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An Algorithm for Fat Points on P2

Brian Harbourne

Abstract. Let F be a divisor on the blow-up X of P2 at r general points p1, . . . , pr and let L be the total
transform of a line on P2. An approach is presented for reducing the computation of the dimension of the
cokernel of the natural map µF : Γ

(
OX(F)

)
⊗ Γ
(
OX(L)

)
→ Γ

(
OX(F) ⊗ OX(L)

)
to the case that F is am-

ple. As an application, a formula for the dimension of the cokernel of µF is obtained when r = 7, com-
pletely solving the problem of determining the modules in minimal free resolutions of fat point subschemes
m1 p1 + · · · + m7 p7 ⊂ P2. All results hold for an arbitrary algebraically closed ground field k.

I Introduction

Let p1, . . . , pr ∈ PN be general points in projective space, let m1, . . . ,mr be nonnega-
tive integers and let I(pi) be the homogeneous ideal (in the homogeneous coordinate ring
R = k[PN ] of PN ) generated by all homogeneous polynomials vanishing at pi . A fat point
subscheme Z = m1 p1 + · · · + mr pr ⊂ PN is the subscheme corresponding to the homo-
geneous ideal I(Z) = I(p1)m1 ∩ · · · ∩ I(pr)mr (which it is easy to see is generated by all
homogeneous polynomials vanishing at each point pi to order at least mi). If mi ≤ 1 for
all i, we say Z is a thin point subscheme. We denote by I(Z)t the homogeneous component
of I(Z) of degree t .

The first module in any minimal free homogeneous resolution of I(Z) is, up to graded
isomorphism,

⊕
t R[−t]νt , where νt (or νt (Z) if for clarity Z needs to be specified) is the

dimension of the cokernel of the obvious multiplication map µt−1(Z) : I(Z)t−1 ⊗ R1 →
I(Z)t . (More concretely, νt is the number of generators in degree t of any minimal set of
homogeneous generators of I(Z).)

In the case of a thin point subscheme Z = p1 + · · · + pr (with pi general), the di-
mensions of the homogeneous components I(Z) j are known so one can determine νt (Z)
from the rank of µt−1(Z), and the maximal rank conjecture of [3], [4] is that µt should
be of maximal rank for all t (meaning that µt should always be either injective or surjec-
tive). Although this conjecture has been verified in a number of cases (including N = 2),
it remains open in general. For the more general but analogous situation of fat points, no
conjecture has been put forward. This is partly because the multiplication maps often fail
to have maximal rank, and partly because little is known about how otherwise the ranks
and numbers of generators should behave, but also because one typically first wants to un-
derstand Hilbert functions, and Hilbert functions of fat point ideals are themselves not yet
well understood.

However, understanding of Hilbert functions for N = 2, although not complete, is
much better than in higher dimensions. Indeed, there are comprehensive conjectures (see
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[6], [7], [13]) which in various situations are known to hold. Thus some attention has
begun to be paid to the behavior of generators and resolutions of ideals of fat point sub-
schemes for N = 2, both for its own interest and as an initial means of developing one’s
understanding in general.

So, for the rest of this paper we will assume N = 2, in which case, since a fat points
subscheme of P2 is arithmetically Cohen-Macaulay, a minimal free graded resolution of
I(Z) is of the form 0 → F1 → F0 → I(Z) → 0; the values νt determine F0 =

⊕
t R[−t]νt ,

which with the Hilbert function of I(Z) then determines F1. Thus, for N = 2, given the
numbers of generators and the Hilbert function of I(Z), one also has the modules in a
minimal free resolution of I(Z).

I.1 The Particular Interest of νβ+1 and r = 7

Denote by α(Z) (or by just α when Z is understood) the least degree t such that I(Z)t 	= 0
and by β(Z) the least degree t such that the base locus of I(Z)t is 0-dimensional (said
alternately, β(Z) is the least degree t such that the elements of I(Z)t have no nontrivial
common divisor). Given Z = m1 p1 + · · · + mr pr, if the points pi are sufficiently general,
conjecturally (see [6], [7], [13]) the regularity of I(Z) is at most β(Z) + 1, assuming which
the general problem of finding νt reduces by Lemmas 2.9 and 2.10 of [10] to computing
Hilbert functions and νβ+1, and thus the case t = β + 1 is of particular interest. In [2]
Fitchett develops a means of handling νβ+1 in the case that α < β, but it remains unclear
what to do when α = β. The naive hope that in this situation µβ might have maximal rank
is quashed by examples from [11] showing that maximal rank can fail.

It is for r = 7 general points of P2 that we can first hope to begin to understand the
source of such failures, since for r ≤ 6 there are none. For example, for r ≤ 5, it follows
from [1] that νβ+1 = 0 always holds (or see [10]), and hence that µβ has maximal rank,
and for r = 6, although νβ+1 need not always vanish, [2] shows that µβ always has maximal
rank.

I.2 The Geometric Translation

Thus in this paper we resolve the problem of determining νβ+1 when r = 7, thereby working
out the resolution of ideals defining fat point subschemes involving r = 7 general points of
P2, taking, as did [2], [10], [11], a geometric approach in which we obtain results for line
bundles on certain rational surfaces. Those readers unfamiliar with the by-now standard
translation of questions about fat points in P2 to questions about line bundles on blow
ups of P2 may find it helpful to refer to [10]. In particular, for any fat point subscheme
Z = m1 p1 + · · · + mr pr ⊂ P2, there is for each degree t a corresponding divisor F (which
is effective and numerically effective when t ≥ β) on the blow up X of P2 at the points pi

such that the dimension of I(Z)t is h0
(
X,OX(F)

)
, and νt+1 is the dimension of the cokernel

S(F, L) of the natural map µF : Γ
(
OX(F)

)
⊗Γ
(
OX(L)

)
→ Γ
(
OX(F)⊗OX (L)

)
, where L ⊂ X

is the total transform to X of a line on P2.

For the reader’s convenience, we recall some standard notions from geometry. A divisor
(as always, on a given smooth projective surface) which is a nonnegative (integer) linear
combination of curves is said to be effective. A divisor F (or its linear equivalence class [F])
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is numerically effective if F · C ≥ 0 for every effective divisor C , while an ample divisor
is one whose intersection with every effective divisor is positive. On the other hand, an
exceptional curve is a smooth rational curve of self-intersection−1; for example, the curve
obtained by blowing up a smooth point on a projective surface is an exceptional curve. The
exceptional curves on a smooth projective rational surface are known; see [16], [14].

Now let F be a divisor on a surface X obtained by blowing up distinct points p1, . . . , pr

of P2. Let L be the total transform to X of a line on P2. We denote by Cl(X) the group
of divisors on X modulo linear equivalence. This quotient, the divisor class group, is a
free abelian group. The classes [L], [E1], . . . , [Er] (where Ei is the exceptional curve ob-
tained by blowing up pi) give a basis of Cl(X) which we refer to as an exceptional configu-
ration. (In this notation, the divisor F referred to above, corresponding in degree t to Z =
m1 p1 + · · ·+ mr pr ⊂ P2, is F = tL−m1E1− · · · −mrEr.) Also, there is a bilinear form, the
intersection form, on Cl(X), in which the basis elements [L], [E1], . . . , [Er] are orthogonal
and such that−[L]2 = [E1]2 = · · · = [Er]2 = −1.

I.3 Discussion of Results

So, in fact, in this paper we solve the problem of computing the dimension of the cokernel
of µF for arbitrary divisors F on a blow up X of P2 at 7 general points. Our solution is,
first, algorithmically to reduce to the case that F is ample, and second, to show that µF is
surjective when F is ample. This approach mimics what was already known concerning
the determination of the Hilbert function of I(Z) involving r ≤ 9 general points of P2. As
mentioned above, given t , there is a corresponding divisor F on the blow up X of P2 at the
r points such that the dimension of I(Z)t is equal to h0

(
X,OX(F)

)
. But as shown in [5]

and [9] and as is discussed in [8], one can for r ≤ 9 general points algorithmically reduce
the computation of h0

(
X,OX(F)

)
to the case that F is numerically effective, in which case

h0
(

X,OX(F)
)
= (F2 − F · KX)/2 + 1.

For computing the dimension of the cokernel of µF , the reduction to ample F depends
on three hypotheses, (A1), (A2) and (A3), which we explicitly mention below and which
are known to hold for a divisor on a surface obtained by blowing up r ≤ 8 general points.
If we consider r generic points, these hypotheses continue to hold for r = 9 and they have
been conjectured to hold for all r. (Alternatively, since (A2) and (A3) pose conditions on
possibly infinite sets of divisors, only finitely many of which are relevant at any one time,
(A2) and (A3) are slightly stronger than needed for our purposes. So in fact slightly weaker
but more complicated versions of (A2) and (A3) can also be used which are known to hold
for r = 9 general points, and which are conjectured to hold for any r general points.)

Thus the main difficulty of working out resolutions of fat point subschemes involving
r > 7 general points is not the reduction to ampleness. It is rather that for r > 7, µF need
not be surjective when F is ample. If r < 7, the surjectivity of µF for an ample divisor F
already follows from [1], [2], [10]. In this paper, Theorem IV.1 extends this to r = 7. But
in both cases, the tools used to show that the cokernel of µF vanishes for an ample divisor
F only bound the dimension of the cokernel in general, and the bounds obtained are not
always delicate enough to pin down the dimension of the cokernel completely when r > 7.
If the set of problematical cases were not too large, one could hope to handle them ad hoc,
and this seems possible in case r = 8, but as of this writing this does not seem workable for
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r > 8. (This is related to the fact that K⊥X is negative definite for r < 9, but indefinite for
all r > 8, where KX denotes the canonical class of X and K⊥X denotes the subspace of Cl(X)
of classes of divisors D with D · KX = 0.)

Our main result is Theorem I.6.1 (but see also Corollary IV.5), which explicitly deter-
mines the dimension of the cokernel of µF for any numerically effective divisor F on X.
We regard this as our main result because, from the point of view of a homogeneous ideal
defining a fat points subscheme Z =

∑
i mi pi ⊂ P2, numerically effective divisors are

more natural than ample divisors. For example, if I(Z)t 	= 0, let V ⊂ R be the subspace
of elements obtained from I(Z)t by dividing out by a greatest divisor common to all of the
elements of I(Z)t . Then, under the standard translation, V corresponds to |F| for some
numerically effective divisor F on the blow up of P2 at the points pi . From the dimensions
of the linear system |F| and of the cokernel of µF we can find the dimension of the kernel
of µF , which is the same as that of V ⊗ R1 → R, whose kernel has the same dimension as
that of µt (Z), which with the dimensions of I(Z)t and I(Z)t+1, allows us to compute the
dimension of the cokernel of µt (Z), and hence νt+1(Z).

Putting it all together, we obtain an algorithm for determining νt (Z) for each t for any
fat point subscheme Z involving r ≤ 7 general points of P2. As discussed above, since the
Hilbert function of I(Z) is known, this gives an algorithm for determining up to graded
isomorphism the modules in the minimal free resolution of the ideal I(Z). (As of this
writing, an implementation of this algorithm can be run via the World-Wide Web at the
author’s web site; the specific web address is
http://www.math.unl.edu/∼bharbour/cgi-bin/7fatpts.cgi .)

I.4 Algorithm’s Underlying Assumptions

Our algorithm assumes that:

(A1) X is obtained by blowing up r distinct points of P2, that
(A2) the only curves of negative self-intersection on X are exceptional curves, and that
(A3) h1

(
X,OX(F)

)
= 0 for any effective, numerically effective divisor F.

By [8], (A3) holds for any r ≤ 8 points, general or not. For r ≤ 8 general points, X is
Del Pezzo, so−KX is ample, so by adjunction (A2) holds too.

More generally, since KX = −3[L] + [E1 + · · · + Er], it follows for all r by duality that
h2
(
X,OX(F)

)
= 0 whenever F · L > −3 (such as is the case if F is numerically effective or

effective). In addition, [8] shows F2 ≥ 0 for any numerically effective divisor F. Moreover,
for an arbitrary divisor F it is true that h0

(
X,OX(F)

)
= h0
(
X,OX(F − E)

)
if E is effective,

reduced and irreducible with F · E < 0. By iteratively replacing F by F − E whenever E is
an exceptional curve and F ·E < 0 (see Remark I.4.2), we thus eventually obtain a divisor F
such that either F ·L < 0, and hence h0

(
X,OX(F)

)
= 0, or such that F ·L ≥ 0 and F ·E ≥ 0

for every exceptional curve E.
But in the latter case, h0

(
X,OX(F)

)
> 0 if and only if (F2 − KX · F)/2 + 1 > 0. This

is because if h0
(
X,OX(F)

)
> 0, then F would be numerically effective (because F meets

all exceptional curves nonnegatively and by (A2) there are no other curves of negative self-
intersection), and hence by (A3) h0

(
X,OX(F)

)
= (F2−KX ·F)/2 + 1. Conversely, F ·L ≥ 0

means h2
(
X,OX(F)

)
= 0 so (F2−KX ·F)/2+1 > 0 implies h0

(
X,OX(F)

)
> 0 by Riemann-

Roch (and then, as before, h0
(
X,OX(F)

)
= (F2 − KX · F)/2 + 1).
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In any case, we end up knowing h0
(
X,OX(F)

)
. Thus it is not an additional assumption

to assume that h0
(
X,OX(F)

)
is always available for any divisor class [F] on X.

But since we can assume that we always can compute h0
(
X,OX(F)

)
, we can also assume

that given the class of any effective divisor F, we can determine the classes of the divisors
occurring as fixed components of |F|. This is because for any effective divisor F there is
in terms of the classes [L], [E1], . . . , [Er] a finite list of classes such that if C is an effective
divisor for which F − C is effective, then the class of C is on the list: if [F] = d[L] −∑

i>0 mi[Ei] and [C] = d ′[L] −
∑

i>0 m ′i [Ei], where F, C and F − C are all effective,
then d ≥ d ′ ≥ 0, d ′ ≥ m ′i and d − d ′ − mi ≥ −m ′i for all i > 0. Thus we have only
finitely many classes to test, the test being that C is a fixed component of |F| if and only if
h0
(

X,OX(F)
)
= h0
(
X,OX(F −C)

)
.

We also have:

Lemma I.4.1 Given (A1), (A2) and (A3), let F 	= 0 be an effective divisor on X with F ·E > 0
for every exceptional curve E and such that |F| is fixed component free. Then either F2 > 0
and F is ample, or F2 = 0 and |F| is composed with a pencil |D| where D is a smooth rational
curve.

Proof Note that F is numerically effective. If F2 > 0, by the Hodge Index Theorem
and (A2), there can be no effective divisors C with F ·C = 0, so F is ample.

If, instead, F2 = 0, we want to show that |F| = |tD| for some smooth rational curve D.
By Riemann-Roch and (A3), 1 < h0

(
X,OX(F)

)
= 1 − KX · F/2, so −KX · F > 0. In any

case, |F| defines a morphism to P1. By Stein factorization, F is linearly equivalent to tG for
some t > 0, where |G| defines a morphism to P1 with connected fibers, G2 = 0 and G is
free. If G is irreducible, then G = sC for some prime divisor C , so C2 = 0 and−KX ·C > 0
(since −KX · F > 0), hence by adjunction C is a smooth rational curve and |G| and hence
|F| is composed with the pencil |C|. If G is not irreducible, then among the components of
G are two distinct reduced and irreducible components B and C which meet. I.e., B ·C > 0,
and since G2 = 0, we also have B2 < 0 and C2 < 0, so, by (A2), B and C are exceptional
and, since (B + C) · G = 0, also B · C = 1. By (A3) it follows that |B + C| is a pencil, all
elements of which are either irreducible or sums of exceptional curves. As the latter can
happen in only finitely many ways, a general element D of |B + C| is irreducible, hence as
before, a smooth rational curve. Moreover, G−B−C is effective and D + (G−B−C) is an
element of |G| and thus connected, but D + (G−B−C) 	= G so D is disjoint from G; hence
G−B−C = 0 so G is linearly equivalent to D and |F| is composed with the pencil |D|.

Remark I.4.2 The procedure described above for determining h0
(
X,OX(F)

)
depends on

checking F · E for all exceptional curves E. This is no problem when r ≤ 8, since then there
are only finitely many exceptional curves. More generally, there is an action on Cl(X) by a
Weyl group, W ; see Section III. Given (A1) and (A2), in the terminology of the proof of
Theorem 2.1 of [5], no nodal classes are effective, so W acts transitively on the exceptional
configurations of X, and, for r > 2, the set of classes of exceptional curves is precisely a
single W -orbit. For simplicity, let us say r > 2. Then the proof of [5, Theorem 2.1] gives
an algorithm (under different hypotheses but still applicable here) for finding an element
w ∈W such that either:
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(i) w(F) · L < 0;
(ii) w(F) · Ei < 0 for some i > 0; or
(iii) w(F) is a nonnegative sum of the classes [L], [L−E1], [2L−E1−E2], [3L−E1−E2−

E3], . . . , [3L− E1 − · · · − Er].

But w(F)·L < 0 means that w(F)·[C] < 0, where C is either Ei for some i > 0 or L−E1−E2,
so in cases (i) or (ii) with C being one of the exceptional curves whose class is [Ei] for some
i > 0 or [L−E1−E2], we have F ·w−1C < 0. In case (iii), it is easy to check that the classes
[L], [L− E1] and [2L− E1− E2] are numerically effective while [3L− E1− · · · − Ei] meets
every exceptional class nonnegatively (since [3L−E1−· · ·−Ei] = −KX + [Ei+1 + · · ·+ Er]),
and hence that F · E ≥ 0 for every exceptional curve E. Thus, for an arbitrary F, we have an
effective means of finding an E with F · E < 0, or of deciding none such exists.

I.5 The Algorithm

So here is our algorithm. Assume (A1), (A2) and (A3) and let [F] be a divisor class on
X. Our goal is to compute dim ker(µF), from which we can obtain our ultimate goal
of computing dim cok(µF) via the obvious formula dim cok(µF) = h0

(
X,OX(F + L)

)
−

3h0
(
X,OX(F)

)
+ dim ker(µF). The following algorithm reduces the problem of computing

dim ker(µF) for an arbitrary F to the case that F is ample.

START Given F, compute h0
(
X,OX(F)

)
.

I. If h0
(
X,OX(F)

)
≤ 1, then clearly µF is injective: STOP.

II. Assume h0
(
X,OX(F)

)
> 1:

1. If |F| has a fixed component C , then clearly µF and µF−C have kernels of the same
dimension, and we replace F by F −C . After a finite number of such subtractions,
we reduce to the case that F is effective and |F| is fixed component free, without
changing dim ker(µF): go to step 2.

2. Assume h0
(
X,OX(F)

)
≥ 2 and |F| has no fixed components.

a. If F · E = 0 for some exceptional curve E, consider the following cases.

i. If E · L ≥ 2, then replace F by F − E and return to START. (Replacing F by
F − E reduces h0

(
X,OX(F)

)
by 1, but by Lemma II.4 does not change the

dimension of the kernel of µF .)

ii. If E · L = 1, then Proposition II.2(e) gives the dimension of the kernel of µF :
STOP.

iii. If E · L = 0, then contracting E gives a birational morphism π : X → X ′,
with respect to which OX(F) = π∗OX ′(F ′) for some (in fact canonically
determined) F ′, where F ′ is an effective divisor on X ′ and fixed component
free and µF and µF ′ have kernels of the same dimension. But r has been
reduced by 1, because X ′ is a blow up of P2 at r − 1 points. So replace X by
X ′ and F by F ′, and return to step 2.

b. We thus reduce to the case that F 	= 0 is effective, fixed component free and has
F · E > 0 for all exceptional curves E.

i. If F2 = 0, then Lemma II.5 applies by Lemma I.4.1, giving dim ker(µF):
STOP.
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ii. If F2 > 0, then F is ample by Lemma I.4.1: STOP.

I.6 The Main Result

By Theorem IV.1, for r ≤ 7 general points of P2, µF is surjective when F is ample. Thus, the
algorithm above determines the rank ofµF for an arbitrary F on a blowing up of P2 at r ≤ 7
general points. But as mentioned above, it is also desirable to have an explicit result in the
case that F is numerically effective. An analysis of our algorithm for numerically effective
divisors leads to an especially simple such result, Theorem I.6.1.

So say r = 7. Denote h0
(
X,OX(F + L)

)
− 3h0

(
X,OX(F)

)
by λ ′F and let λF be the

maximum of 0 and λ ′F ; note that λ ′F = dim cok(µF)−dim ker(µF) and that µF has maximal
rank if and only if dim cok(µF) = λF . Let tF be the number of exceptional curves E on X
with E · L = 3 such that E · F = 0. It is well known (see [14], [16]) that [E] is the class
of an exceptional curve with E · L = 3 if and only if [E] is, up to permutation of the Ei ,
[3L − 2E1 − E2 − · · · − E7]. We denote these seven by C1 = 3L − 2E1 − E2 − · · · − E7,
C2 = 3L− E1 − 2E2 − · · · − E7, etc. We now have:

Theorem I.6.1 Let F be a numerically effective divisor on the blow up X of P2 at 7 gen-
eral points, [L], [E1], . . . , [E7] being the corresponding exceptional configuration. Then
dim cok(µF) = max(tF, λF), unless [F] is, up to permutation of the Ei, either 0, [B], [B +C4],
[B + C4 + C5], [B + C4 + C5 + C6], [B + C4 + C5 + C6 + C7], [G] or [G + C7], where
B = 4L− 2E1 − 2E2 − 2E3 − E4 − · · · − E7 and G = 5L− 2E1 − · · · − 2E6 − E7, in which
case µF is injective and dim cok(µF) = λF.

Although Theorem I.6.1 does not explicitly address the failure of µF to have maximal
rank, it follows from Theorem I.6.1that µF fails to have maximal rank if and only if tF > λF

with [F] not among the stated exceptions. (For an explicit example, if H is ample, then µF

fails to have maximal rank for F = H + (H ·Ci)Ci : by Theorem IV.1, µH and hence µF are
not injective and thus 1 = tF = dim cok(µF) by Theorem I.6.1.)

On the other hand, as a corollary of Theorem I.6.1 we see for a numerically effective
F ⊂ X that µF never fails by much to have maximal rank: µF is never more than 7 short of
maximal rank.

II Generalities

We first recall a useful exact sequence from [15]. For sheaves F and G on X, we will denote
the kernel of the natural map H0(X,F) ⊗ H0(X,G) → H0(X,F ⊗ G) by R(F,G) and the
cokernel by S(F,G). When F = OX(F) and G = OX(G) for divisors F and G on X, we will,
if it is convenient, just write R(F,G) and S(F,G).

Proposition II.1 Let C ⊂ X be a curve on a smooth projective surface X, and let A and B be
divisors on X, so we have the exact sequence 0→ OX(A−C)→ OX(A)→ OC⊗OX(A)→ 0.
Then there is an exact sequence

0→ R
(
OX(A−C),OX(B)

)
→ R
(
OX(A),OX(B)

)
→ R
(
OC ⊗ OX(A),OX(B)

)
.

If the restriction homomorphisms H0
(
X,OX(A)

)
→ H0

(
C,OX(A) ⊗ OC

)
and

H0
(
X,OX(A + B)

)
→ H0

(
C,OX(A + B) ⊗ OC

)
are surjective (for example, if
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h1
(
X,OX(A−C)

)
= 0 = h1

(
X,OX(A + B−C)

)
), this extends to an exact sequence

0→ R
(
OX(A−C),OX(B)

)
→ R
(
OX(A),OX(B)

)
→ R
(
OC ⊗ OX(A),OX(B)

)
→ S
(
OX(A−C),OX(B)

)
→ S
(
OX(A),OX(B)

)
→ S
(
OC ⊗ OX(A),OX(B)

)
→ 0.

It will be helpful to have bounds on the dimensions of R and S.

Proposition II.2 Let F be an effective divisor with h1
(
X,OX(F)

)
= 0 on the blowing up

X of P2 at r distinct points p1, . . . , pr, let [L], [E1], . . . , [Er] be the corresponding exceptional
configuration, and assume that F · E1 ≥ · · · ≥ F · Er. Let d = F · L, h = h0

(
X,OX(F)

)
,

li = h0
(

X,OX

(
F − (L− Ei)

))
, and qi = h0

(
X,OX(F − Ei)

)
.

(a) Then µF has maximal rank if and only if max(0, 2h− d− 2) = dim R(F, L).

(b) If h1
(

X,OX

(
F − (L− E1)

))
= 0 = h1

(
X,OX(F − E1)

)
, then l1 + q1 = 2h− d− 2.

(c) In any case, we have max(0, 2h− d − 2) ≤ dim R(F, L) ≤ l1 + q1.

(d) We also have l1 + l2 ≤ dim R(F, L) ≤ l1 + l2 + h0
(

X,OX

(
F + (L − E1 − E2)

))
−

h0
(
X,OX(F)

)
.

(e) If [L − E1 − E2] is the class of an irreducible curve with F · (L − E1 − E2) = 0,

then dim R(F, L) = l1 + l2 and dim S(F, L) = h1
(

X,OX

(
F − (L − E1)

))
+

h1
(

X,OX

(
F − (L− E2)

))
.

Proof Proposition II.2 (a,b,c) is just Corollary 4.2 of [11]. Consider (d). If we choose co-
ordinates x, y and z where x and y pass through p1 and y and z through p2, then (from the
proof of Lemma 4.1 of [11]) li is just the dimension of the kernel of the restriction of µF

to H0
(
X,OX(F)

)
⊗ Vi → H0

(
X,OX(F + L)

)
, where V1 is the vector space span of x and

y in H0
(
X,OX(L)

)
and where V2 is the vector space span of z and y. It is easy to see that

these two kernels have only 0 in common; this gives the lower bound of (d). For the upper

bound, it suffices to show l1 +q1 ≤ l1+l2 +

(
h0
(

X,OX

(
F+(L−E1−E2)

))
−h0
(
X,OX(F)

))
.

Since [F−(L−E2)] = [F−E1−E], where E is the effective divisor in the class [L−E1−E2],
this follows from taking cohomology of 0 → OX

(
F − (L − E2)

)
→ OX(F − E1) →

OE ⊗ OX(F − E1) → 0, using OE ⊗ OX(F − E1) ∼= OE ⊗ OX(F + E) and the fact that

h1
(
X,OX(F)

)
= 0 implies that h0

(
X,OX

(
F + (L − E1 − E2)

))
− h0

(
X,OX(F)

)
= h0
(
E,OE ⊗ OX(F + E)

)
.

Finally consider (e); then E is irreducible and hence a fixed component of |F + E|, so (d)
gives us l1 + l2 = dim R(F, L). From dim S(F, L) = h0

(
X,OX(F + L)

)
− 3h0

(
X,OX(F)

)
+

dim R(F, L), we thus obtain dim S(F, L) = h0
(
X,OX(F + L)

)
− 3h0

(
X,OX(F)

)
+

h0
(

X,OX

(
F − (L − E1)

))
+ h0
(

X,OX

(
F − (L − E2)

))
. But h1

(
X,OX(F)

)
= 0 and

hence h1
(
X,OX(F + L)

)
= 0 so Riemann-Roch gives h0

(
X,OX(F + L)

)
= h0
(
X,OX(F)

)
+

F · L + 2. Riemann-Roch also gives h0
(

X,OX

(
F − (L − Ei)

))
= h0

(
X,OX(F)

)
+

h1
(

X,OX

(
F−(L−Ei )

))
−1−F ·(L−Ei ) for i = 1, 2. Now substituting into our expression

https://doi.org/10.4153/CJM-2000-006-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-006-6


Fat Point Algorithm 131

for dim S(F, L) and simplifying (using F · L − F · (L − E1) − F · (L − E2) = −F · E = 0)
gives the result.

Remark II.3 Note that the conclusion dim R(F, L) = l1 + l2 of Proposition II.2 (e) does
not need the hypothesis that h1

(
X,OX(F)

)
= 0. The argument that l1 + l2 ≤ dim R(F, L)

does not use h1
(

X,OX(F)
)
= 0, and by Lemma 4.1 of [11] neither does dim R(F, L) ≤ l1 +

q1. Finally, with E as in the proof of Proposition II.2 (e), we have h0
(

E,OE

(
(F−E1) ·E

))
=

0, so l2 = q1 follows by taking cohomology of 0 → OX

(
F − (L − E2)

)
→ OX(F − E1) →

OE

(
(F − E1) · E

)
→ 0.

Lemma II.4 Let F 	= 0 be an effective divisor on a smooth projective surface X, and let E be
an exceptional curve with F · E = 0.

(a) Say |F| is fixed component free. Then h0
(

X,OX(F − E)
)
> 0, and if h1

(
X,OX(F)

)
= 0,

then h1
(
X,OX(F − E)

)
= 0.

(b) Say X is a blowing up of points of P2 and L is the total transform of a line. If E · L ≥ 2,
then the kernels of µF and µF−E have the same dimension.

Proof (a) Since F ·E = 0, we have an exact sequence 0→ OX(F−E)→ OX(F)→ OE → 0.
Since |F| has no fixed components, h0

(
X,OX(F)

)
> 1 and H0

(
X,OX(F)

)
→ H0(E,OE) is

surjective. From the latter, our sequence is exact on global sections, so our conclusions
follow.

(b) Because E · L ≥ 2, it follows that h0
(
X,OX(L − E)

)
= 0, but clearly

H0
(
X,OX(L− E)

)
= R
(
OE,OX(L)

)
, so R

(
OE,OX(L)

)
= 0. Now apply Proposition II.1 to

the exact sequence in the proof of (a) to get an isomorphism R(F − E, L) → R(F, L); i.e.,
the kernels of µF and µF−E have the same dimension.

Lemma II.5 Let X be a blowing up of distinct points of P2 with corresponding exceptional
configuration [L], [E1], . . . , [Er]. Let D ⊂ X be a smooth rational curve with D2 = 0 and let
m ≥ 0 be a nonnegative integer. Then dim R(mD, L) = m if D · L = 1 and R(mD, L) = 0 if
D · L > 1.

Proof If L · D > 1, then (as in the proof of Lemma II.4 (b)) 0 = H0
(
X,OX(L − D)

)
=

R
(
OD,OX(L)

)
. Applying Proposition II.1 and induction on s to 0 → OX(sD) →

OX

(
(s + 1)D

)
→ OD → 0 gives R(mD, L) = 0.

If L · D = 1, then [D] must be [L− Ei] for some i. By [10] (or directly), S(mD, L) = 0,
so dim R(mD, L) = 3h0

(
X,OX(mD)

)
− h0
(
X,OX(mD + L)

)
= 3(m + 1)− (2m + 3) = m.

III Particularities

Now let X be obtained by blowing up r ≤ 8 general points p1, . . . , pr of P2 and let
[L], [E1], . . . , [Er] be the corresponding exceptional configuration. We recall some facts
for which we refer to [5], [9], [12] and [16].
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The exceptional configuration [L], [E1], . . . , [Er] is determined by and in turn deter-
mines a birational morphism X → P2 with a factorization into monoidal transformations.
Since X can have more than one birational morphism to P2, each of which typically factors
in several ways, X can also have more than one exceptional configuration. For example,
if π1 : X → P2 is the morphism determined by [L], [E1], . . . , [Er], and if π2 : X → P2 is
the morphism such that π2π

−1
1 is the quadratic Cremona transformation centered at p1, p2

and p3 (i.e., π2π
−1
1 is the birational map from P2 to P2 given by the linear system of conics

with base points at p1, p2 and p3), then the exceptional configuration determined by π2

(after an appropriate factorization) is [2L − E1 − E2 − E3], [L − E2 − E3], [L − E1 − E3],
[L− E1 − E2], [E4], . . . , [Er].

Any two exceptional configurations are related by an element of the orthogonal group
on Cl(X). Inside the orthogonal group on Cl(X), the subgroup W generated by the re-
flections si , 0 ≤ i < r, where s0(x) = x + (x · [L − E1 − E2 − E3])[L − E1 − E2 − E3]
and si(x) = x + (x · [Ei − Ei+1])[Ei − Ei+1], is known as the Weyl group. For i > 0, the
action of si on [a0L + a1E1 + · · · + arEr] is just to transpose the coefficients ai and ai+1,
while s0 takes [L], [E1], . . . , [Er] to [2L − E1 − E2 − E3], [L − E2 − E3], [L − E1 − E3],
[L − E1 − E2], [E4], . . . , [Er]. More generally, given any pair of exceptional configurations
there is an element of W taking one to the other, and any w ∈ W takes [L], [E1], . . . , [Er]
to another exceptional configuration. This gives a bijection between exceptional configu-
rations and elements of W .

If [F1] and [F2] are divisor classes in the same orbit of W , then hi
(
X,OX(F1)

)
=

hi
(
X,OX(F2)

)
holds for all i. In addition, if F is effective, then h2

(
X,OX(F)

)
= 0, while if F

is numerically effective, then h1
(
X,OX(F)

)
= 0 and |F| is nonempty and fixed component

free.
Given any effective divisor D, we can write [D] = [H] + [N], where H is numerically

effective and N = −
∑

(E · D)E, where the sum is over all exceptional curves E with E ·
D < 0; note that the summands E which appear in N are disjoint. Since, as noted above,
h1
(
X,OX(H)

)
= 0, it is easy to verify that h1

(
X,OX(D)

)
= 0 if and only if no summand

in N occurs with a coefficient of 2 or more (and hence if and only if D · E ≥ −1 for every
exceptional curve E).

For 8 ≥ r 	= 2, the classes of exceptional curves comprise one orbit, W [Er]. (If r = 2,
there are only three classes of exceptional curves, [L−E1−E2], [E1] and [E2], split between
two W -orbits: {[L − E1 − E2]} is one orbit, and {[E1], [E2]} is the other.) For r = 7, up
to permutations of the Ei , the classes of the exceptional curves are just [E7], [L− E1 − E2],
[2L− E1 − · · · − E5], and [3L− 2E1 − E2 − · · · − E7].

Also for r = 7, the classes of numerically effective divisors are precisely the W -orbits of
nonnegative linear combinations of the classes of L, L−E1, 2L−E1−E2, 3L−E1−E2−E3,
. . . , 3L − E1 − · · · − E7. By excluding elements which can be obtained from others (for
example, exclude [2L− E1 − E2], since [2L− E1 − E2] = [L− E1] + [L− E2]), we can give
a more efficient list of generators for the cone of numerically effective divisor classes. We
thereby get the following list of divisors, whose classes give a set of generators (complete up
to permutation of the Ei) for the numerically effective cone:

G1 = 1L− 0E1 − 0E2 − 0E3 − 0E4 − 0E5 − 0E6 − 0E7,
G2 = 2L− 1E1 − 1E2 − 1E3 − 0E4 − 0E5 − 0E6 − 0E7,
G3 = 3L− 2E1 − 1E2 − 1E3 − 1E4 − 1E5 − 0E6 − 0E7,
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G4 = 4L− 2E1 − 2E2 − 2E3 − 1E4 − 1E5 − 1E6 − 0E7,
G5 = 4L− 3E1 − 1E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7,
G6 = 5L− 3E1 − 2E2 − 2E3 − 2E4 − 1E5 − 1E6 − 1E7,
G7 = 5L− 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 0E7,
G8 = 6L− 3E1 − 3E2 − 2E3 − 2E4 − 2E5 − 2E6 − 1E7,
G9 = 7L− 3E1 − 3E2 − 3E3 − 3E4 − 2E5 − 2E6 − 2E7,
G10 = 8L− 3E1 − 3E2 − 3E3 − 3E4 − 3E5 − 3E6 − 3E7,
G11 = 1L− 1E1 − 0E2 − 0E3 − 0E4 − 0E5 − 0E6 − 0E7,
G12 = 2L− 1E1 − 1E2 − 1E3 − 1E4 − 0E5 − 0E6 − 0E7,
G13 = 3L− 2E1 − 1E2 − 1E3 − 1E4 − 1E5 − 1E6 − 0E7,
G14 = 4L− 2E1 − 2E2 − 2E3 − 1E4 − 1E5 − 1E6 − 1E7,
G15 = 5L− 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 1E7,
G16 = 3L− 1E1 − 1E2 − 1E3 − 1E4 − 1E5 − 1E6 − 0E7,
G17 = 4L− 2E1 − 2E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7,
G18 = 5L− 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 1E6 − 1E7,
G19 = 6L− 3E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7 and
G20 = 3L− 1E1 − 1E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7.

Since [G1] is clearly the class of a smooth rational curve, so are [G2], . . . , [G10], since
in fact they all are in the same orbit of W . Likewise, [G11], . . . , [G15] is each the class of a
smooth rational curve, and [G16], . . . , [G20] is each the class of a smooth elliptic curve.

It is also easy to check that each class [Gi] is a sum of classes of exceptional curves and
hence for r = 7 the class of any effective divisor is a sum of classes of exceptional curves. It
now follows for r = 7 (and in any case is well known) that [3L − E1 − · · · − E7] = −KX

is ample and hence so is any class of the form [D] − KX , where D is numerically effective.
Conversely, for r = 7 any ample class [F] is of this form: as noted above, for some w ∈W ,
w[F] is a nonnegative linear combination of the classes of the divisors L, L−E1, 2L−E1−E2,
3L − E1 − E2 − E3, . . . , 3L − E1 − · · · − E7. But w[F] · [E7] = [F] · w−1[E7] > 0 since
w−1[E7] is the class of an exceptional curve and F is ample, so this linear combination
involves −KX and hence is of the form [D] − KX . I.e., [F] = w−1([D] − KX), but W
preserves the numerically effective cone, so in particular w−1[D] is numerically effective.
Finally, w−1(−KX) = −KX since−KX is stabilized by W , so [F] has the required form.

The same argument works for 3 ≤ r < 7; i.e., every ample divisor class is −KX plus a
numerically effective class. The argument fails for 0 ≤ r ≤ 2 (for one thing, −KX is itself
no longer needed as a generator of the numerically effective cone if 0 ≤ r ≤ 2, and, if
r < 2, the class of an effective divisor need not be the sum of classes of exceptional curves).
However, an easy ad hoc argument shows that the conclusion is still true for r = 2, while
for r = 1 the ample divisor classes are [dL − mE1], where d > m, and for r = 0 they are
[dL], where d > 0.

IV Application to 7 Points

As an application of our results above, we will prove Theorem I.6.1. To do so, we need some
additional results. We begin by considering ample divisors.

Theorem IV.1 Let F be an ample divisor on the blowing up X of P2 at t ≤ 7 general points,
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with L the total transform of a line in P2. Then R(F, L) 	= 0 and S(F, L) = 0.

Proof Let [L], [E1], . . . , [Et ] be the exceptional configuration corresponding to the t points
blown up to obtain X. After reindexing, we may assume that F ·E1 ≥ F ·E2 ≥ · · · F ·Et > 0.
If t ≤ 5, then, in fact, S(F, L) = 0 for any numerically effective F by [10], while for t ≤ 2, as
follows from a discussion above, every ample class F is of the form [L] plus a numerically
effective class. But R(L, L) 	= 0, so of course R(F, L) 	= 0, too.

So now we may assume t ≥ 3. Since F is ample, as pointed out above we have [F] =
[D] − KX , where D is numerically effective. But −KX = [3L − E1 − · · · − Et ], so
[F − E1] = [D] + [3L − 2E1 − · · · − Et ] = [D + C1]. For t < 7, [C1] is numerically
effective and hence 0 < h0

(
X,OX(F − E1)

)
= q1 and 0 = h1

(
X,OX(F − E1)

)
. If t = 7,

then [C1] is the class of an exceptional curve, so [F − E1] is the class of an effective divisor,
so 0 < h0

(
X,OX(F − E1)

)
= q1. Moreover, E · (D + C1) ≥ −1 for every exceptional curve

E, so F − E1 is regular (i.e., h1
(
X,OX(F − E1)

)
= 0).

Since h1
(
X,OX(F − E1)

)
= 0, if we show h1

(
X,OX

(
F − (L − E1)

))
= 0, then by

Proposition II.2 we will know that µF has maximal rank and, using Proposition II.2 and
q1 > 0 to see that R(F, L) 	= 0, that S(F, L) must vanish.

From [F] = [D]−KX we obtain [F−(L−E1)] = [D]+[Q], where Q = 2L−E2−· · ·−Et .

Arguing as for h1
(

X,OX(F − E1)
)

, h1
(

X,OX

(
F − (L− E1)

))
also vanishes if t < 7, so we

are reduced to the case that t = 7. Now, [D] is a sum of classes [Ui], where each divisor
Ui is, up to permutation of the Ei , one of the divisors G j of Section III. Recall each of
the classes [G j] is the class of a smooth curve, either rational or elliptic; by considering all
permutations of the Ei for each G j , we explicitly check that Ui · (Ui + Q) ≥ 2 in each case
that [Ui] is the class of an elliptic curve and Ui · (Ui + Q) ≥ −1 in each case that [Ui] is
the class of a rational curve, unless Ui = 5L− 1E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7,
in which case Ui · (Ui + Q) = −2. Thus, letting Ai be a smooth curve with [Ai] = [Ui],
we have h1

(
Ai ,OAi (Ui + Q)

)
= 0 unless Ui = 5L − 1E1 − 2E2 − 2E3 − 2E4 − 2E5 −

2E6 − 2E7. Moreover, (5L − 1E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7) · Ui > 0 for
all i with Ui 	= 5L − 1E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7. Thus, unless each
Ui is 5L − 1E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7, we may assume that U1 is not
5L−1E1−2E2−2E3−2E4−2E5−2E6−2E7, and then from h1

(
X,OX(Q)

)
= 0 it follows

inductively by taking cohomology of

0→ OX(Q + U1 + · · · + Ui−1)→ OX(Q + U1 + · · · + Ui)→ OAi (Q + U1 + · · · + Ui)→ 0

that h1
(
X,OX(D + Q)

)
= 0, as desired.

There remains the case that F = m(5L−1E1−2E2−2E3−2E4−2E5−2E6−2E7)−KX ,
for m > 0. But our assumption that F · E1 ≥ F · E2 ≥ · · · ≥ F · E7 > 0 rules out this case.

Lemma IV.2 Let X be a blowing up of P2 at 7 general points p1, . . . , p7, with [L], [E1], . . . ,
[E7] the corresponding exceptional configuration. Let Ji , i = 1, 2, be smooth curves whose
classes are [L − Ei]. Let 0 	= [F] be numerically effective with F · (L − E1 − E2) = 0 and
F ·E1 ≥ · · · ≥ F ·E7. Then µF fails to have maximal rank if and only if h0

(
X,OX(F− J1)

)
> 0

and h1
(
X,OX(F − J2)

)
> 0.
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Proof By Proposition II.2 (e), l1 > 0 implies that µF is not injective, while
h1
(

X,OX(F − J2)
)
> 0 implies that µF is not surjective.

Conversely, by Proposition II.2 (e), ifµF is neither surjective nor injective, then l1+l2 > 0
and h1

(
X,OX(F − J1)

)
+ h1
(
X,OX(F − J2)

)
> 0, so it suffices to check that l2 > 0 implies

l1 > 0, and that l1 > 0 and h1
(
X,OX(F − J1)

)
> 0 together imply h1

(
X,OX(F − J2)

)
> 0.

Suppose l2 > 0. Thus [F − J2] is a sum of classes of exceptional curves Ti , and, since
F · E1 ≥ F · E2 and hence (F − J2) · E1 > (F − J2) · E2, some summand has [Ti] ·

(E1 − E2) > 0, hence by Riemann-Roch and duality h0
(

X,OX

(
Ti + (E1 − E2)

))
> 0.

Thus l1 = h0
(

X,OX

(
F − J2 + (E1 − E2)

))
> 0, as claimed.

Now assume l1 > 0 and h1
(
X,OX(F − J1)

)
> 0. If F · E1 = F · E2, then F − J1 and

F − J2 are the same, up to permutation of the Ei , hence in the same orbit of the Weyl
group, so h1

(
X,OX(F − J1)

)
= h1

(
X,OX(F − J2)

)
. So suppose that F · E1 > F · E2,

and hence that (F − J1) · E1 ≥ · · · ≥ (F − J1) · E7 ≥ 0. Since [F − J1] has an effective
representative, h1

(
X,OX(F − J1)

)
> 0 implies that there is an exceptional curve E with

(F − J1) · E ≤ −2. Clearly, this E is not among the Ei , so we may assume that [E] is
either [L − E1 − E2], [2L − E1 − · · · − E5] or [3L − 2E1 − E2 − · · · − E7] (since up
to permutation of the Ei , the class of every exceptional curve is one of these, and these
are the permutations minimizing the intersection with F − J1). But whichever of these
is E, we have (F − J2) · E =

(
F − J1 − (E1 − E2)

)
· E ≤ (F − J1) · E ≤ −2, so from

0 → OX(F − J2 − E) → OX(F − J2) → OE

(
(F − J2) · E

)
→ 0, it suffices to check that

h2
(

X,OX(F− J2−E)
)
= 0 to obtain that h1

(
X,OX(F− J2)

)
> 0, as required. But F ·L ≥ 1

(since [F] is nontrivial and numerically effective), so (KX − [F − J2 − E]) · L < 0 (so

0 = h0
(

X,OX

(
KX − (F − J2 − E)

))
= h2

(
X,OX(F − J2 − E)

)
, since L is numerically

effective) unless E ·L = 3 and F ·L = 1. In this latter case [E] = [3L− 2E1−E2−· · ·−E7]
and [F] = [L − E1]. Then KX − [F − J2 − E] = [−E2], which again is not the class of an
effective divisor, so again h2

(
X,OX(F − J2 − E)

)
= 0 by duality.

Lemma IV.3 Let X be as in Lemma IV.2, let E be an exceptional curve with E · L = 1, and
let F be numerically effective such that F · E = 0, but F ·C > 0 for every exceptional curve C
with C · L 	= 1. Then S(F, L) = 0 but R(F, L) 	= 0.

Proof As usual, we may assume that F · E1 ≥ · · · ≥ F · E7, and thus we may assume E is
the exceptional curve whose class is [L− E1 − E2].

First say that F ·C > 0 for every exceptional curve C 	= E. Choose an element w of the
Weyl group W such that w[F] is a sum of nonnegative multiples of the classes of L, L− E1,
2L−E1−E2, 3L−E1−E2−E3, . . . , 3L−E1−· · ·−E7. Note that this sum cannot involve
−KX = [3L−E1−· · ·−E7]. (If it did, then w[F] = [D]−KX for some numerically effective
D, but−KX is ample and hence so would be w[F] and thus [F], contradicting F · E = 0.) It
follows that w[F] ·E7 = 0 and hence that w[E] = [E7]. Since F ·C > 0 for every exceptional
curve C 	= E, we have w[F] · E6 > 0, hence the class of H = 3L− E1 − · · · − E6 appears in
the sum. Thus [F]−w−1[H] is numerically effective, so F · E = 0 implies w−1[H] · E = 0.
But looking over the W -orbit of [H] shows it has only one element perpendicular to E;
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i.e., we must have w−1[H] = [4L − 2E1 − 2E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7]. Thus[
(F−w−1[H]) +

(
w−1[H]− (L−E1)

)]
= [D +C2] for some numerically effective D. Since

[C2] = [3L−1E1−2E2−1E3−1E4−1E5−1E6−1E7] is the class of an exceptional curve,

we see that l1 = h0
(

X,OX

(
F−(L−E1)

))
> 0 and h1

(
X,OX

(
F−(L−E1)

))
= 0; similarly,

h1
(

X,OX

(
F − (L− E2)

))
= 0. By Proposition II.2 (e), R(F, L) 	= 0 and S(F, L) = 0.

Now suppose that F·C = 0 for some exceptional curve C 	= E. If we denote L−Ei−E j by
Ci j , then by hypothesis [C] = [Ci j] for some i and j, and, since F ·E1 ≥ · · · ≥ F ·E7, either
F ·E1 = F · E2 and thus [F] is of the form [2a1L− a1(E1 + · · ·+ Ei)− bi+1Ei+1− · · ·− b7E7]
where a1 > bi+1 ≥ · · · ≥ b7 > 0 and i ≥ 3, or F · E1 > F · E2 and thus [F] is of the form
[(a1 + a2)L − a1E1 − a2(E2 + · · · + Ei) − bi+1Ei+1 − · · · − b7E7] where a1 > a2 > bi+1 ≥
· · · ≥ b7 > 0 and i ≥ 3.

For the former, i = 3, since otherwise F · (2L − E1 − · · · − E5) ≤ 0, so the classes of
the only exceptional curves that F is perpendicular to are [C12], [C13], and [C23]. As above,
w{C12,C13,C23} = {E5, E6, E7} and w[F] is a nonnegative sum of the classes of L, L − E1,
2L−E1−E2, 3L−E1−E2−E3, and 3L−E1−E2−E3−E4, for some w ∈W , and this sum
involves H = 3L−E1−E2−E3−E4. Thus w−1[H] is perpendicular to each of [C12], [C13],
and [C23], but by examining the W -orbit of H, we see there is only one element of W [H]
perpendicular to each of [C12], [C13], and [C23]; i.e., w−1[H] = [6L− 3E1 − 3E2 − 3E3 −
1E4− 1E5− 1E6− 1E7]. But w−1[H]− [L− E1] = [C23] + [4L− 2E1− 2E2− 2E3− 1E4−
1E5− 1E6− 1E7] and w−1[H]− [L− E2] = [C13] + [4L− 2E1− 2E2− 2E3− 1E4− 1E5−
1E6 − 1E7]; since 4L− 2E1 − 2E2 − 2E3 − 1E4 − 1E5 − 1E6 − 1E7 is numerically effective,

we conclude that l1 = h0
(

X,OX

(
F− (L−E1)

))
> 0 and h1

(
X,OX

(
F− (L−E1)

))
= 0 =

h1
(

X,OX

(
F − (L− E2)

))
and hence R(F, L) 	= 0 and S(F, L) = 0 by Proposition II.2 (e).

For the latter, F is perpendicular to C1 j for all 2 ≤ j ≤ i, where, we recall, i ≥ 3.
Reasoning as above, for some w ∈W , [F] is a sum of a numerically effective class [D] and
w−1[Mi], where Mi = 3L− E1 − · · · − E8−i for 3 ≤ i ≤ 6 and M7 = 2L− E1, and where
w−1[Mi] is perpendicular to each C1 j but to no other exceptional curves. As above, there
is in each case a unique possibility for w−1[Mi]: w−1[M3] = [5L − 3E1 − 2E2 − 2E3 −
1E4 − 1E5 − 1E6 − 1E7]; w−1[M4] = [6L − 4E1 − 2E2 − 2E3 − 2E4 − 1E5 − 1E6 − 1E7];
w−1[M5] = [7L−5E1−2E2−2E3−2E4−2E5−1E6−1E7]; w−1[M6] = [8L−6E1−2E2−
2E3−2E4−2E5−2E6−1E7]; and w−1[M7] = [5L−4E1−1E2−1E3−1E4−1E5−1E6−1E7].

In each of the cases 3 ≤ i ≤ 6 one checks as above that w−1[Mi]− [(L−E1)] and hence
[F − (L− E1)] are classes of effective divisors, and similarly that [F − (L− E2)] is the class
of an effective divisor with [F − (L − E2)] · C ≥ −1 for every exceptional curve C . This

implies that l1 > 0 and h1
(

X,OX

(
F − (L− E2)

))
= 0, as required.

We are left with the case [H] = w−1[M7]. We note that h0
(

X,OX

(
H − (L− E1)

))
> 0

and h1
(

X,OX

(
H−(L−E2)

))
= 0, but h0

(
X,OX

(
H−(L−E2)

))
= 0. By Riemann-Roch,

h0
(

X,OX

(
H + D − (L − E2)

))
≥ h0

(
X,OX(D)

)
− 1 + D ·

(
H − (L − E2)

)
. By checking

each of the generators [Gi] of the numerically effective cone (including those obtained by

permutations of the Ei), we see that h0
(

X,OX

(
H + D− (L− E2)

))
is positive unless [D] is

a nonnegative multiple of [3L− 2E1 − 0E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7], in which case
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(
H + D− (L− E2)

)
· (3L− 2E1− 0E2− 1E3− 1E4− 1E5− 1E6− 1E7) = −1, so numerical

effectivity of [3L− 2E1 − 0E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7] implies

h0
(

X,OX

(
H + D− (L− E2)

))
= 0,

and now Riemann-Roch gives h1
(

X,OX

(
H + D − (L − E2)

))
= 0, as required. If [D] is

not a multiple of [3L− 2E1 − 0E2 − 1E3 − 1E4 − 1E5 − 1E6 − 1E7], then

h0
(

X,OX

(
H + D− (L− E2)

))
> 0.

But then
(
H− (L− E2)

)
·B ≥ −1 for every exceptional curve B and hence the same is true

for D + H − (L− E2) so again h1
(

X,OX

(
H + D− (L− E2)

))
= 0.

Lemma IV.4 Let X be a blowing up of P2 at 7 general points, [L], [E1], . . . , [E7] the corre-
sponding exceptional configuration. Let [F] be a nontrivial numerically effective class and let
E be an exceptional curve with E · F = 0. If C is a reduced irreducible curve occurring as a
fixed component of |F − E|, then C is an exceptional curve, F2 = 0 and [F] = m[E + C] for
some m > 0. In addition, if L · (E + C) > 1, then R(F, L) = 0.

Proof Suppose C is a fixed component of |F − E| (recall by Lemma II.4 (a) that |F − E| is
nonempty). Any integral curve C is either numerically effective or has C2 < 0. But on a 7
point blow up, the former are never fixed and the latter are exceptional; thus C must be an
exceptional curve.

Since C is in the base locus of |F − E|, we can write [F − E] = [H] + [N], where N and
H are the fixed and free parts, respectively, of |F − E| and C is a component of N , hence
C · (F − E) = C · N < 0, but F is numerically effective so C · E > 0. On the other hand,
E · (H + N + E) = E · F = 0, so E · (H + N) = 1. Now, E · C > 0 implies that |E + C| is
positive dimensional, hence cannot be contained in N . Of course, C is in N , so E cannot
be. Thus E · N > 0, so E · (H + N) = 1 tells us that E · H = 0 and E · N = 1. Therefore,
E is perpendicular to components of N other than C while E · C = 1 (which means that
|E + C| is a pencil). Since this would mean components of N other than C would meet
[H + N + E] = [F] negatively, there can be no other components and we see that N = C .
Thus H is perpendicular to both C and E, and therefore |H| is composed with the pencil
|E + C|; i.e., [H] is a multiple of [E + C], so [F] = m[E + C] for some m > 0.

Now let L · (E + C) > 1; then apply Lemma II.5 with D a general element of |E + C| to
obtain R(F, L) = 0.

We now give the proof of Theorem I.6.1.

Proof By the algorithm discussed in Section I, one can explicitly check that tF > λF =
dim S(F, L) and R(F, L) = 0 for each exception F listed in the statement of the theorem.

We now show that otherwise dim S(F, L) is the maximum of tF and λF . So let F be a
nontrivial numerically effective divisor.
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It may be that F · E ′ = 0 for some exceptional curve E ′ with E ′ · L ≥ 2. By Lemma II.4
(a), |F ′| is nonempty for F ′ = F − E ′. We continue in this way, subtracting off exceptional
curves meeting L at least twice, to obtain a sequence F = F ′, F ′ ′, . . . , F( j), . . . , as long as
F( j) continues to be perpendicular to some such exceptional curve E( j+1) and as long as
F( j+1) = F( j) − E( j+1) has a fixed component free linear system. Eventually, however, say
for j = t , either F(t) is numerically effective with F(t) · E > 0 for every exceptional curve
E with E · L ≥ 2, or F(t) is effective but |F(t)| has a fixed component. For convenience, we
write Qt for E ′, Qt−1 for E ′ ′, etc., and also F0 for F(t) so [F( j)] = [Ft− j], where Ft− j =
F0 + Q1 + · · · + Qt− j for 0 ≤ j ≤ t . Thus Fi is numerically effective with Fi · Qi = 0 for
i > 0, and F0 is either numerically effective with F · E > 0 for every exceptional curve E
with E · L ≥ 2, or F0 is effective but |F0| has a fixed component.

Since 0 = H0
(

X,OX(L − Qi)
)
= R

(
OQi ,OX(L)

)
, we have dim S

(
OQi ,OX(L)

)
=

h0
(
Qi,OQi (Qi ·L)

)
−3 = Qi ·L−2, so applying Proposition II.1 and induction on i to 0→

OX(Fi−1)→ OX(Fi)→ OQi → 0 we see dim S(F, L) = dim S(F0, L)+(Q1 +· · ·+Qt )·L−2t .
(Note that (Q1 + · · · + Qt ) · L− 2t is just the number of summands Qi with Qi · L = 3.)

Consider first the case that F0 is numerically effective. If F0 · Ei = 0 for some i, then we
can regard F0 as a divisor on a blowing up of P2 at 6 points. By [2], S(H, L) = 0 for all
numerically effective divisors H on a blowing up of P2 at 6 general points p1, . . . , p6 unless
H is 5L − 2E1 − · · · − 2E6 or a multiple of 3L − 2Ei1 − Ei2 − · · · − Ei6 . But F0 cannot
be any of these since they are perpendicular to exceptional curves meeting L at least twice.
Thus S(F0, L) = 0 if F0 · Ei = 0 for some i. Otherwise, F0 · E > 0 for every exceptional
curve E with E · L 	= 1, and either F0 is ample (whence S(F0, L) = 0 by Theorem IV.1) or
F0 ·E = 0 for some exceptional curve E with E·L = 1 (whence S(F0, L) = 0 by Lemma IV.3).
Either way, we have F0 · Qi > 0 for all i and dim S(F, L) = (Q1 + · · · + Qt ) · L − 2t . Since
F0 · Qi > 0 but Fi · Qi = 0, it follows inductively that Qi · Q j = 0 for all i 	= j. It now
follows easily that tF = (Q1 + · · · + Qt ) · L − 2t ; since λF ≤ dim S(F, L) is always true, we
have dim S(F, L) = tF = max(tF, λF), as claimed.

Now consider the case that |F0| has a fixed component. By Lemma IV.4, [F0 + Q1] is
m[H], where H2 = 0 and |H| is a pencil. Thus, up to indexation, [H] is among [G11] =
[L−E1], [G12] = [2L−E1−· · ·−E4], [G13] = [3L−2E1−E2−· · ·−E6], [G14] = [4L−2E1−
2E2−2E3−1E4−1E5−1E6−1E7], or [G15] = [5L−2E1−2E2−2E3−2E4−2E5−2E6−1E7],
but Q1·L ≥ 2 rules out [L−E1]. If t > 1, then we have (F0+Q1)·Q2 = 1, hence m = 1. Thus
[F] is either m[H] or [H + Q2 + · · · + Qt ]. In the former case R(F, L) = 0 by Lemma IV.4,
hence dim S(F, L) = λF , and we explicitly check that tF ≤ λF unless m = 1 and [H] is either
[4L−2E1−2E2−2E3−1E4−1E5−1E6−1E7] or [5L−2E1−2E2−2E3−2E4−2E5−2E6−1E7].

This verifies the statement of Theorem I.6.1 unless [F] is of the form [H + Q2 + · · ·+ Qt ],
as above, where [H] is one of [2L−E1−· · ·−E4], [3L− 2E1−E2−· · ·−E6], [4L− 2E1−
2E2 − 2E3− 1E4 − 1E5− 1E6 − 1E7], or [5L− 2E1 − 2E2 − 2E3− 2E4 − 2E5− 2E6 − 1E7].
We consider each possibility for [H] in turn. In each case we have 0 = R(H, L) = R(F, L),
so dim S(F, L) = λF , and it is enough to check that tF ≤ dim S(H, L) + ρ, where ρ =
(Q2 + · · · + Qt ) · L− 2t + 2, when F is not one of the stated exceptions.

First consider [H] = [2L − E1 − · · · − E4]. Since any exceptional E with E · L = 3 has
E ·H > 0, we can have E · F = 0 only if E is among the Qi . Thus tF ≤ ρ, settling this case.

Now let [H] = [3L−2E1−E2−· · ·−E6]. Any exceptional E with E ·L = 3 and E ·F = 0
must be among the Qi , or must have E ·H = 0 (and hence [E] = [3L−2E1−E2 · · ·−E7]).
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Thus tF ≤ ρ + 1, but dim S(H, L) = 1 in this case, so this case is also settled.
Now suppose [H] = [4L− 2E1− 2E2− 2E3− 1E4− 1E5− 1E6− 1E7]. Let us say that a

divisor B is cubic if B ·L = 3 and conic if B ·L = 2. Now argue as in the preceding paragraph.
This time there are exactly three cubic exceptionals perpendicular to H (in fact, their classes
[Ci] are exactly −KX − [Ei], 1 ≤ i ≤ 3), so we see tF ≤ ρ + 3. Since now dim S(H, L) = 2,
this case is settled unless tF = ρ + 3 and hence the classes of C1, C2, C3 and of all of the
cubics among Qi , i ≥ 2, are distinct and perpendicular to F (else we certainly would have
tF < ρ+3), in which case these tF cubics are also perpendicular to each conic Qi , i ≥ 2. But
the class of a conic exceptional curve perpendicular to C1, C2, and C3 must be of the form
[2L − E1 − E2 − E3 − Ei1 − Ei2 ] and is therefore perpendicular to H, and hence the conic
Q j with least j ≥ 2 must meet one of the cubics occurring among the Qi , i ≥ 2. To avoid
this contradiction we conclude there is no conic Qi , i ≥ 2. Thus [F] must be [H] plus any
of the four classes of cubic exceptionals not perpendicular to H, giving only the exceptions
[H], [H + C4], [H + C4 + C5], [H + C4 + C5 + C6], [H + C4 + C5 + C6 + C7] listed in the
statement of Theorem I.6.1.

Finally, we have [H] = [5L − 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 1E7]. Here
we have λF = dim S(F, L) = ρ + 3, so for tF > λF we need tF ≥ 4. Let us look at
all numerically effective classes perpendicular to at least four (say to [C4], . . . , [C7]) cubic
exceptionals. From the generators [Gi] of the numerically effective cone given in Section III
it is easy to verify that any numerically effective class perpendicular to each of C4, . . . ,C7 is
a nonnegative sum of the classes of A = 7L− 2E1 − 2E2 − 2E3 − 3E4 − 3E5 − 3E6 − 3E7,
Di = 5L − 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7 + Ei , 1 ≤ i ≤ 3, and B =
8L − 3E1 − 3E2 − 3E3 − 3E4 − 3E5 − 3E6 − 3E7. We will show that any sum F of these 5
divisors with tF > λF and R(F, L) = 0 must be among the list of exceptions given in the
statement of Theorem I.6.1.

First note that the class of each of these five divisors is on the list of exceptions. Now
let F be A plus any one of A, D1, D2, D3 and B. In each case we check that
h0
(

X,OX(F − C4 − C5 − C6 − C7)
)
> 0 and h1

(
X,OX(F − C4 − C5 − C6 − C7)

)
= 0.

Thus the same is true for any sum F of two or more of the divisors A, D1, D2, D3 and B such
that at least one summand is A. Applying Proposition II.1 to 0→ OX(F −Y )→ OX(F)→
OY → 0, where Y is the disjoint union of the tF = 4 cubic exceptional curves perpendicular
to F (so [Y ] = [C4] + · · · + [C7]), we conclude that dim S(F, L) = dim S(F − Y, L) + tF .
Thus, whenever we have R(F, L) = 0 for such an F, we also have λF = dim S(F, L) ≥ tF .

Now consider the case that F is a sum with three or more summands taken from D1, D2,
D3 and B. In every such case of 3 summands (and hence also for more than 3 summands)
except for pure multiples of some Di (which were treated above), [F] is, as in the preceding
paragraph, the class of the sum of the cubic exceptionals perpendicular to F plus an effective
regular divisor, and therefore as above R(F, L) = 0 implies tF ≤ λF .

We are left to consider the case that F is a sum of any two of D1, D2, D3 and B except
pure multiples of some Di : if F = D j + Di , j 	= i, then tF = 5 and λF = 4; if F = B + Di ,
then tF = 6 and λF = 5; and if F = 2B, then tF = 7 and λF = 6. But in each of these cases,
F is one of the exceptions explicitly given in the statement of the theorem.

Although Theorem I.6.1 is well-suited for computational applications; our final result is
more conceptually satisfying.
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Corollary IV.5 Let F be a numerically effective divisor on X, with X as in Theorem I.6.1.
Let D = Ci1 + · · · + CitF

be the sum of the cubic exceptional curves Ci j ∈ {C1, . . . ,C7}
perpendicular to F. If µF fails to have maximal rank, then dim S(F, L) = tF. Moreover, µF

fails to have maximal rank if and only if: tF > 0, F−D is numerically effective, and λ ′F−D < 0.

Proof If µF fails to have maximal rank, then dim S(F, L) = tF follows by Theorem I.6.1.
We now consider the second claim.

If tF = 0, then dim S(F, L) = λF by Theorem I.6.1, so µF has maximal rank.
Consider the case that tF > 0 but F − D is not numerically effective. Since F − D is not

numerically effective, successively subtracting Ci1 ,Ci2 , . . . from F, we eventually obtain
by Lemma II.4 (as in the proof of Theorem I.6.1) a divisor F0 whose class is the class of
an effective but not numerically effective divisor. Now, by the proof of Theorem I.6.1,
S(F, L) = λF and thus µF has maximal rank.

Finally, say tF > 0 and F−D is numerically effective. Then tF−D = 0, so as we saw above,
µF−D has maximal rank; in particular, µF−D has a nontrivial kernel if and only if λ ′F−D < 0.
Now apply Proposition II.1 to the exact sequence 0 → OX(F − D) → OX(F) → D → 0.
Since R

(
OD,OX(L)

)
= 0, we see that dim R(F − D, L) = dim R(F, L) and dim S(F, L) =

dim S(F − D, L) + dim S
(
OD,OX(L)

)
= dim S(F − D, L) + tF ≥ tF > 0. Thus µF fails to

have maximal rank if and only if µF−D fails to be injective, which we noted above holds if
and only if λ ′F−D < 0.
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