamma) = \sum_{j=1}^{\infty} (A_{-j})^{\wedge} (\gamma - \gamma_j),$$

where, for $n \in \mathbb{Z}$, we set

$$A_n(x) = (\mu(G_n \setminus G_{n+1}))^{-1} \chi_{G_n \setminus G_{n+1}}(x).$$

Then $\phi \in L^{\infty}(\Gamma)$ and $(\phi^j)^{\vee}(x) = 0$ if $j \leq 1$ and $(\phi^j)^{\vee}(x) = \gamma_j(x)A_{-j}(x)$ if $j \geq 1$. Clearly, $\sup_j \|(\phi^j)^{\vee}\|_1 = 1$.

298

Next, for $k \in \mathbb{N}$ define $g_k : \Gamma \to \mathbb{C}$ by

$$g_k(\gamma) = \sum_{j=N_k+1}^{N_{k+1}} \lambda_j \chi_{\Gamma_{-N_k}}(\gamma - \gamma_j).$$

If $h_k = (g_k)^{\vee}$ then

$$h_k(x) = \sum_{j=N_k+1}^{N_{k+1}} \lambda_j \gamma_j(x) \Delta_{-N_k}(x)$$

and we have $\int_G h_k(x) d\mu(x) = 0$ and

$$||h_k||_2^2 = \sum_{j=N_k+1}^{N_{k+1}} |\lambda_j|^2 m_{-N_k}.$$

Also, since supp $h_k \subset G_{-N_k}$, we see that

$$\|(|\cdot|h_k)\|_2^2 \leq (m_{-N_k})^{-2} \|h_k\|_2^2$$

Therefore,

$$\|h_k\|_2^{1/2} \|(|\cdot|h_k)\|_2^{1/2} \le \left(\sum_{j=1}^\infty |\lambda_j|^2\right)^{1/2}.$$

Consequently h_k is a (1, 2, 1) molecule centered at $0 \in G$ (see [4] for a definition of (1, 2, 1) molecules on G); this implies that $h_k \in H^1(G)$ and that there exists a constant $C_1 > 0$, C_1 independent of h_k , so that $||h_k||_{H^1} \leq C_1 (\sum_{1}^{\infty} |\lambda_j|^2)^{1/2}$. Now define $\psi : \Gamma \to \mathbb{C}$ by $\psi = \sum_{1}^{\infty} \alpha_j \phi^j$ and assume that $\psi \in \mathcal{M}(H^1)$.

Now define $\psi : \Gamma \to \mathbb{C}$ by $\psi = \sum_{i=1}^{\infty} \alpha_{i} \phi^{i}$ and assume that $\psi \in \mathcal{M}(H^{1})$. Then there exists a constant $C_{2} > 0$ so that for every $h \in H^{1}(G)$ we have $\|(\psi \hat{h})^{\vee}\|_{H^{1}} \leq C \|h\|_{H^{1}}$. Choose $k_{0} \in \mathbb{N}$ so that

$$2^{k_0+1}|\alpha_1\lambda_1| \geq 2C_1C_2\left(\sum_{1}^{\infty}|\lambda_j|^2\right)^{1/2}$$

Now

$$(\psi \hat{h}_{k_0})^{\vee}(x) = \sum_{j=N_{k_0}+1}^{N_{k_0+1}} \alpha_j \lambda_j \gamma_j(x) A_{-j}(x)$$

and we see that

$$\|(\psi \hat{h}_{k_0})^{\vee}\|_{H^1} \geq \|(\psi \hat{h}_{k_0})^{\vee}\|_1 = \sum_{j=N_{k_0+1}}^{N_{k_0}+1} |\alpha_j \lambda_j| \geq 2C_2 \|h_{k_0}\|_{H^1},$$

[14]

a contradiction. Thus we have shown that $\psi \notin \mathcal{M}(H^1)$.

Finally, if $\sum_{-\infty}^{-1} |\alpha_j|^2 = \infty$, then except for some minor changes, an argument like the preceding one leads again to functions ϕ and ψ with the required properties. This completes the proof of Theorem 2.5.

As our final result we present a theorem whose proof is a minor variation of the proof of Theorem 2.1. We then briefly indicate how this theorem is related to a result of Seeger in [6] about multipliers for $L^p(\mathbb{R}^n)$ -spaces.

THEOREM 2.6. Let $0 . Assume <math>\phi \in L^{\infty}(\Gamma)$ satisfies

$$\sup_{k} \sum_{j=k}^{\infty} ((m_{j})^{1/p-1} \| (\phi^{j})^{\vee} \chi_{G \setminus G_{k}} \|_{p})^{2p/(2-p)} < \infty.$$

Then $\phi \in \mathcal{M}(H^p)$.

PROOF. We use the same notation as in the proof of Theorem 2.1(a) and we consider the case r = p. Then $A \le C$ and we have, according to (2.5),

$$B \leq C \sum_{j=n}^{\infty} (m_j)^{1-p} \|a_j\|_p^p \sum_{k=-\infty}^{n-1} \|(\phi^j)^{\vee} \chi_{G_k \setminus G_{k+1}}\|_p^p$$

= $C \sum_{j=n}^{\infty} (m_j)^{1-p} \|a_j\|_p^p \|(\phi^j)^{\vee} \chi_{G \setminus G_n}\|_p$
 $\leq C \left(\sum_{j=n}^{\infty} \|a_j\|_p^2\right)^{p/2} \left(\sum_{j=n}^{\infty} ((m_j)^{1-p} \|(\phi^j)^{\vee} \chi_{G \setminus G_n}\|_p^p)^{2/(2-p)}\right)^{(2-p)/2} \leq C.$

Thus $\phi \in \mathcal{M}(H^p)$.

COROLLARY 2.5. Let $0 and <math>\phi \in L^{\infty}(\Gamma)$. If there exists $\varepsilon > 0$ such that for every $n \in \mathbb{Z}$,

$$\sup_{j}(m_{j})^{\varepsilon+1/p-1}\|(\phi^{j})^{\vee}\chi_{G\backslash G_{n}}\|_{p}\leq C(m_{n})^{\varepsilon},$$

then $\phi \in \mathcal{M}(H^p)$.

PROOF. For each $n \in \mathbb{Z}$ we have

$$\sum_{j=n}^{\infty} ((m_j)^{1/p-1} \| (\phi^j)^{\vee} \chi_{G \setminus G_n} \|_p)^{2p/(2-p)} \leq C(m_n)^{\varepsilon 2p/(2-p)} \sum_{j=n}^{\infty} (m_j)^{-\varepsilon 2p/(2-p)} \leq C,$$

by inequality (1.1), because $\varepsilon 2p/(2-p) > 0$. Thus we may conclude that $\phi \in \mathcal{M}(H^p)$.

REMARK 5. In [6, Theorem 1] Seeger used a restriction on

(2.9)
$$\sup_{t>0} |(\phi m(t\cdot))^{\vee} \chi_{|x|\geq \omega}||_1$$

to prove that certain $m \in L^{\infty}(\mathbb{R}^n)$ are multipliers for $L^p(\mathbb{R}^n)$, 1 , see [6, Section 1] for details. On G the analogue of (2.9) is

$$\sup_{\sigma} \|(\phi^j)^{\vee} \chi_{G \setminus G_n}\|_1.$$

Thus, Corollary 2.5 may be considered as a version on locally compact Vilenkin groups G of an extension to Hardy spaces H^p , $0 , of Seeger's multiplier theorem for <math>L^p(\mathbb{R}^n)$ -spaces, 1 .

CONCLUDING REMARK. At various places throughout this paper we have compared our results to certain multiplier theorems for Lebesgue or Hardy spaces defined on \mathbb{R}^n . The results presented here raise obvious questions and conjectures for possible additional multiplier theorems for the $H^p(\mathbb{R}^n)$ -spaces. We intend to report on some of these questions elsewhere.

References

- [1] A. Baernstein and E. T. Sawyer, *Embedding and multiplier theorems for* $H^p(\mathbb{R}^n)$ (Amer. Math. Soc., Providence, 1985).
- [2] M. Cowling, G. Fendler and J. J. F. Fournier, 'Variants of Littlewood-Paley theory', *Math. Ann.* **285** (1989), 333–342.
- [3] T. Kitada, 'H^p-multiplier theorems on certain totally disconnected groups', Sci. Rep. Hirosaki Univ. 34 (1987), 1–7.
- [4] C. W. Onneweer and T. S. Quek, 'H^p multiplier results on locally compact Vilenkin groups', Quart. J. Math. Oxford Ser. (2) 40 (1989), 313–323.
- [5] —, 'Multipliers on weighted Hardy spaces over locally compact Vilenkin groups, I', J. Austral. Math. Soc. (Series A) 48 (1990), 472–496.
- [6] A. Seeger, 'Some inequalities for singular convolution operators in L^p-spaces', Trans. Amer. Math. Soc. 308 (1988), 259–272.

University of New Mexico Albuquerque, NM 87131 USA National University of Singapore Singapore 0511 Republic of Singapore

by ine

[15]