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Abstract
As data analytic methods in the managerial sciences becomemore sophisticated, the gap between the descrip-
tive data typically presented in Table 1 and the analyses used to test the principal hypotheses advanced has
become increasingly large. This contributes to several problems including: (1) the increasing likelihood that
analyses presented in published research will be performed and/or interpreted incorrectly, (2) an increasing
reliance on statistical significance as the principal criterion for evaluating results, and (3) the increasing
difficulty of describing our research and explaining our findings to non-specialists. A set of simple methods
for assessing whether hypotheses about interventions, moderator relationships and mediation, are plausible
that are based on the simplest possible examination of descriptive statistics are proposed.
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As scholarship in the organizational sciences has developed and matured, the range and complex-
ity of data analytic methods has expanded considerably. A casual perusal of any issue of leading
journals in this field is likely to make this evident, but the point is driven home vividly if you
systematically examine current publications. For example, I reviewed all of the papers in
Journal of Management and Journal of Applied Psychology published in 2018 (Volumes 44 and
103, respectively). There were several papers that were editorials, recommendations regarding
research methods, meta-analyses, or theory-development papers, but there were over 120 papers
that used quantitative methods to test the principal hypotheses advanced by the authors.
Approximately 15% of these papers relied on ordinary least squares (OLS) regression or some
variant (e.g., ANOVA) to test their main hypotheses.1 Approximately 10% used regression with
qualitative dependent variables (e.g., logistic, probit, or tobit analyses). Moderated or mediated
regression methods were quite popular (approximately 18%); advanced variants of regression
(e.g., polynomial regression, two-stage regression, random coefficient models, panel regression)
were equally popular (approximately 19.0%). Latent variable analyses and multilevel analyses were
common (approximately 15% and 17%, respectively), and other methods (e.g., event history/
hazard models, visualization methods) were also used (approximately 6%).2 On the whole, this
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quick review reinforces the idea that complex and sophisticated methods of data analysis have
become common in organizational research.

The increasing complexity and diversity of data-analytic methods in organizational research
has created several problems in our field including (a) incorrect application and interpretation
of these analyses, (b) increasing reliance on significance testing, and (c) increasing difficulty in
interpretation and accompanying gaps between science and practice. In this paper, I will argue
that we could make progress on resolving all of these problems if we readjusted the emphasis
given to descriptive versus inferential statistics in making sense of the data we collect. I will argue
that current research pays scant attention to descriptive statistics and that shifting our focus from
the relatively complex analyses that have come to characterize much of the research published in
the organizational sciences to simple and informative presentations of descriptive statistics would
increase the value and interpretability of our research.

Are descriptive statistics ignored, and if so, who cares?
To illustrate the treatment of descriptive statistics that is typical of our field, I selected a recent
issue of the two leading journals noted earlier (i.e., JOM, Vol. 44, No. 8; JAP, Vol. 103, No. 10) that
included a number of papers that use analyses of empirical data (as opposed to literature reviews,
editorials, etc.) to test study hypotheses. Virtually every paper that used the analysis of primary
data to test hypotheses included a statement like “Means, standard deviations, and correlations
among the variables measured in this study are shown in Table 1.” The question was what else, if
anything, these studies had to say about the descriptive statistics that were dutifully presented in
their articles. As in my review of the statistical methods that were used in these journals, I focused
on Study 1 or the principal study in papers that reported multiple studies.

There were 17 papers in these two issues that used analyses of primary data to test study
hypotheses. Every one of these papers presented detailed descriptions of the samples and measures
employed, but their discussion of descriptive data were scant. For example, in JAP, there were five
studies that used data to test specific hypotheses, and three of them said nothing beyond the fact
that there was a Table 1 or its equivalent. One study cited descriptive statistics to justify a decision
to not use particular control variables. One paper had a full sentence describing descriptive sta-
tistics, but this paper did not include a table of these statistics. In JOM there were 12 papers that
used data analyses to test important hypotheses. Across 11 of these papers, there was a total of 15
sentences referring to Table 1 or its equivalent; two of these 11 papers made no reference what-
soever to the contents of Table 1. In one study (Desai, 2018), a full paragraph and a part of another
discussed how the correlations among some of the variables measured in that study had impli-
cations for tests of particular models.

In some studies, information that at least refers back to the descriptive statistics is included in
figures, but in virtually all of the studies reviewed above, the authors skip over their descriptive
statistics and go straight to a discussion of their more complex analyses. I would argue that this is a
serious error for two reasons. First, significant experience and skill are often required to concretely
interpret the coefficients and statistics that many of these analytic procedures provide. Sometimes,
authors provide information that can help the reader make sense of the meaning of model param-
eters. For example, Giennik et al. (2018), in describing some of their results, note,

[T]he path model shows a positive and significant effect of entrepreneurial intentions on
entrepreneurial activity (B= .041, p < .001). This result provided support for Hypothesis
2. The marginal effect of entrepreneurial intentions was 0.05, suggesting that an increase
of one unit of entrepreneurial intentions increased the probability of engaging in entrepre-
neurial activity by five percentage points. (p. 1074)

However, this is not the norm. Rather, the norm is to indicate which coefficients are statistically
significant or which model provides a significantly better fit than another does, reducing the
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interpretation of study results to an exercise in “stargazing”—that is, scanning tables to see which
models and which coefficients are starred as statistically significant. These tables virtually always
present the values of fit statistics and coefficients, but it is often difficult for organizational
researchers to interpret these values in any substantive way.

Three reasons for concern with the relative emphasis on inferential versus descriptive
statistics
There are several trends in the use of inferential statistics and statistical hypothesis testing in
contemporary research in the organizational sciences that combine to make our research increas-
ingly difficult to conduct appropriately, understand, and apply. Three strike me as particularly
worrisome.

Increasingly complex analyses

Research articles in the organizational sciences usually pay a great deal of attention to inferential
statistics (e.g., tests of parameter significance, model fit). Unfortunately, as the complexity and
diversity of data analytic methods has increased, the likelihood of incorrect application and inter-
pretation of these analyses has also increased. For example, Cortina et al. (2017) reviewed over 700
structural equation models that were presented in 75 separate papers in top journals, asking a
relatively simple question: Were the degrees of freedom for the models these papers purport
to test correct? They found that in nearly 40% of the cases where there was sufficient information
to correctly calculate degrees of freedom, the reported df were wrong and that there were often
reasons to question whether the models actually being tested were the same as those being dis-
cussed in the paper. In a related vein, Green et al. (2016) examined methodological and statistical
issues raised by reviewers in the organizational sciences and noted that they often include con-
cerns about a variety of common analytic techniques (e.g., factor analysis, structural equation
modeling, hierarchical linear models). These analytic methods are widely used and widely taught
in our field; frequent errors in applying these long-established methods do not bode well when
considering the likelihood or errors in less familiar analytic methods.

Organizational researchers seem to have a difficult time understanding, much less properly
analyzing, even the most common types of hypotheses if those hypotheses involve complex rela-
tionships among multiple variables. For example, Aguinis et al. (2017) document the frequent
confusion and errors in tests of some of the most common hypotheses in the organizational
sciences—that is, hypotheses involving moderator and mediator variables. Not only are there fre-
quent errors of commission in applying complex statistical methods; there are also frequent errors
of omission. For example, DeSimon et al.(2019) document how researchers routinely focus on the
simplest details of meta-analytic studies, reporting only whether an effect exists and (sometimes)
its approximate strength, ignoring the wealth of analytic information available in a modern meta-
analysis (e.g., variation in effect sizes, systematic vs. random variation, boundary conditions).

Table 1. Proportion of JAP and JOM Analyses That Include Effect Size Estimates

Analytic method Proportion

OLS regression .735

Multilevel modeling .373

Logistic regression .400

SEM .230

Other .000
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Organizational researchers routinely use complex methods of data analysis, but it is far from clear
that they understand them. As analyses become more complex, there is every reason to believe that
researchers’ ability to correctly apply and interpret them will continue to degrade.

Overreliance on null hypothesis significance testing

There is a growing trend in applying analytic methods that rely exclusively on the outcomes of null
hypothesis significance tests, most often tests of the significance of individual model parameters, to
judge findings, with little attention given to (and often, little opportunity to compute and present)
effect-size estimates or other concrete indicators of what a significant finding might actually mean.
This can be illustrated by examining the analyses presented in the papers in the 2018 volumes of
Journal of Management and Journal of Applied Psychology discussed earlier. I classified the analytic
methods of papers that performed statistical significance tests of primary data (meta-analyses, litera-
ture reviews, and comment papers were excluded) into one of five groups: (a) regression—including
variants of OLS regression (e.g., ANOVA, t tests) and two-stage regression; (b) multilevel models; (c)
logistic regression—including TOBIT and LOGIT analyses; (d) structural equation models (SEMs);
and (e) other—generalized linear models, panel analyses, and random coefficient models. I examined
each of these papers to determine whether some measure of effect size was present in analyses that
included statistical significance tests. Table 1 shows the proportion of studies in each category that
presented some sort of effect size measures (e.g., d, eta squared, R2, pseudo R2).

As this table suggests, null hypothesis tests conducted in the broad framework of regression are
usually (73.5%) accompanied by some sort effect-size indicator. There is an important caveat here.
There is little evidence in most of the studies I reviewed that effect-size estimates were actually
taken into account or that they had any clear influence on the interpretation of null hypothesis
tests in these papers. At least, however, there was some possibility that effect-size information
might have been used. In every other category of analyses I reviewed, effect-size information
was rarely presented and was virtually never discussed. None of the generalized linear model anal-
yses of analyses in the “other” category included effect-size estimates; for some analyses, it is not
clear that such an indicator can be created. In logistic and multilevel analysis, effect-size measures
are often available, but more often than not they are not presented at all, much less taken into
account when evaluating the significance of model parameters. In SEM analyses, the goal of
the analysis was often to explain a dependent variable or a set of dependent variables in terms
of some sets of exogenous variables, mediators, or moderators, but less than a quarter of the anal-
yses using this technique presented any information about how well the model actually explains
those DVs. In the great majority of SEM studies, the reader might learn how well the model fit the
data but have little idea how well it explained the DVs. These results suggest a clear and disturbing
trend. As analytic methods move from the familiar and comfortable ground of OLS regression
toward a range of other analytic methods, the likelihood that effect-size measures will at least
be available to aid in interpreting statistical significance tests is likely to decrease and reliance
on statistical significance alone is likely to become more important in evaluating study results.

Research on the statistical power of null hypothesis tests makes one discouraging fact clear; the
outcomes of these tests depend much more on the size of the sample than on the strength or
nature of the effect being tested (Cohen, 1988; Kraemer & Thiemann, 1987; Maxwell et al.,
2008; Murphy et al., 2014). When you reject the null hypothesis that some parameter in a statisti-
cal model is zero, you learn two things. The value of the parameter is substantially larger than its
standard error (in most cases, at least 1.96 times as large) and the sample size was large enough to
result in a small standard error.3 When you fail to reject the null hypothesis, all you learn is that
your sample was not large enough to give you sufficient statistical power to reject that particular

3Most standard error statistics involve some function of N in the divisor.
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null hypothesis. With a large enough sample, virtually any null hypothesis will be rejected
(Murphy et al., 2014).

Effect-size measures are widely advocated as an accompaniment to many types of significance
tests (Applebaum et al., 2018; Kelly & Preacher, 2012; Valentine & Cooper, 2003; Wilkinson &
Task Force on Statistical Inference, 1999). Many of the analytic methods that are used in current
organizational research do not provide meaningful information about effect sizes, forcing
researchers to rely on tests of null hypotheses to draw inferential conclusions. In many cases, there
is hardly any point in doing these tests. Regardless of the hypothesis or model being tested, the null
hypothesis will be rejected if the sample is very large and will not be rejected if the sample is small.

There is an extensive literature dealing with conceptual and statistical arguments against over-
reliance on tests of statistical significance (See, for example, Cohen, 1994; Cortina & Dunlap, 1997;
Meehl, 1978; Murphy et al., 2014; Schmidt, 1996), and there are many points of controversy in this
debate. There is, however, agreement that significance tests by themselves are rarely enough to
allow you to understand the meaning of data and that these tests should be accompanied or aug-
mented, where possible, with information that will make the meaning of those tests more concrete.
Unfortunately, at the very time that scientists across a wide range of disciplines are rising up
against the uncritical use of significance tests as tools for evaluating research results (Amrhein
et al., 2019; Wasserstein & Lazar, 2016; Wasserstein et al., 2019), organizational scientists are
increasing their reliance on these dubious tools.

Our research is increasingly difficult to understand and explain

There is a substantial literature dealing with the research–practice gap in the organizational sci-
ences (Caetano & Santos, 2017; Rynes, 2009). One of the recurring themes in this literature is the
potential conflict between rigor and relevance. I believe that the increasing use of complex analytic
methods has both enabled and encouraged increasingly complex theories and formulating com-
plex research questions, sometimes leading to research findings that are difficult to understand or
apply. I will cite the first empirical article published in the 2018 issue of Journal of Applied
Psychology. Wolfson et al. (2018) studied the effects and boundary conditions of informal
field-based learning (IFBL). In their discussion of the principal results of Study 3, they note,

We hypothesized and found nuanced relationships between promotion focus and IFBL
behaviors, as well as between IFBL behaviors and performance improvements. We showed
that at high levels, non-punitive climate has an amplifying effect on the IFBL–changes in
job performance relationship, whereas it reverses at low levels and demonstrates a negative
relationship. (p. 27)

This conclusion is based almost entirely on statistically significant interaction effects in a multi-
level analysis. As Murphy and Russell (2017) note, moderator effects of this sort are notoriously
difficult to replicate, which suggests that considerable caution should be observed in interpreting
and applying this sort of result.

I did not cite Wolfson et al. (2018) because it was unusually complex or difficult to interpret;
I decided to describe the first study reporting empirical results in that issue of JAP regardless of the
methods that were used or the results reported. In many ways, this paper is exemplary in its
attempts to make complex findings more concrete by illustrating regions of significance in a num-
ber of figures, showing where moderator effects might make a difference and where they are less
likely to do so. Nonetheless, it might be quite difficult to describe nuanced findings like this and
their action implications to organizational decision makers. You could certainly recommend that
organizations strive for a less punitive climate, but describing how and when the effects and deter-
minants of IFBL might flip their directions and what organizations should do about this is likely to
be a real challenge.
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Complex research involving complex effects is sometimes necessary and can even be critically
important, but when conclusions about these effects rely entirely on null hypothesis, tests of com-
plex models can be difficult to interpret or explain. As a result of the proliferation of these meth-
ods, I believe we are well on the road to creating science that will be increasingly difficult to
translate into practice. More to the point, we are well along the road to making important deci-
sions about what the data mean based on analyses that most researchers and practitioners may not
fully understand and would be hard pressed to explain in simple and concrete terms.

Making better use of Table 1
Why do researchers say so little about (and often completely ignore) the descriptive statistics they
present in Table 1? One possibility is that they simply do not know what to say. That is, we have
well-rehearsed routines for presenting models and coefficients but no clear template for what to do
about the contents of Table 1.

I propose two uses for the information in Table 1, both of which would improve manuscripts,
reducing the likelihood that the producers and consumers of research will misinterpret the results
of studies. First, researchers should routinely discuss the contents of Table 1 in their Methods
section. The contents of Table 1 provide critical information about what happened when the
methods by which measures are defined and data are collected hit the realities of the context
in which those data are obtained. A rigorous and elegant set of methods might not provide useful
information if, for example, there is extensive range restriction for key variables in the samples
employed.

Proposition:Descriptive statistics are the result of the application of a set of research methods to
a particular sample and context. They should be discussed in a level of detail commensurate with
the discussion devoted to the methods themselves.

Discussing descriptive statistics as part of the Methods section of the paper would help the
readers understand whether and to what extent well-developed methods yield information that
at least has the potential to shed light on the primary questions with which the paper deals. In
particular, a close examination of descriptive statistics can help to determine whether the main
boundary conditions of a model or the predictions coming out of a model are likely to be met.

Table 1: Methods or results?

The Methods sections of articles often include detailed information about both the samples and
the measures used in a study, but descriptive statistics are almost always relegated to the first sen-
tence or two of the Results section and often never discussed again. It is time to break the rigid
barrier between Method and Results.

I propose that the contents of Table 1 should be routinely discussed in the Methods section.
The distributions of key measures are as much a part of the sample characteristics as the demo-
graphic variables that are routinely discusses in this section. The intercorrelations among variables
are as much a part of understanding the measures that are used as the coefficient alpha values that
are routinely presented when discussing each scale. If you feel that you must maintain a strict
distinction between Methods and Results, move Table 1 into the Methods section.

Table 1 not only provides data about characteristics of the sample and of the measures
employed, it also provides important information about whether or not the boundary conditions
that define the study have been met. If the study deals with the way organizations respond to
adverse weather events but the data were all collected on sunny days, this is a methodological
failing, not something to be stuck in Table 1 and ignored. If a study deals with the way people
respond to merit-based pay raises but everyone gets the same performance ratings (and therefore
the same raises), your methods, as applied in this study, have not provided the sort of data that will
allow you to ask the research question that motivated the study. This might reveal a problem with
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your measures (e.g., performance ratings in the organization you sampled might be so inflated that
there are few differences in overall ratings), the sample (perhaps you have only sampled top per-
formers), or both. The point is that the statistics in Table 1 provide important information about
whether or not the methods used will allow you to sensibly ask your research question.

Moving Table 1 (at least conceptually) into the Methods section, by discussing in detail how the
data that have been collected provide information about the sample, the measures, and the posi-
tioning of the study in terms of the processes hypothesized, provides both the producers and con-
sumers of research a much more detailed and concrete understanding of the data. This
understanding will be critical when it comes time to reach conclusions about what the data mean.

There are many good guides for interpreting and illustrating descriptive data. Bedeian (2014),
for example, offers advice on what to look for when examining descriptive data (e.g., pay attention
to distributions and outliers, be alert to unlikely results, such as correlations that exceed the reli-
abilities of the variables involved). More than 40 years ago, Tukey (1977) described a number of
strategies for using data visualization to make sense of the meaning of data and advocated careful
and thoughtful examination of descriptive data before moving on to complex analyses. In a series
of beautifully designed and illustrated books, Tufte (2001) provided essential guidance on the
visual display of quantitative information. The effective examination of descriptive data is a critical
step in bringing methodology from the abstract to the concrete by showing what actually happens
when finely tuned methods come into contact with contexts, populations, and situations that
might either enhance or limit the value of the data that are actually obtained.

Using Table 1 to evaluate hypothesis tests

Second, the descriptive statistics and their close derivatives are critical to the interpretation of
virtually every claim that can be made in a research article. As analyses become more complex
(with the resulting risk of mistakes in analysis and interpretation) and become more reliant on
null hypothesis testing, the importance of making whatever demonstration that can be made based
on simple descriptive statistics of the reasonableness of one’s hypotheses is likely to increase.

Proposition: Any result that is established based on a complex data analysis that cannot be
shown to be at least plausible based on the types of simple statistics shown in Table 1 (e.g., means,
standard deviations, correlations) should be treated as suspect and interpreted with the utmost
caution.

That is, hypothesized effects or relationships should first and foremost be illustrated based on
simple correlations, mean differences, or graphic presentations of data in their simplest form pos-
sible. The idea of using descriptive statistics to at least demonstrate the tests is based on two
assumptions. First, it is assumed that the data that are collected or analyzed by researchers are
meaningful and relevant. To be sure, data sometimes require corrections or controls to be sensibly
interpreted, but it is important to understand that the practices of statistical correction and control
have been hotly debated and that corrections and controls can do as much to obscure the meaning
of your data than they can to illuminate it (Becker, 2005; Berneth et al., 2018; LeBreton et al., 2014;
Murphy & DeShon, 2000; Schmidt et al., 2000). Data may need to be combined or transformed
before they can be sensibly interpreted; items must be grouped into scales, and sometimes data
that are distributed in unusual ways may require transformation or rescaling. However, the first
assumption behind the idea of feasibility tests is that the data should at some point be sufficiently
meaningful so that direct and simple analyses of those data will shed at least some light on what the
data mean.

The second assumption behind feasibility tests is that although complex analyses may lead to
different, and sometimes more valid, conclusions than a simple examination of the data would
suggest, the results of analyses that are several steps removed from the data should be treated with
some skepticism if they plainly contradict the descriptive data. This does not necessarily mean that
conclusions based on complex analyses are incorrect. Failure to demonstrate the reasonableness of
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one’s hypotheses before moving on to a complex analysis does not necessarily diminish the con-
tribution and value of a more complex analysis, but it does point out the potential for complex
analyses to mislead the researcher, and it should place the onus on the researcher to argue why
complex results that might not be easily understood based on an inspection of the descriptive data
should nevertheless be believed.

Below, I describe three simple approaches to using descriptive statistics and simple data analy-
sis tests that correspond with questions that are often asked in research in applied psychology and
the organizational sciences: Did treatments or interventions work? Does a third variable (Z) mod-
erate the relationship between two other variables or sets of variables (X and Y)? Does a does a
third variable (M) mediate or explain the relationship between two other variables or sets of var-
iables (X and Y)?

The core idea behind the approach suggested here is that authors should demonstrate, using the
simplest descriptive statistics available and appropriate, that their core hypothesis is at least fea-
sible before moving on to complex analyses that might be sufficiently removed from the data to
allow for the possibility of serious misinterpretation. Three examples are summarized in Table 2
and are described below.

Intervention studies

If you propose that some treatment or intervention will lead to higher or more favorable scores on
some main dependent variable, it is a good idea to first ask whether people who receive this treat-
ment do in fact receive what appear to be higher scores. At the simplest level, this might involve
nothing more than a comparison of the mean scores of people who received the treatment with
mean scores of comparable people who did not; if mean scores in the treatment group are the
same as or lower than those in the control group, the hypothesis that treatments make things
better is not on the face of it feasible. In longitudinal studies, feasibility tests might involve some-
thing as simple as noting whether the posttest mean is greater than the pretest mean. If posttest
scores are lower than pretest scores, the hypothesis that things improve over time if not feasible.

A slightly more sophisticated type of feasibility test is to calculate an effect-size measure. There
is a large and sophisticated literature dealing with alternative effect-size measures and their mean-
ing (e.g., Cumming, 2014; Kelly & Preacher, 2012; Valentine & Cooper, 2003), but at this stage
simple measures may be all that are needed. Something as simple as a d statistic (i.e., the difference
between treatment and control group means, divided by some sort of standard deviation estimate)
will do nicely, as would any number of variants of statistics that express group differences in terms
of the percentage of variance in the dependent variable that is explained (Murphy et al., 2014). The
use of effect-size measures in research of this sort is widely advocated (e.g., the journal reporting

Table 2. Using Simple Statistics to Evaluate the Feasibility of Several Classes of Hypothesis Tests

1. Intervention studies

a. Is Mtreatment > Mcontrol?

b. Is d large enough to care about?
2. Moderator studies

a. Is rxz small?

b. Are rxy and rzy small enough not to create a very large R2 when X and Z are used to predict Y?

c. Is rxy > rzy?
3. Mediator studies

a. Are both rxm and rmy larger than rxy?

b. Are rxm and rmy closer in value to
������
rxy

p
than to the value of rxy?
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standards of the American Psychological Association have long called for presenting effect-size
estimates along with the results of tests of statistical significance; Applebaum et. al., 2018), but
many of the analytic methods used in the organizational sciences provide little if any information
about the strength of effects. When these types of analysis are used, it is especially important to
demonstrate that it is at least feasible that treatments have a nontrivial effect before proceeding to
more complex analyses.

A simple examination of pretest versus posttest or treatment versus control group means would
save authors from the embarrassment of concluding that their interventions are working when
they are in fact making things worse, an error I have encountered multiple times in reviewing
research that went straight to complex analyses without taking the descriptive statistics in
Table 1 seriously. Even if mean scores in the treatment group are higher than are those in the
control group, it can be difficult to interpret these differences without the sort of contextual infor-
mation that effect-size measures include. It is surely better to have a general sense of whether
treatment effects are relatively large or trivially small before moving on to complex analyses that
may not provide this information. A demonstration that scores seem to get better after an inter-
vention, and that this effect may be large enough to pay attention to, provides a quick and simple
test of the feasibility of your hypotheses and justifies moving on to more complex analyses.

A variety of benchmarks have been proposed for describing effects or relationships as trivially
small (Bosco et al., 2015; Murphy et al., 2014), and it may be difficult to set a hard and fast defi-
nition of trivially small effects; treatments that lead to small changes in a dependent variable may
nevertheless be useful if the effects of those changes are practically important. Nevertheless, it is
useful to have at least some evidence that there might be an effect worth caring about before pro-
ceeding to analyses that are so far removed from the data that they may not provide this
information.

If your hypothesis is that treatments or interventions make things better, your results section
should start with a brief review of the contents of Table 1 to determine whether scores do in fact
improve with the intervention and whether these improvements are large enough in comparison
with the overall variability of scores to care about. That is, before you do anything complicated
with your data, you should first be required to show that the values of d or some related statistic
are in the predicted direction and are large enough to be meaningful.

An example
Suppose your study is designed to evaluate a training intervention. Before launching into some-
thing as complex as a longitudinal latent variable analysis, where conclusions might be drawn
based on coefficients several steps removed from the primary data you collected, it is very valuable
to have a statement like “After receiving this training, performance improved substantially
(Mpre= 2.5, Mpost= 3.7), and this difference in performance was large enough (d= .37) to be
potentially meaningful.” This statement lays the groundwork for more complex analyses, which
may be more informative but which also may not give a concrete indication of how much per-
formance improved, and in some cases, whether performance is in fact better after training than
before.

Moderator hypotheses

One of the most common hypotheses in research in the organizational sciences is that the rela-
tionship between two variables (or sets of variables) X and Y changes as a function of scores on a
third variable, Z. Moderator effects and interactions are an important component of many models
and theories (Aguinis, 2002; Aguinis et al., 2005; Latham & Pinder, 2005), and numerous papers
have discussed methods for detecting and estimating interactions and moderators in primary
research, meta-analysis, and meta-regression (e.g., Aguinis, 1995, 2002; Aguinis et al., 2001;
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Aguinis & Pierce, 1998; Aguinis & Stone-Romero, 1997; Bobko & Russell, 1994; Gonzalez-Mulé &
Aguinis, 2018; McClelland & Judd, 1993; Rogers, 2002). This literature also includes several papers
describing best-practice recommendations for studies that involve moderation effects (e.g.,
Aguinis & Gottfredson, 2010; Aguinis et al., 2011; Carte & Russell, 2003; Edwards, 2009).

There are well-known reasons for skepticism about moderator hypotheses (Murphy & Russell,
2017). Moderator effects in the behavioral sciences and in management research are often
extremely small,4 and the statistical power of tests of moderators or interactions in organizational
research is often correspondingly low (Aguinis, 1995; Aguinis al., 2005; Aguinis & Stone-Romero,
1997; Sackett et al., 1986; Shieh, 2009). Much of the research on the power of moderator tests here
has been conducted using moderated multiple regression, but the problems of small effect sizes
and low levels of power are equally serious when meta-analytic and multilevel methods are used
for testing moderator hypotheses (Aguinis et al., 2013; Aguinis et al., 2011; Aguinis & Pierce, 1998;
Mathieu et al., 2012).

Assume that reasonable measures and research designs have been employed and that there is a
good theoretical reason to pursue moderator hypotheses. Is there anything authors can do, based
on the simplest examination or analysis of the descriptive statistics typically found in Table 1, to
demonstrate that moderator hypotheses are at least feasible? Murphy and Russell (2017) suggest
some simple and concrete possibilities.

The most common method of testing for moderator effects involves comparing an additive
main effect and a multiplicative model using ordinary least squares regression where

Ŷ � b0 � b1X � b2Z;R2
additive;

Ŷ � b0 � b1X � b2Z � b3XZ;R2
multiplicative;

and

ΔR2 � R2
multiplicative � R2

additive:

Rejection of the hypothesis that b3= 0, or that ΔR2 � R2
multiplicative � R2

additive � 0; is usually
taken as evidence that a moderator effect is present.

In evaluating the feasibility that a moderator can be reliably detected in a study, four factors (N,
the reliability of X and Z, the correlation between X and Z, and the strength of the linear effects of
X and Z as predictors of Y) need to be considered (Murphy & Russell, 2017). Two of these, sample
size and the reliability of the measures employed, are best thought of as indicators of the adequacy
of the research methodology for testing moderator hypotheses. For example, sample size is one of
the primary determinants of the power of most statistical tests (Murphy et al., 2014), and the
likelihood that a moderator will be detected when N is small is quite low; Murphy and Russell
(2017) note that if you are using moderated multiple regression to test for moderators, you
are likely to need a sample of several thousand subjects to detect the types of moderator effects
that are typically found in the organizational literature (Aguinis et al., 2005). Reliability also mat-
ters. Moderated multiple regression requires the formation of cross-product terms (i.e., X × Z),
and if either X or Z show even moderately low levels of reliability, the product of these two terms
will be highly unreliable, reducing your ability to detect potential moderators.

In addition to these two methodological factors (i.e., N and reliability of X and Z), there are two
aspects of the descriptive statistics presented in most studies that bear heavily on the feasibility of
moderator hypotheses. First, as Murphy and Russell (2017) note, the likelihood of detecting a
moderator becomes lower the stronger the linear relationship between the Y variable and the inde-
pendent variable(s) and the moderator(s). This suggests that if you hope to detect a moderator
effect, both rxy and ryz should be reasonably small. The rationale is simple; relatively large

4Aguinis et al (2005) suggest that 95% of all reported studies found that moderator effects accounted for less than 7/10 of 1%
of the outcome variance.
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correlations between Z and Y and between X and Y will imply correspondingly large multiple
correlations between the combination of X and Z and Y.

Second, as Murphy and Russell (2017) also note, the likelihood of detecting a moderator
decreases as the correlation between the independent variable(s) and the moderator(s) goes
up. This suggests that if you hope to detect a moderator effect, rxz should also be reasonably small.
Once again, the rationale is simple: Relatively large correlations between X and Z will produce
cross-product terms that are so highly correlated with X and Z that the likelihood that these cross
products will capture unique information is low. If you wish to have a realistic hope of detecting a
moderator effect, rxz should be small (Murphy & Russell, 2017).

It is easy to say that rxy, rxz, and ryz should be small if you want to have a reasonable chance of Z
moderating the relationship between X and Y, but how small? There is probably no certain answer,
but it is possible to lay out two considerations when evaluating these correlations. First, the fea-
sibility of a moderator hypothesis is likely to depend more strongly on rxz than on rxy or ryz. The
correlation between main effects and cross products is highly sensitive to the value of rxz (Cohen
et al., 2002; Cortina, 1993), and unless the correlation between X and Z is small, the cross-product
term that is used in testing the moderator hypotheses will necessarily be highly correlated with
both X and Z and the likelihood of an incremental contribution will necessarily be low. There are
certainly steps that can be taken to reduce this collinearity (e.g., centering X and Z; Iacobucci et al.
[2016] discuss various ways in which centering influences the outcomes of moderated regression),
but if X is even moderately correlated with Z, these steps will have only a limited effect. This sug-
gests that it is most critical to show that rxz is reasonably small before proceeding to test moderator
hypotheses. Second, rxz should probably be smaller than rxy. The rationale here is more conceptual
than statistical, if the goal is to predict Y. If Z is a better predictor of Y than X, this suggests that the
authors may be barking up the wrong tree. Note that tests of moderator hypotheses via moderated
multiple regression are indifferent to which variable gets the label X and which gets the label Z,
and the finding that Zmoderates rxy also implies that Xmoderates rzy. All in all, if we are going to
relegate one of the variables (i.e., X or Z) to the role of moderator, a case can be made that it should
be the one that does not contribute quite so much as an independent predict.

Putting together the considerations laid out above, I propose that authors who wish to pursue
moderator tests should, in their discussion of Table 1, ask themselves whether rxz can plausibly be
described as small and whether rxy > rzy. As with the other tests discussed here, finding out that
the answer is “No” does not automatically mean that moderator hypotheses are implausible.
However, it does indicate that the data seem to lean strongly in the direction of rejecting the idea
of moderation, and if a more complex analysis suggests that moderation has occurred, the onus
should be on the author to argue why we should believe the more complex analysis rather than
believing a simpler look at these same data.

An example
A study that proposes that individual differences in agreeableness (Z) moderate the relationship
between a leader’s willingness to engage in behaviors that show consideration (X; on the assump-
tion that more agreeable leaders will be more effective and convincing in this regard than less
agreeable ones) and leader effectiveness (Y) might note the following:

In this study, rxy= .25, rxz= .12, and rzy= .14. Based on the benchmarks that are suggested
by Bosco et al. (2015), rxz and rzy represent small to moderately large correlations, whereas rxy
is approximately the median effect size for leadership studies. The correlations between the
mediator and the independent variable are not so large as to create excessive collinearity with
cross-product terms, and the combined validities of the independent variable and the medi-
ator are not so large as to create statistical barriers to demonstrating a moderator effect.
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Mediation hypotheses

The hypothesis that the effect of some variable X on an outcome Y is mediated by some third
variable M is very common in psychology (MacKinnon et al., 2007) and management (Rosopa
& Stone-Romero, 2008). For example, Wood et al. (2008) reviewed 25 years of research in the
organizational sciences and summarized the results of over 400 papers (about 50% experimental
or quasi-experimental studies) that tested for over 700 mediation effects. The 2014 issue of the
Academy of Management Journal published 60 papers (excluding editorials); more than 25% of
these explicitly proposed and tested mediator hypotheses.

Mediation models are often phrased in causal terms (i.e., X causes M, which in turn causes Y),
at least in their formal structure, but they need not be. Tests for spurious correlation (e.g., the
number of armed robberies in a city is correlated with the number of churches, but both of these
are strongly influenced by the total city size) can be take the same statistical form as tests for
mediation. There is a robust literature dealing with methods for estimating and testing mediation
effects (e.g., Baron & Kenny, 1986; James et al., 2006; Judd & Kenny, 1981; MacKinnon et al., 2007;
Maxwell et al., 2011), with the implementation these methods (Preacher & Hays, 2004), and with
the difficulties in drawing the sorts of causal inferences that are often implicit in mediator models
(e.g., Rosopa & Stone-Romero, 2008; Shrout & Bolger, 2002).

Mediation hypotheses are often built on a compelling theoretical rationale, and they are
undoubtedly important in the behavioral sciences. However, the hypothesis thatM fully mediates
the relationship between X and Y is a demanding one, and mediation studies often fail, in the sense
that they more often than not lead to the conclusion thatMmight partiallymediate rxy but cannot
fully account for this relationship (James et al., 2006; Judd & Kenny, 1981; Maxwell et al., 2011;
Wood, et al., 2008). The statistical power of the procedures for evaluating full versus partial medi-
ation is often low (MacKinnon et al., 2002; Mallinckrodt et al., 2006; Maxwell et al., 2011), par-
ticularly when mediation tests are performed in small samples (Preacher & Kelly, 2011), and it is
likely that in some papers that the failure to reject the hypothesis that the link between X and Y,
onceM is taken into account, is zero is a reflection of inadequate power rather than an indication
of full mediation. Thinking about why tests of the hypothesis that M fully mediates rxy so fre-
quently fail helps in articulating the (surprisingly strict) conditions under which a full mediation
hypothesis is plausible and in identifying a simple feasibility test.

There is an obvious and simple test for the feasibility of mediation hypotheses, but this test is
often overlooked in the haze of complex mediation models. For a mediation hypothesis to be fea-
sible, it is of foremost importance to demonstrate that both the proposed mediator and the inde-
pendent variable are indeed correlated with the dependent variable. That is, if rxm or rxy are close
to zero, the idea that M mediates rxy is simply implausible. An inspection of the correlations
among independent variables, mediators, and dependent variables allows you to go considerably
farther than this simple test. A simple decomposition of the semipartial correlation between X and
Y controlling for the relationship between M and Y shows that there are two other simple feasi-
bility tests that can be performed by inspecting the table of correlations among independent var-
iables, mediators, and dependent variables.

Semipartial correlation is not the most common or the most powerful method for testing medi-
ation models, but it provides an extremely powerful conceptual tool for explaining how and why
mediation hypotheses succeed or fail (Baron et al., 2000; MacKinnon, 2008; MacKinnon et al.,
2007) and for articulating what it takes for a mediation model to fully succeed. In particular, this
method allows you to specify the conditions under which the hypothesis that M mediates the
relationship between X and Y is feasible.

If M mediates the relationship between X and Y, this implies that the X–Y relationship should
tend toward zero once the effects of M on Y are controlled. That is, the semipartial correlation
between X and Y controlling for the correlation betweenM and Y should approach zero ifM truly
mediates rxy. The formula for this semipartial correlation, rx(y.m), is shown in Equation 1.
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r
x y:m
� � � rxy � rxm rmy���������

1�r2my

p :
(1)

The formula shown in Equation 1 illustrates quite clearly what it takes for the hypothesis that
M mediates the relationship between X and Y to be feasible. As the formula shows, rx(y.m) will
equal zero if and only if rxy= rxz × rzy. This can in turn happen only if (a) both rxz and rzy
are considerably larger than rxy or (b) one of these two correlations is smaller than rxy and the
other is much larger than rxy.

For example, full mediation can be demonstrated whenever both rxm and rmy are equal to
������rxy

p .
In that case, rxy will equal rxm × rmy. If either rxm or rmy are smaller than ������rxy

p , the other one must
increase proportionally for full mediation to work. For example, if rxy= .50

(which means that ������rxy
p

= .707) and rxm= .65, rmy must be .77 for the value of rx(y.m) to drop
to zero.

It can be argued that requiring the value of rxm × rmy to be exactly equal to rxy might pose an
unduly stringent standard for demonstrating that the mediator effects are at least plausible. Other
methods of analysis take more information into account, and it might be possible to demonstrate,
using a more comprehensive method of analysis, that M fully mediates, or almost fully mediates,
the relationship between X and Y. The analysis presented here does, however, suggest a very sim-
ple feasibility test for mediation hypotheses. The hypothesis that M mediates the relationship
between X and Y is simply not feasible unless both rxm and rmy are larger than rxy, preferably
closer in value to ������rxy

p than to the value of rxy.

An example
Suppose a study proposes that turnover intentions (M) mediate the relationship between burnout
(X) and turnover decisions (Y). To demonstrate the feasibility of a mediator hypothesis, the
authors might note, “The correlation between turnover intentions and turnover decisions is sub-
stantial (rmy= .55). Burnout is correlated with turnover decisions (rxy= .29) and is even more
correlated with turnover intentions (rxy= .48). This pattern of correlations suggests that the
hypothesis that turnover intentions mediate the relationship between burnout and turnout deci-
sions is plausible; the semipartial correlation of burnout and turnover decisions controlling for
turnover intentions is quite close to zero (rx(y.m)= .03)”.

Conclusions
Table 1 is the Cinderella of tables. It is often overlooked, but it can be of immense value. One key
to making better use of Table 1 is to get over the strict distinction between Methods and Results.
The statistics in Table 1 often tell about primary aspects of the sample and of the measures that
were used. Careful attention to means, standard deviations, and intercorrelations tells you a great
deal about whether your measures and sample are capturing the phenomena you are trying to
study. Returning to an earlier example, suppose you are testing a hypothesis about how people
respond when they are dissatisfied. Correlations between your satisfaction measure and other
measures in your study are likely to shed light on the validity of these measures. Means and stan-
dard deviations will help you determine whether your study actually includes many people who
are dissatisfied. If you shuffle Table 1 off to the Results section and proceed (as most studies seem
to do) to ignore it, you might miss a lot of information that would be useful for understanding
what your findings actually mean.

Table 1 often provides you will all of the information needed to make an initial assessment of
the reasonableness of your hypotheses. In intervention studies, they can save you from getting
everything backwards or from mistaking a trivial effect for an important one because it is “signifi-
cant.” In moderation and mediation studies, knowing ahead of time that your data make it very
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unlikely that a moderation or mediation hypothesis can possibly be right would save us all from a
lot of embarrassment. For example, if you know based on Table 1 that a proposed mediator is not
related to the dependent variable in any meaningful way, it is unwise to pursue mediation hypoth-
eses by using complex analytic tools whose end results may be hard to concretely interpret. On the
other hand, a paper that starts with a simple demonstration that the proposed effects are large
enough to care about or that the proposed process seems to make sense when you look at simple
and easily understood statistics will make the results of subsequent analyses both more credible
and more understandable. There are many tables in an article that might include important and
useful information; Table 1 is almost always one of these.

Organizational research is moving in the direction of an increasing reliance on complex analy-
ses that are frequently performed or interpreted incorrectly. Even when the analysis is done right
and interpreted correctly, the likelihood that main results will depend entirely on the outcomes of
a significance test is increasing. In almost all of the contexts in which organizational researchers
use these tests as a primary criterion for evaluating study results, all that they are really learning is
whether their sample was large enough to allow them to reject the null hypothesis. That is, these
tests tell you more about the methods and the sample than they do about the substantive phe-
nomenon being investigated.

Complex statistical methods not only open more possibilities for errors and misinterpretation
but also make our research increasingly difficult for nonspecialists to understand. Explaining
hypothesis tests and demonstrating their reasonableness in terms of the simplest possible statistics
is likely to increase the understanding and applicability of our research in organizations and in the
broader scientific community. The aircraft design team that created the legendary F-5 fighter jet
had a motto that might be profitably applied to the results section of virtually every academic
article in the organizational sciences—that is, “add simplicity and lightness.” We don’t even need
the lightness; organizational scientists who can successfully add simplicity to their work are much
more likely to have a meaningful influence than are their colleagues who write for a narrow audi-
ence of similarly trained specialists. Table 1 is a great place to find simplicity.

Over the last 35 years, I have reviewed or served as action editor for several thousand research
articles, and my experience (which may not be a reliable indicator and might not be replicated by
others) has led me to several conclusions about the state of science in organizational research. I
firmly believe that when the primary findings of a study cannot be explained, or at least hinted at,
based on the sort of simple statistics that are typically shown in Table 1, the likelihood that the
work has been done and interpreted correctly and that it is sufficiently important to matter to a
nonspecialist is very low. We should and can make much better use of simple statistics in arguing
for our hypotheses, and a great place to start is Table 1. The current practice is to provide and then
largely ignore Table 1. I suggest that we reverse our thinking. Table 1 is usually the most important
table and often the only important table in manuscripts. If N is either very large or very small, the
outcomes of significance tests are a foregone conclusion and the only useful tool for making sense
of results will be the descriptive statistics presented in Table 1. Let’s give this table the attention it
deserves!
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