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Abstract

In a previous paper the authors have shown that the classical barrier function
has an O(r) rate of convergence unless the problem is degenerate when it reduces
O(r*). In this paper a modified barrier function algorithm is suggested which
does not suffer from this problem. It turns out to have superior scaling
properties which make it preferable to the classical algorithm, even in the
nondegenerate case, if extrapolation is to be used to accelerate convergence.

1. Introduction

In a recent paper [4] we have considered the solution of the mathematical
programming problem (MPP),

min/(x): S = {%; g&x) > 0, i = 1,2, ...,m}, (1.1)
xeS

where/and the gh i = 1,2, ...,m, are appropriately smooth functions on R" -> R,
by means of the sequential minimization of the barrier function (classical barrier
function),

m

B(x, r) =/(x) - r £ log(gfa)), (1.2)
;=i

for r taking values r1 > r2 > ... > rk > ... and lim^^^/-^ = 0 . Let x(rk) be the
exact minimum of (1.2) produced by some algorithmic procedure for r =rk. We
assume that the minimum exists and is well defined. Then it is well known that
the limit points of the sequence {x(r4)} are solutions of the MPP under very
general conditions [1]. In particular, these limit points are solutions of the MPP
if the following propositions hold [1].
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PROPOSITION 1. (First-order necessary conditions.) Provided an appropriate
regularity condition is satisfied by the feasible region S then a necessary condition

for x*eS to be a solution of the MPP is that there exist multipliers u*,i—1,2, ...,m,
satisfying the Kuhn-Tucker conditions:

(a) V/(x*)- £ ufVgi(x*)=Q, (1.3a)

( b ) u f > 0 , u?gi(x*) = 0, i = l ,2, . . . ,m. (1.3b)

Here we specialize the regularity condition to be the condition that ifxeS then the
set of vectors Vgf(

x) corresponding to the constraints satisfying gt(x) = 0 be linearly
independent. Strictly this condition is required only when x = x * .

To specify the second proposition we define the Lagrangian function for the
MPP,

L(x,u)=/(x)- f; ui9i(x). (1.4)
i = i

PROPOSITION 2. (Second-order sufficiency conditions.) Let T denote the set

T = {t; V0i(x*)t = 0, for all i such that uf > 0}.

If the Kuhn-Tucker conditions are satisfied at x*, and if there exists m > 0 such that
(for some appropriate vector norm)

tTV^L(x*,u*)t^m||t||2, forallteT, (1.5)

then there exists an open neighbourhood N ofx* in S such that, ifxeNand x / x*,
then f{x) >f(x*).

Now let x* be a limit point of the sequence of barrier function minimizations
{x(rk)}. We define x* to be a regular local solution if the first-order necessary and
second-order sufficiency conditions are satisfied at x*.

REMARK 1.1. If x* is a regular local solution of the MPP then
(a) the Kuhn-Tucker conditions hold at x* and the multipliers u* are unique,
(b) the sequence of values {rk/gi(x(rk))} -> uf for each i, and
(c) x* is an isolated minimum of the MPP.

The main results of [3] give convergence rates for {x(rfc)} and {u(rk)}, where
Ui(rk) = rk/gi(x(rk)), as r -* 0. It is shown that

\\x(rk)-x*\\=0(rk) and || u(r4) - u* || = O(rk)

if and only if the MPP is nondegenerate at x*. If the MPP is degenerate at x*,
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then the rate of convergence drops to exactly O(rf). To explain the nondegeneracy
condition let

If iel then the corresponding constraint gfa) is said to be active at x*. The
complement of / with respect to {1,2,..., m} is

Jf ie R then #f(x*) > 0. We also write / = /, u /2 where

ll={i;gi(x*)=0,u*>0}
and

/2 = {'';0i(O = o,ti* = o}.

DEFINITION. The MPP is degenerate at x* if I2 ^ 0.

Thus the results cited above show that degeneracy causes a serious degradation in
the performance of the barrier function algorithm, and this shows up geometrically
by the solution trajectory defined by {\(rk)} being forced to approach x* ultimately
tangentially to the constraint surfaces #;(x) =0 , ielt.

Note that a degenerate constraint is redundant in an important sense as the
first-order necessary conditions are unchanged if this constraint is just ignored,
and as degeneracy does not affect the second-order sufficiency conditions. How-
ever, it is an indication that the property of membership of the active constraint
set is extremely sensitive to perturbations of the problem data. A characteristic of
the classical barrier function method is that there is no discrimination between
members of the constraint set. This results in several undesirable properties:
(i) it limits the usefulness of extrapolation procedures for improving the numerical
performance of the algorithm on near-degenerate problems; (ii) the rate of con-
vergence is reduced to O(ri) for degenerate problems; and (iii) the inability to
identify inactive constraints clearly slows down convergence in situations where
the solution x* is properly in the interior of the feasible region.

The main aim of this paper is to provide a sound theoretical basis for a method
which modifies the barrier objective function in such a way as to overcome these
problems. This method was suggested in the report [6], and the key feature is the
use of the best current estimate of the Lagrange multipliers to weight the con-
straints in the current minimization. The modified barrier function thus has the
form

M(x,rftu'*-1>) = / ( x ) - r t £ « r U log (<7,(x)), (1.6)
iel

where u<0>, rx and c> 1 are given, rk =rk_xjc for k = 1,2,..., and where

f1V^x<*>)f iel, (1.7)
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gives the multiplier estimates after the kth minimization. Note that the modified
barrier function algorithm is strictly a sequential algorithm as the minimum x(k)

depends not only on rk but also on the previous minimization through ii**"1*. A
consequence is that the trajectory analysis given in [3] no longer applies. However,
this problem can be overcome in the nondegenerate case by considering the
modified barrier function M(x, s) with s = r<j>(r), where <(>(r) denotes a differentiable
vector-valued function of r. This form of the modified barrier function is of
interest because a smooth trajectory can be defined for the successive minima, and
because the special function <p, given by

*(r) = u(cr), (1.8)

can be constructed in the nondegenerate case. However, the modified barrier
function is perhaps of most interest in the degenerate case. Consider the following
example.

EXAMPLE 1.1,

Minimize /(x) = x2,

subject to 0j(x) = x2 - x\ 3* 0,

and g2(x) = xl^0.

The solution is x*=(0,0), u* = (l,0), and the problem is degenerate as both
constraints are active. The modified barrier function has the form

M(x,r^(r))=x2-r0,(r) log(x2-x?)-r*2(r) logfr,), (1.9)

and, at a minimum x = x(r) of M(x, r<\»(r)),

(1.10)

We consider two cases:
(i) <t>i(r) = l , i = l ,2. This corresponds to the classical barrier function. We have

!(!-) = (r/2)*, x2(r) = 3r/2, (1.11)

(1.12)

showing the predicted O(r*) convergence,
(ii) 0,(r) = 1, <f>2{r) = 2cr JOT C 5S 1. We have

x1(r) = c/-, * 2 ( r ) = r + c 2 r 2 , (1.13)

«,(r) = l, «2(r) = 2cr, (1.14)

Thus the convergence rate for this particular choice of $(r) is O(r). In this case <j>
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has been chosen such that

0(r)=(l,2cr) = u(cr), (1.15)

Now consider use of the modified barrier function algorithm (1.6), (1.7) to
solve the problem. At each iteration we minimize

M(x,rku
(k-l))=x2-rku«-l)log(x2-x

2
l)-rku?-" logOO, 0-16)

giving
f ,.(0) -](*)*

V P \ ^ ± \ . (1.17)

By comparing u<h) given by (1.14) and (1.17) it follows that if the modified
algorithm is started with u(

2
0) = 2rx c

2 then the resulting multipliers are the same.
The modified algorithm is in effect producing the continuous solution (1.13) for
various values'of rk and second-order extrapolation as described in [4] gives the
exact solution x(0) = (0,0). However, usually it cannot be expected that the initial
multiplier will be correct. In this example, the ratio of the values of u^' from
equations (1.17) and (1.14) is [u^llr^ c 2 ] ( i ) k and tends to 1 as k becomes large,
showing that the modified algorithm is convergent essentially independent of the
value of M(

2
0). However, this ratio can be interpolated as a smooth function of r

only if log 2/log c is integral. Thus, while O(r) extrapolation is possible, the largest
value of c for which higher order extrapolation appears feasible is c = 2.

The behaviour in this example seems typical. In this connection our major
result is that the modified barrier function algorithm gives O(r) convergence for
degenerate problems and thus supports first-order extrapolation. Higher order
extrapolation is possible for nondegenerate problems but has not been established
in the degenerate case. Both the above example and the numerical results presented
in Section 4 appear to indicate that it is unlikely to be worthwhile in the degenerate
case.

Thus we are able to provide both a theoretical basis and supporting numerical
evidence for the use of the modified barrier function algorithm. Our main con-
clusion is that it is clearly superior to the classical algorithm and so is definitely
attractive for MPP's in which the problem functions are not defined outside the
feasible region.] This superiority shows up even in nondegenerate problems. This
is because the performance of extrapolation procedures applied to values obtained
by minimizing the classical barrier function is known to depend strongly on the
range of values of the Lagrange multipliers [4]. We show in the next section that

t The property of maintaining feasibility is the major advantage of barrier function methods.
If this is not important then there are better methods, at least in the non-degenerate case (see,
for example, Jittorntrum [3] and Powell [7]). If the problem is degenerate then the question is
more complicated. A discussion is given in [2].
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these difficulties do not occur in the modified algorithm since the weighting of the
barrier terms using the latest estimates of the Lagrange multipliers is in a sense
asymptotically optimal providing the scaling of the constraints is not to disparate.
(For the result to hold strictly we should have || Vg,(x*) || = 1, iel.)

2. Properties of the modified barrier function algorithm

In this section we derive properties of the modified barrier function algorithm
defined by equations (1.6) and (1.7). It turns out that there are important differences
between the degenerate and nondegenerate cases and we consider these separately.
We assume that x* is a regular local solution of the MPP and that the sequences
{x<k)} and {u(t)} generated by the modified algorithm converge to x* and u*
respectively.

DEFINITION. Let A(r) be a continuous function of r, {rk} a strictly decreasing
sequence tending to zero, and {A<ky} a sequence of values. Then the sequence {Aik)}
is said to converge super fast to A(r) if there exist bounded constants n, p such that

With the usual barrier function, gt -> gt(x*) > 0 for ieR, while the corresponding
multiplier is given by ui=rjgi-*Q with r. Thus eventually the contribution from
the inactive constraints fades out of the barrier function as r gets small. In contrast,
the contribution of the inactive constraints gets small super fast in the modified
algorithm. This is the content of the following theorem.

THEOREM 2.1. Assume that x* is a regular local solution of the MPP, and that
#i(x*) > 0; then the sequence of multiplier estimates {u-**} generated by the modified
algorithm converges super fast to zero.

PROOF. We have, by (1.7),

and, proceeding recursively, it follows that

uP*u\°>rtflrj, (2.2)

where p ; is a bound for l/g^x'*'), k = 1,2
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REMARK 2.1. This result permits the inactive constraints to be readily identified,
as their contribution to the objective function becomes negligible after a few
iterations. In particular, if all constraints are inactive at the minimum, the successive
minima of the modified algorithm converge super fast to this minimum. This
should be compared with the O(r) rate of convergence of the classical algorithm
in this case.

In the nondegenerate case we can extend the trajectory analysis given in [4] to
provide information on the modified algorithm. We recall that the points mini-
mizing (1.2) as r —> 0 lie on the smooth trajectory given by the solution of the
system of differential equations:

J(x,u)

dx

dr

da

dr

VlL -Vg]

9m

'dx'
dr

dn

-dr_

0

0
1

1.

(2.3)

When the problem is nondegenerate, /(x*,u*) is nonsingular so that repeated
differentiation of (2.3) determines derivatives of x and u to any desired order. It
follows, in particular, that || x ( r ) -x* || =O(r) and || u(r) - u* || = 0(r). The
trajectory analysis for the modified barrier function is complicated because it is
necessary to guess the u\0) at the first step to start the process. However, we can
show in the nondegenerate case that there is a well-defined smooth trajectory, and
that the results of our sequence of minimizations tend to this trajectory super fast.

THEOREM 2.2. (1) Let x* be a regular local solution of a nondegenerate MPP, and
assume that all the problem functions are I times continuously differentiable. Then,
for given c> 1, there exists an I— 1 times continuously differentiable vector function
$(/•), uniquely determined up to the first I terms of its Taylor expansion about r = 0 ,
such that

where
= 1,2, ...,m,

(2.4)

(2.5)

are the multiplier estimates, and x(r) is the minimizer of M(x, r<j>(r)).
(2) We conclude that 4>{r) — u(cr) exists for problems that are sufficiently smooth,

and that the resulting modified barrier function defines a smooth solution trajectory
(x(r),u(r)). Let rk — rk_Jc, k=2,3,..., and {x(l)} be the corresponding sequence
of points generated by the modified barrier function algorithm. Then {x<<0} tends
super fast to x(r).
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PROOF. Let 0(r) have the form

Then it follows from (2.4) that u(r) is given by

fl(r)=u*+a1r+...+a,_1
( /-I)!

-fO(r').

[8]

(2.7)

(2.8)

We show that the coefficients a!,a2,..., a,_! are well determined by the problem.
At the minimum of A/(x, rip(r)) we have

and

(2.9a)

(2.9b)

Differentiating the equations (2.9) gives the system of differential equations

J(x(r),fi(r))
dr

dfl(r)
L dr J -dr

(2.10)

Because the problem is nondegenerate, J(x*,u*) is nonsingular. Thus, setting
/ • = 0 in (2.10),

dr

Differentiating (2.10) with respect to r gives

0
(2.11)

dr2

d2n
.dr2.

0

_dr2

dJ
dr

r —

du
(2.12)

and setting r = 0 in (2.12) we find that a2 is given in terms of known quantities.
Proceeding in this fashion, we find successively a3,... a,_ j .

To prove part 2 it is only necessary to show that the sequence of multiplier
estimates {u(k)} given by the modified algorithm (1.6), (1.7) converges super fast
to fl(r). (This follows, for example, from (2.10) which shows that perturbations in
$ lead to perturbations of the same order dxjdr provided r is small enough and
the problem is nondegenerate.) Now consider the family of modified barrier
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functions M(x, s(("(r, 6)) where

and s(k) is a smooth function of the parameter d. For || s(l° || small enough,
u(sik\r, 0)) c a n be defined by the leading terms of its multivariate Taylor series
which can be evaluated readily at r = 0. Provided r = rk is small enough, an
application of the mean value theorem gives

= r»Z5{«ri)-fl/r4.1)}1 (2.13)

where the bar denotes that appropriate mean values are taken. It follows from
(2.13) that {u***} converges super fast to u(r).

REMARK 2.2. A consequence of the super fast convergence is that extrapolation
can be used to improve the estimates of x* obtained from the modified barrier
function algorithm. The first few points calculated will be most affected by the
error in the initial guess u(0), and in general the first at least should be omitted
from the extrapolation process.

REMARK 2.3. For the classical barrier function algorithm the convergence of
x"° to x* is such that asymptotically

gfiP>)~±, jei. (2.14)

Now the quantity maxfei|0j(x(ll))| gives an indication of the convergence of x(k>

to x*, and the quantity minie/ \g£x.ik)\ indicates the degree of difficulty of the
unconstrained minimization because the corresponding barrier function term gets
large if any #,(x) gets small. It follows from (2.14) that the ratio of these two
quantities is proportional to y, the measure of degeneracy introduced in [4]. Thus
the size of y in the classical barrier function algorithm corresponds to the property
that the approach to x* is such that the distance of x(<1) from each constraint
0i(x) = 0 , iel, is inversely proportional to the size of the multiplier «*. However,
for the modified algorithm,
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Now the distance from the /th constraint is asymptotic to rkj\\ Vg,-1| so that, if the
|| Vgf( || are not too disparate, the effect of the size of y is removed.

In the degenerate case it follows from (2.3) that J(x*, u*) has zero rows corre-
sponding to the degenerate constraints and so is singular. For the classical barrier
function this results in || x(r)-x* || = O(r*) and || u(r)-u* || = O(r*). Thus if we
want to follow the development of the modified barrier function given for the
nondegenerate case we must first determine what conditions must be satisfied by
<£(r) to ensure that x(r) and u(r) have bounded derivatives as r ->• 0.

For convenience, we assume that R=0 and that the degenerate constraints
are indexed s+l,s+2,...,m. Then the left eigenvectors of 7(x*,u*) associated
with the eigenvalue zero are en+s+1, ...,en+m, where ef is the vector with 1 in the
/th place and zeros elsewhere. The corresponding bi-orthogonal right eigenvectors
will have the form

, / c=s+ l m,
0
h
0

_o J

V<7,.(x*)tk=0, /=1,2,. . . ,5,
and can be specialized so that

Vgk(x*)tt > 0.

Substituting in the first n equations of/(x*,u*) vk —0 gives

(2.16)

where tk must satisfy
(2.17)

(2.18)

whence

Pk =
tT

kV
2
xLtk

= ——— > u> (2.19)

using the second-order sufficiency conditions. The condition for (2.10) to have a
bounded solution as r -* 0 is

= 0k(O)=O, k = (2.20)
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In this case the solution is determined only up to arbitrary multplies of the v,, and
can be taken to be of the form

dx

dr
du

-dr_

=

.
w
a
0

- —

i = s+\
(2.21)

where is determined from the solution trajectory for the nondegenerate

problem obtained by deleting the degenerate constraints. This trajectory need not
be feasible for the full MPP. To determine the 0J1', / e / 2 , it is necessary to ask that
the trajectory should have bounded second derivatives when r = 0. This pattern
repeats itself because, in turn, the second derivative values are determined only
up to arbitrary multiples of the right eigenvectors, and these multipliers are now
found by asking for higher order smoothness.

From (2.10) it follows that the compatibility conditions which must be satisfied
at each stage of this process are

dr1 {uk(r)gk(x(r))-r<j>k(r)} = 0, kel2, ./ =
r = 0

The casey = 1 just gives (2.20). When y = 2 we obtain

and when 7 =

d2uk

dr2

dr

dgk .

dr

dgk

dr

^duk

dr

7d<f>k
~ dr'

d2gk ,
dr2 - 3

d2<Pk

dr2

(2.22)

(2.23)

T ^ ^* "yk i T. k (2.24)

To determine 6\1}, i = s+\, ...,m, we substitute (2.21) into (2.23) to obtain

dr
(2.25)

This gives a system of equations for 0(jl). If d^Jdr > 0, then we require 0J1* > 0,
as dujdr > 0 necessarily. If d<j)Jdr = 0, then either 6^ = 0 or dgjdr = 0.

If we now attempt to develop 4>k{r) = uk(cr) in the same manner as before we
find that (2.23) gives either

dr
or

dr

(2.26)

(2.27)
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for each k, k = 5 + 1 , ...,m. Further progress can be made when there is only one
degenerate constraint (the case s = m— 1). Here it is easy to see that if w corre-
sponds to an infeasible trajectory for the full MPP (so that V#m(x*) w < 0) then
6^} > 0, c > 0. On the other hand, ifw is feasible then um(cr) = 0 provides a solution
valid for all c> 0, and it appears to be the only one possible for which
(dujdr) (0) = 0. To see this, consider the possibility that (dujdr) (0)=0 and
(d2 ujdr2) (0) > 0. From (2.24) it follows that we must have

dr1
d2u
dr

j=(0), (2.28)

and V<7m(x*)w is independent of c. This argument extends to higher derivatives by
considering the first compatibility condition involving the first nonvanishing
derivative of um. Thus, in the special case of one degenerate constraint, there
appear to be two possible solutions to the differential difference system denning
the modified barrier function trajectory, and this raises the question of which (if
either) is approached by the solution points generated by the modified algorithm
(1.6), (1.7). This does not appear to be an easy question to answer, and we show in
the following example that either trajectory may be approached, depending on the
particular form of the problem.

EXAMPLE 2.1. To obtain an example in which either of the two possible
trajectories is approached by the sequence of solution points, it is convenient to
introduce a parameter into the degenerate constraint in Example 1.1. This permits
us to vary the feasible region and a result is that both possibilities are important
for different ranges of this parameter. The extended problem is:

Minimize

subject to

and

/(x)=x2,

= x 2 — x\ 0,

The solution is again/= 0, and is attained for x* = (0,0) with Lagrange multipliers
u* =(],0), so that g2 is degenerate for all £. We have J(x,u) given by

0
0
0

" l

2Xl
- 1

x2-x\

- 1
- f
0

0

We see that the limiting values for the nondegenerate problem obtained by
deleting g2 are
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while the right eigenvector for J(x*, u*) is given by

317

v =

1
0

-2C
L 2 J

We can now calculate the limiting values for dx/dr and dujdr on the trajectory
satisfying dg2(x*)/dr = c. We have

giving y = c — C, and

dx

du
1

- 2 « c - 0
. 2(c-0 .

This will define a feasible trajectory for £ ^ c, while | _ | defines a feasible

trajectory provided £ > 0. When £ = c, the limiting values for the two trajectories
become the same. In Fig. 2.1 we sketch the behaviour of u2(r) for small r, showing
the limiting trajectories, and a trajectory for u* defined by minimizing
M(x, m"1"1*), which has a square root singularity at the origin for each k. This
implies an initial fast rise which suggests that, when both trajectories are feasible,
the one with the larger value of (du2/dr)(x*) will be approached. This is the one
with (du2ldr)(x*)=2(c-O if C < c.

dr "
F/£. 2.1. Problem trajectories for small r and £ < c.

The modified barrier function is

and the conditions for a stationary point give
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whence

x , = - ^ and u[k) = \-Cu{
2
k\

2u\'
where

X2 Xj
and

It follows from the first of these two relations that

x2 —

and we can now express *,, x2 and u\k) in terms of u(
2

k) = z4. Substituting in the
expression for x2 gives

As we are seeking solutions which tend to zero with r, we assume that

Substituting for zk and equating powers of r to zero gives

The first expression vanishes if /^ = 0 or /^ =2(c —Q, corresponding to the two
trajectories suggested by our analysis, and the second expression permits us to
determine a in each case. We have

(i) C < c, n, = 2 ( c - 0 , a = (log(2-C/c)/logc)-l;
(U) C > C,|i, =0,(7 = (log C/l0gtf)-l.

This confirms our analysis. To show that both possible limiting trajectories can
be approached depending on the value of (, we give numerical results for c = 2,
C = 1 and £ = 3 in Figs. 2.2(a) and 2.2(b). These figures show the possible limiting
trajectories corresponding to the two cases du2jdr = 2(c-Q and duJdr=0 as
dashed lines, the constraint lines X i + C ^ ^ O and x 2 - X i = 0 as broken lines,
and a plot of the sequence of values {\(rk)} as a continuous line. The convergence
of this line to the trajectory corresponding to du2jdr = 2(c — Q when £ = 1, and to
that corresponding to du2/dr = 0 when £ = 3, is clearly illustrated.
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- 0 1

Fig. 2.2(a). « = l , c = 2. Fig. 2.2(b).(£ = 3,c=22.)

3. Demonstration of O(r) convergence

In this section we establish O(r) convergence of the modified barrier function
algorithm (1.6), (1.7). This follows in the nondegenerate case from the super fast
convergence to the differentiable trajectory established in Theorem 2.2. Thus the
principal interest is in establishing the result in the degenerate case. To do this we
are forced to depart from a trajectory analysis and rely on a far from simple proof
by contradiction. This is not very satisfying but is perhaps not surprising given the
variety of behaviour possible even in the simple example considered in the previous
section. The problem lies not only in identifying the particular trajectory to which
the successive minima of the modified barrier functions tend, but also in demon-
strating that the rate of convergence to this trajectory is fast enough.

To simplify presentation it is convenient to make the following assumptions
which can be shown to involve no loss of generality,

(i) All the constraints present are active so that

/,| + |/2|=m, (3.1)

(ii) U < ° > = [ 1 , 1 , . . . , 1 ] , and

(iii) rx is chosen sufficiently small to ensure that {x(k)} belongs to a small enough
neighbourhood of x*. That is, given 8 ^ 1, r1 is chosen small enough such
that, for all k,

Xl"'-J (3.2)

ielu and (3.3a)

\u\k>\^6, iel2. (3.3b)

Before proving the main theorem we derive two preliminary lemmas.
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LEMMA 3.1. There exists a bounded constant a. such that, for every k ̂  1,

| M ( k ) - M * | < a | | x ( k > - x * | | , , 6 / i , (3.4a)
and

l u H ^ a l l x ^ - x * ! ! , iel2. (3.4b)

PROOF. This result states that the rate of convergence of the multiplier estimates
is at least as fast as that of the estimates of the minimizing points. Since x(k) is a
stationary point of M(x, ru(*~X)), it follows that

V/(x(*>)- ^ { " V j , ^ " ) = 0. (3.5)
is;

Subtracting from (3.5) the Kuhn-Tucker conditions (1.3) gives

V* L(x*, u*) (x(f[) - x*) + o(|| x w - x* ||) = £ («{*> -
+ Xt4*)V01.(x<*>). (3.6)

Let w,, i=l,...,m, be the set of vectors of minimum norm bi-orthogonal to the
Vgj(xik)). That such a set exists and is bounded follows, for 8 small enough, from
the linear independence of the Vg^x*). Then from (3.6) we obtain

l".^-",* I < il wTV|i(x*,u*) || ||x<»-x*||+o(||x<»-x*||), i e / , , (3.7a)
and

l"Jfc)|^l|wTV^L(x*,u*)|| ||x<*>-x*||+0(||xw-x*||), iel2. (3.7b)

The desired result is an immediate consequence of these inequalities.

LEMMA 3.2. Let K0 > 0 be chosen sufficiently large. Then there exists a > 0 such
that, if

r^i||x<k'-x*||, (3.8)
Ko

then

(x(*> - x*) T V^ L(x*, u*)(x(fc) -x*)>a|| x ( ( l ) - x* | |2 . (3.9)

P R O O F . We decompose x( k ) - x* into

x<">-x* == || x<k)-x* iKt'^+v^), (3.10)

where v((l) is a linear combination of the V0;(x*), ielu and tlk) is in the orthogonal
complement of this set. The desired result then follows from the second-order
sufficiency conditions provided || v(k) || is small enough. For ielx we have

(3.11)
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so that (3.10) implies that

! ± ^ i ) | x<*>-x* ||Y), j e / t . (3.12)(
\

Equation (3.12) is a nonsingular system of equations for the components of vlk)

along each of the V#,(x*), ; e / , . Thus a similar order estimate holds for these
components and hence for [| v(t) ||. As t(k) and v(t) are orthogonal it follows that

Ss l - 0 ( max(_!_,<$)). (3.13)

Now, applying the second-order sufficiency conditions,

( x ' " - x * ) T VjL(x*,u*)(x"l)-x*) = I! x<*>- x* ||2 {t<k)TV2 L(x*, u*)t(t)

for suitably chosen a > 0, provided max(l/K0, <5) is small enough.

THEOREM 3.1. Let x* be a regular local solution oj the MPP and assume that the
problem functions are at least twice continuously differentiable. If r t is sufficiently
small, u<0) > 0 and c > I are given, and {x(k)} is the sequence of points generated by
the modified algorithm, then there exist constants 0 < nx <\i2 such that the
asymptotic inequalities

Hi rk+o(rk) < || x»>-x* || < fi2 rk+o(rk) (3.16)

hold for sufficiently large k.

PROOF. For ielt we have

rk(l + O(S)) = rk^-^- = 9i(x^) = V01.(x*)(xw-x*)+O(| | x<*>-x* ||), (3.17)

so that, for k sufficiently large, there exists A^ such that

r^tfjx^-x*!!.

Thus it is necessary only to establish the right-hand inequality in (3.16). Assume
this is false. Then there exists a subsequence {k{l)} such that

k u ) \ \ x x * \ \ , (3.18)
Ki

with {fc,} -> oo. Choose / sufficiently large so that (3.8) is satisfied. Multiplying
(3.6) by (x( k ) -x*) and using that

gfc**) = V<7f(x*)(x<k)-x*)-|-0(|| x
(k>-x* ||), iel,

L
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it follows that

E < * > - X * ID).
(6/2

By further adjusting the constant a to allow for terms of smaller order, it follows
from (3.9) that, for k = k{l) and / large enough,

fl||x<*>-x*||2- I I «{*>-«; l ^ x ^ ^ I u\k>g&»). (3.19)
ieh ie/2

Using (3.4a), (3.17) and (3.18), for ie^ we have

*>-x'i\ (3.20)

Thus the first term on the left-hand side of (3.19) dominates the second, and we
can write

^r f c | / 2 | a | | x< f c -^ -x* i | . (3.21)

By (3.18),
iaK,2 rt

2 < r t | J2 |a|| x(*" »>- x* ||,

so that

Thus condition (3.8) of Lemma 3.2 is satisfied for k: = k—\, and the above
arguments can be repeated using (3.22) instead of (3.18). But then, by back-
tracking,

K,7V (3.25)
Uca|/2

This contradicts (3.2) because K, can be chosen arbitrarily large.

4. Numerical results

In this section numerical results are presented for the use of extrapolation in
conjunction with the modified barrier function algorithm, and justification for the
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development of the new algorithm is obtained by comparing its numerical per-
formance with that of the extrapolated classical barrier function algorithm
discussed in our previous paper [4]. We note that we must expect important
differences in the use of extrapolation between degenerate and nondegenerate
problems for, while it can be justified to high order for nondegenerate problems
as a result of the super fast convergence to the smooth trajectory defined by (2.4),
in the degenerate case we have been able to show only O(r) convergence and
examples 1.1 and 2.1 suggest that further expansion in integral powers of r is not
possible in general. However, in practice it may not be easy to distinguish between
degenerate problems and nondegenerate problems with small multipliers (these are
the ill-conditioned problems considered in [4]), and for this reason we elect to
build up the table of extrapolations and to estimate from this the order of con-
vergence supported. For example, in degenerate cases the first extrapolated
column should show an improvement in its rate of convergence and this should
not be greatly changed in succeeding columns provided c is chosen to ensure the
extrapolation is stable.

In implementing the modified algorithm the key quantities that have to be
specified are c, r, and u(0). Here we have chosen c = 2. This choice is known to
be stable for extrapolation (Laurent [5]) and represents a compromise between
having c too small with the associated danger of instability in the extrapolation,
and having c too large so that only a few steps of the algorithm are possible before
the small values of r makes the successive minimizations increasingly difficult.
To determine an initial value of u, a preliminary minimization is carred out with
uT — [1,1 , . . . , 1] and the result is used to determine u(0). Choice of the value of r
to use in this minimization must depend on the scale of the problem. If f is chosen
too small then the resulting minimization will be difficult, but it is important that
f be chosen small enough to ensure that our local problem analysis is valid. We
have found a rule of the form

to be satisfactory. The dependence on || V/| | seems reasonable as this is linked
through the necessary conditions for a minimum to the size of the l/g,,
; = 1,2, ...,m, and the size of these quantities, in turn, reflects the difficulty in
minimizing B(x, f). The value of r1 is now taken as

r m i n

where the difference between this expression and that for f takes account of the
inclusion of the Lagrange multipliers as weights in the modified algorithm.
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In order to have a meaningful comparison between the modified and classical
algorithms we must make the first iterations compatible. Let p be the controlling
parameter in the classical algorithm. Then we select pt =rl\\ u(0) Û  and then
define pk+1 =pJ2, k = 1,2,.... The numerical performance of the two algorithms
is examined and compared in terms of the quantities LB(x), UB(x) which specify
lower and upper bounds for the values of the constraints g,(x), iel. We have

LB(x)=min | 0 j (x) | ,
iel

UB(x)=max|3,.(x)|.
iel

The quantity LB(x(ll>) shows the approach of xik) to the constraints and hence
indicates the degree of difficulty associated with the unconstrained minimization.
The numerical results have shown that our choice of pl is such that the quantities
LB(x((°) have approximately the same values both for the modified and classical
algorithm. The quantity UB(x(k)) shows the convergence of xik) to x*. For the
classical algorithm applied to nondegenerate problems the ratio UB(x('°)/LB(x(''))
is asymptotically proportional to y, the measure of degeneracy, and it is unbounded
with (c)k/2 for degenerate problems. However, for the modified algorithm it follows
from (2.15) that the ratio tends to 1 in the nondegenerate case, while in the
degenerate case it follows from (3.16) and (3.17) that it tends to a constant.

Test problems have been chosen
(a) to compare the performance of the modified and classical algorithms on

nondegenerate problems, and
(b) to exemplify the behaviour of the modified algorithm on a range of

degenerate problems.
As a basis for our comparison between the modified and classical algorithm, we
have used the test problems considered in [3]. We give results for the easy Rosen-
Suzuki problem, Colville problem 1 and the more difficult Colville problem II.
The degenerate problems considered include Example 1.1, a modified form of the
Rosen-Suzuki problem, and a highly degenerate problem suggested to us by
Professor J. B. Rosen. These last two problems are detailed in Appendix 1.

The numerical results are summarized in Tables 4.1 to 4.6. They are expressed
in terms of the quantities LB(x(l)), UB(x(*>) and UB(x^J , where x(^n is. the
extrapolated value at the kth stage.

(i) Nondegenerate problems. For nondegenerate problems with reasonably large
values of y the modified algorithm should prove better than the classical
algorithm. This is verified by the results listed in Tables 4.2 and 4.3 for the
two Colville problems, while the results in Table 4.1 for the Rosen-Suzuki
problem show the classical algorithm performing better than the modified
algorithm. This behaviour is expected as y = 1.6 and hence the results from
the classical algorithm extrapolate well. On the other hand, the first few
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iterations of the modified algorithm are needed for the convergence of
{xci)} to the trajectory {x(rt)}. However, in all cases the performance of the
modified algorithm is effectively independent of y, in marked contrast with
the performance of the classical algorithm. In this important respect the
performance of the modified algorithm is superior to that of the classical
algorithm.

(ii) Degenerate problems. For degenerate problems the results given in Tables 4.4
to 4.6 show clearly that the modified algorithm is superior to the classical
algorithm. The classical algorithm performs especially badly on the Rosen-
Kreuser problem as detailed in Table 4.6. Note also that the improvement
from extrapolation is only first order in the second and third examples.
There is some tendency for the extrapolated quantities to follow an 0(r*)
behaviour, but this is certainly not nearly so evident as the O(r) behaviour
before extrapolation. Example 1.1 provides an exception but there the higher
order improvement is possible only when c = 2.

We remark that the ability of the modified method to drive out the inactive
constraints was clearly shown in our calculations. For while the multiplier estimates
for these constraints produced by the classical method gave values of 0(10~4),
the corresponding values for the modified method were 0(1O~24).

The numerical results were produced on the Univac 1100/42 at the Australian
National University. The minimizations were carried out using the unconstrained
minimization subroutine FUNMIN with the tolerance adjusted so that at least
9 correct figures were obtained in x.

TABLE 4.1

Numerical results for the Rosen-Suzuki problem (y=1.6,/?t = 10~2

k

1
2
3
4
5
6
7

Classical algorithm

LB(x<*>)

0.50x10-2
0.25x10-2
0.12x10-2
0.62x10-3
0.31x10-3

UB(x(*>)

O.lOxlO"1

0.50x10-2
0.25x10-2
0.13x10-2
0.63x10-3

UBfrJS,,)
0.10xl0-»
0.93x10-4
0.73x10-6
0.10x10-8
0.14x10-9

Modified algorithm

LB(xw)

0.50x10-2
0.25x10-2
0.12x10-2
0.62x10-3
0.31x10-3
0.16x10-3
0.77x10-3

UB(x<")

0.50x10-2
0.25x10-2
0.12x10-2
0.62x10-3
0.31x10-3
0.16x10-3
0.77x10-3

UBCx^J

0.50x10-2
0.67 xlO"4

0.20 xlO"4

0.27x10-5
0.16x10-6
0.40xl0-8

0.41 x 10-8
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TABLE 4.2
Numerical results for the Colville problem I (y—91,pi = 10~2

[22]

k

1
2
3
4
5
6
7
8

LB(x

0.84 x
0.42 x
0.21 x
0.1 l x
0.53 x
0.26 x
0.13 x
0.66 x

Classical algorithm

"»)

10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-4

II * S !

UB(xLk,)
n)

0.66x10"!
0.38x10-1
0.21x10-1
0.11x10-1
0.58x10-2
0.29x10-2
0.15x10-2
0.75x10-3

l> _ J C < 7 > II ^

UB(x<*> )

0.66x10"!
0.10x10"!
0.19x10-2
0.29x10-3
0.23x10-4
0.16x10-5
0.52x10-7
0.14x10-8

lO-io

Modified algorithm

LB(x<")

0.84x10-3
0.42x10-3
0.21x10-3
0.10x10-3
0.52x10-4
0.26x10-4
0.13x10-4

UB(x<*>)

0.12x10-2
0.42x10-3
0.21x10-3
0.10x10-3
0.52x10-4
0.26x10-4
0.13x10-4

UB(x

0.12 x
0.35 x
0.11 x
0.15x
0.98 x
0.28 x
0.24 x

mL)
10-2
10-3
10-3
10-4
10"6
10-7
10-9

TABLE 4.3
Numerical results for the Colville problem II (y=83,/?i = = 10-2)

k

1
2
3
4
5
6
7
8

Classical algorithm

LB(x<*>)

0.18x10-3
0.88x10-4
0.44x10-4
0.22x10-4

. 0.11x10-4
0.55x10-5
0.28x10-5
0.13x10-5

UB(xw)

0.43x10"!
0.21x10"!
O.llxlO-i
0.55x10-2
0.28x10-2
0.14x10-2
0.70x10-3
0.35x10-3

UB(x^»J

0.43x10-1
0.11x10-2
0.12x10-3
0.15x10-4
0.13x10-5
0.73x10-7
0.22x10-8
0.14x10-9

LB(

0.18x
0.88 x
0.44 x
0.22 x
0.11 x
0.55 x

Modified algorithm

x«»)

10-3
10-4
10-4
10-4
10-5
10-5

UB(x(")

0.18x10-3
0.88x10-4
0.44x10-4
0.22x10-4
0.11x10-4
0.55x10-5

UB(x

0.18X
0.80 x
0.27 x
0.38 x
0.25 x
0.86 x

m m )

10-3
10-5
10-5
10-6
10-7
10-9

TABLE 4.4
Numerical results for Example 1.1 (j>\ =0.50x 10"2)

k

1
2
3
4
5
6
7
8
9

10
11

Classical algorithm

LB(x(l:))

0.25x10-2
O.13X1O"2

0.63x10-3
0.31x10-3
0.16x10-3
0.78x10-4
0.39x10-5
0.20x10-5
0.98x10-5
0.49x10-5
0.24x10-5

UB(x(t))

0.35x10"!
0.25x10-1
0.18x10-1
0.12x10"!
0.88x10-2
0.62x10-2
0.44x10-2
0.31x10-2
0.22x10-2
0.16x10-2
0.11 x 10-2

not converge after 11 i

uB(x^;n)

0.35x10"!
0.15x10-1
0.89x10-2
0.59x10-2
0.41 x 10-2
0.28x10-2
0.20x10-2
0.14x10-2
0.99x10-3
0.70x10-3
0.50x10-3

iterations

Modified algorithm

LB(x<*>)

0.25x10-2
0.13x10-2
0.63x10-3
0.31x10-3
0.16x10-3
0.78x10-4

UB(x(")

0.94x10-2
0.34x10-2
0.15x10-2
0.68x10-3
0.33x10-3
0.16x10-3

UBCxS?.)

0.94x10-2
0.25x10-2
0.18x10-3
0.44x10-5
0.41x10-7
0.16x10-9
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TABLE 4.5
Numerical results for the modified Rosen-Suzuki problem (pi = 1

k

1
2
3
4
5
6
7
8
9

10
11

k

1
2
3
4
5
6
7
8
9

10

11

Classical algorithm

LB(x(t))

0.48x10-2
0.24x10-2
0.21x10-2
0.61x10-3
0.31 xlO-3
0.15x10-3
0.78x10-"
0.39 - 10""
0.19x10-"
0.97x10-5
0.49x10-5

UB(x(")

0.13
0 .88x10- '
0 .62x10- '
0 .43x10- '
0 .30x10- '
0 .21x10- '
0.15x10-1
0.11 x l O ' i
0.75x10-2
0.53x10-2
0.38x10-2

not converge after 11

UB(xl)
0.13
0.49x10-'
0.30x10-1
0.20x10-1
0.14x10"'
0.97 x 10"2
0.68 x 10-2
0.48x10-2
0.34x10-2
0.24x10-2
0.17x10-2

iterations

TABLE 4.

Modified algorithm

LB(x(M)

0.41x10-2
0.23x10-2
0.12x10-2
0.59x10-3
0.29x10-3
0.14x10-3
0.74x10-4
0.37x 10-4
0.19x10""
0.93x10-5

||xdp>-X>»>
solution, x<

UB(x(*>)

0.24x10-1
0.81x10-2
0.32x10-2
0.14x10-2
0.66x10-3
0.32x10-3
0.15x10-3
0.76x10-4
0.38x10-4
0.19x10-4

UB^'J

0.24x10"!
0.80x10-2
0.49x10-3
0.39x10""
0.86x10-5
0.28x10-5
0.87x10-6
0.25x10-6
0.80x10-7
0.27x10-7

II < 10-i°, the estimated
i°), is corrected to 9

decimal places

6
Numerical results for the Rosen-Kreuser problem (pi = 10-2)

Classical algorithm

LB(x(t))

0.50x10-2
0.25x10-2
0.13x10-2
0.63x10-3
0.31x10-3
0.16x10-3
0.78x10-"
0.39x10""
0.20x10-4
0.98x10-5
0.49x10-5

UB(x<*>)

15.9
11.3
8.01
5.69
4.03
2.85
2.02
1.43
1.01
0.72
0.51

not converge after 11

UB(x£>n)

15.9
6.67
4.08
2.71
1.87
1.30
0.92
0.65
0.46
0.32
0.23

iterations

Modified algorithm

LB(xm)

0.50x10-2
0.25x10-2
0.17x10-2
0.63x10-3
0.31x10-3
0.15x10-3
0.78x10-4
0.39x10-4
0.20x10-4

l|Xml'n ~ X m'n

UB(x<*>)

0.34
0.36x10"!
0.85x10-2
0.28x10-2
0.12x10-2
0.52x10-3
0.24x10-3
0.12x10-3
0.57x10-4

UB(xl)
0.34
0.27
0.65x10"!
0.60x10-2
0.18x10-3
0.13x10-4
0.37x10-5
0.10x10-5
0.37x10-6

II < 10"10, the estimated
solution, x<9> , is corrected to 9
decimal places

Appendix

The Rosen-Suzuki problem. (Rosen and Suzuki (1965).) n = 4, m = 3.

Minimize / (x) = x2+X2 + 2xf+x 4 — 5xl — 5x2 —21x3 + 7x4,

3UDJCCI IO y i\\) —— — Xj — X2 — X3 — X 4 — X — X j - p X 2 — X3 "7~X4~t-O ^ U,

g2(x)— — xl — 2x2 — x3 — 2x4+x2 •
and a,(x) = - 2 x ? - x ? - x ? - 2 ;

Constraints 1 and 3 are active. The constrained minimum is at x* =(0 ,1 ,2 , — 1).
A feasible starting point is x(0) = 0.
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The modified Rosen-Suzuki problem, n =4 , /w = 3.
This problem is obtained by subtracting 1 from the second constraint of the

Rosen-Suzuki problem. The (modified) second constraint,

92(x) = -x?-2xi-xf-2xl+x,+x4+9 3* 0,
is degenerate at the solution.

The Rosen-Kreuser problem, n = 15, m = 10.

15
Minimize /(x) = - £ cf x,-,

; = i

15

subject to 0;(x) = bi- £ a0-x? ^ 0, i = 1,2,..., 10,

where the coefficients afj-, bt and c; are given in Table A.I. All constraints are active
and the first nine constraints are degenerate. The constrained minimum is at

TABLE A.1
Coefficients for the Rosen-Kreuser problem

j
i

CJ

1
2
3
4

1

20

100
90
70
50

2

40

100
100
50
0

3

400

10
10
0
0

4

20

5
35
55
65

5

80

10
20
25
35

6

20

0
5

100
100

7

40

0
0
40
35

8

140

25
35
50
60

9

380

0
55
0
0

10

280

10
25
30
15

11

80

55
20
60
0

12

40

5
0
10
75

13

140

45
40
30
35

14

40

20
25
0
30

15

120

0
10
40
65

bj

385
470
560
565

5 50 10 70 60 45 45 0 35 65 5 75 100 75 10 0 645
6 40 0 50 95 50 35 10 60 0 45 15 20 0 5 5 430
7 30 60 30 90 0 30 5 25 0 70 20 25 70 15 15 485
8 20 30 40 25 40 25 15 10 80 20 30 30 5 65 20 455
9 10 70 10 35 25 65 0 30 0 0 25 0 15 50 55 390

10 5 10 100 5 20 5 10 35 95 70 20 10 35 10 30 460
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