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measured but is at the level of 0.2–0.6 cc̄ pairs per Pb–Pb interaction at
158A GeV. Thus, only one in about 2000 cc̄ pairs produced emerges as a
bound J/Ψ(cc̄) state. The uncertainty in this estimate is at least a factor
of two and depends on the centrality of the interaction. It is hoped that
further experimental information will become available soon, allowing us
to understand this ratio more precisely.
The excited state Ψ′ has a yield five times smaller. There has not yet

been a measurement of production of the other onium states in nuclear
collisions.
In the LHC energy range, one can expect that the bound state of b-

quarks, the upsilonium Υ(b̄b), will assume a similar role to that which is
today being played, at SPS and RHIC energies, by J/Ψ.
The other heavy-quark bound state that is of interest is the Bc(b̄c).

This quarkonium state is so rarely produced that it was not discovered
until very recently [9, 10]. However, it has been studied extensively theo-
retically, and the currently reported mass, M = 6.4 ± 0.39 ± 0.13 GeV,
is in good agreement with the theoretical quark-potential model expecta-
tions. The life span, τ � 0.5 ps, cτ � 150µm, implies that the current
silicon pixel detector technology allows one to distinguish the production
vertex from the Bc(b̄c) decay vertex.
The conventional mechanism for production of Bc(b̄c) requires the for-

mation of two pairs of heavy quarks in one elementary interaction, fol-
lowed by the formation of a bound state. The probability of these three
unlikely events occurring in one interaction is not large and hence nei-
ther is the relative predicted yield, (Bc + B∗

c)/(b, b̄) � (3–10) × 10−5 at√
sNN = 200 GeV [169]. This small value implies that ‘directly’ produced

Bc (both in J = 0 and J = 1 channels B∗
c and B̄

∗
c) cannot be observed

at the RHIC. On the other hand, an enhancement in production of this
state is expected in the QGP-mediated recombination [239], which could
lead to a measurable rate of production in nuclear interactions. Since the
quark-recombination mechanism of production requires mobility of heavy
color-charged quarks, observation of this new mechanism for the forma-
tion of this exotic meson would constitute another good signature of the
deconfined QGP phase.

3 The vacuum as a physical medium

3.1 Confining vacuum in strong interactions

Theoretical interest in the study of relativistic heavy-ion collisions origi-
nates, in part, from the belief that we will be able to explore the vacuum
structure of strong interactions and, in particular, the phenomenon of
quark confinement. The picture of confinement can be summarized as
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38 A new phase of matter?

follows:

1. all strongly interacting particles are made of quarks and gluons;
2. quarks q and gluons g are color charged [123], but all asymptotic ob-
servable physical states they can form are color neutral;

3. therefore, the true vacuum state |V 〉 abhors color;
4. there is an excited state |P 〉, referred to as perturbative vacuum, in
which colored particles can exist as individual entities and therefore
move freely;

5. |P 〉 differs essentially from |V 〉, the true vacuum, and in particular,
it differs by a considerable amount of energy density in the regions of
space–time in which the |V 〉 structure is dissolved into |P 〉.

In the ‘true vacuum’ (in which we live), color-charged quarks and gluons
are ‘confined’. However, under extreme conditions of density and tem-
perature, we should reach the crossover to the color-conductive phase of
the vacuum. In such a space–time domain, nearly free propagation of
colored quarks and gluons is thought possible. This picture of hadronic
interactions is consistent and indeed justifies the perturbative approach
to quantum-chromodynamics (QCD) interactions. It is the foundation
that allows us to describe hadrons as bags, i.e., confined bound states
of quarks, see section 13.2. We also use these simple, but essential, fea-
tures in the discussion of the physical properties of the QGP state in
section 4.6. The melted color-conductive state |P 〉 is a locally excited
space–time domain in which quarks and gluons can move around. This
state has properties that we would like intuitively to associate with a nor-
mal physical state, since it is simple, structureless. We must keep in mind
that the situation is, however, inverted relative to our expectations. Since
quarks and gluons are not observed individually, they cannot propagate
in the true vacuum state, thus the true physical ‘ground’ state |V 〉 must
be complex and structured, and it is the excited state that is simple and
structureless.
Vacuum structure keeps the colored particles bound and confined. Qu-

ark confinement has not been explained to be a direct result of quark–
quark interaction, generated by the color charge and exchange of gluons.
Rather, this force determines within a domain of perturbative vacuum |P 〉
the structural detail: for the ground state the structure of the hadronic
spectrum; at sufficiently high excitation, the properties of the color plasma
of hot quarks and gluons. To be able to move color charges within a re-
gion of space, one needs to ‘melt’ the confining structure. For a first-order
phase transition, the two phases have a difference in energy density, the
latent heat B, per unit of volume,

B ≡ εQGP(Tcr, Vcr; b)− εHG(Tcr, Vcr; b) ≈ 0.5 GeV fm−3. (3.1)
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We would like to determine, by studying the QGP phase, the magnitude
of B. So far, only relativistic nuclear collisions can deliver (to a large
region of space) the required energy and are the best and only tool we have
today to study the process of melting of the QCD vacuum, see section 5.2.
We will discuss the experimental methods further in chapter 5.
The vacuum properties of strong interactions can be explored only when

the locally deconfined state, the QGP, is experimentally established. In
our opinion, the study of the physical properties of the hadronic vacuum,
in particular ‘confined vacuum melting’, is the fundamental challenge mo-
tivating the high-energy nuclear-collision experimental program. It is rel-
evant to note that the key ideas and concepts underpinning the possibility
of finding the vacuum ‘melting’ are robust against change and evolution
of our knowledge: neither the questions about the existence of a true
(discontinuous) phase transition between the hadronic vacuum states nor
the possible quark substructures will greatly influence these considera-
tions. All we want is to determine that the color-melted state contains
particle-like quark–gluon excitations with established symmetries and in-
teractions.
The most interesting property of the true QCD vacuum |V 〉 is that it

abhors the color charge of quarks and gluons. However, we are interested
in determining and understanding its other physical properties. The ap-
pearance of a glue ‘condensate’ field, i.e., the vacuum expectation value
of the ‘square’ of the gluon field, the so-called field-correlator in the true
vacuum state [242, 243], is of particular relevance for the understanding
of |V 〉. With the glue fields defined as in section 13.4 we have

1
2
F 2 ≡

∑
a

1
2
F aµνF

µν
a =

∑
a

[ /B 2
a − /E 2

a ], (3.2)

where we use Einstein’s summation convention for repeated Greek indices.
The value of F 2 is obtained by studying QCD sum rules [197, 198, 242,

243], and is in agreement with the results obtained numerically using
lattice-gauge-theory methods [100, 101]:

∆F 2 ≡ 〈V |αs
π
F 2|V 〉−〈P |αs

π
F 2|P 〉 � (2.3± 0.3)× 10−2GeV4, (3.3)

= [390± 12 MeV]4.

Here, αs = g2s /(4π) is the coupling constant for the strong interaction.
Since in empty space the vacuum state is field-free, i.e., the vacuum expec-
tation value of the gauge field vanishes, the appearance of a non-vanishing
vacuum expectation value of the square of the gauge field in Eq. (3.3) is
a quantum effect without a classical analog.
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3.2 Ferromagnetic vacuum

We now describe a model and discuss other properties of the vacuum
state that are related to the remarkable result Eq. (3.3). Because of the
non-abelian nature of color charges, the quanta that mediate the color
force, gluons, can themselves interact by means of exchanging gluons.
Since gluons are massless, there is no energy gap that would stabilize
their number. An attractive force between them will induce a major
realignment in the perturbative wave function, i.e., |P 〉, of the many-body
gluon system.
Upon inserting Eq. (3.2) into Eq. (3.3), we see that the color B-field

(magnetic) fluctuations dominate the color E-field (electrical) fluctua-
tions:

∆
∑
a

/B 2
a = ∆

∑
a

/E 2
a + 2[390± 12MeV]4. (3.4)

Here, ∆ is defined as on the left-hand side of Eq. (3.3). The natural
interpretation of this equation is that the true vacuum structure is pre-
dominantly magnetic. Indeed, an instability of the perturbative vacuum
of QCD toward the formation of a ferromagnetic structure, was discov-
ered early on in the development of QCD [56, 187, 236]. This effect has
been shown to arise due to the attractive magnetic spin–spin interaction
of gluons [35, 199, 200]. This spontaneous ferromagnetic instability par-
allels, in many important aspects, the instability in QED vacuum in the
presence of constant electro-magnetic (EM) fields.
In QED, in the presence of a constant electrical field E, there is a

nonvanishing probability of spontaneous particle-pair formation, with the
probability per unit time and volume given by [240]

w =
α/E2

π2

∞∑
n=1

1
n2
exp
(
−nπm

2

|e /E|

)
. (3.5)

The electromagnetic fine-structure constant, α � 1/137, is relatively
small, and the massm of the lepton (electron) produced is large compared
with the laboratory fields available. Thus, in fact, this process has never
been observed. The physical origin of the QED vacuum instability resides
in the fact that, in a constant infinitely extending field, we can always find
a potential difference between two distant points that exceeds the pair
mass, and thus spontaneous pair production can ensue [219]. Schwinger’s
rate Eq. (3.5) is arising in such a description from the process of quantum
tunneling through a barrier that the potential V =

∫
d/x/E implies, and

therefore it can be adapted with ease to the study of QCD [88, 132].
This mechanism is serving as the basis for particle production within the
color string models, in which breaking of the color-electrical-flux tube
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connecting rapidly separating quarks provides the mechanism for particle
production [39].
In the case of QED, the particles produced are screening the field source,

and the vacuum-state energy still has a local minimum around the per-
turbative vacuum-state configuration with vanishing EM fields. In this
regard the situation is different in QCD, in which there is a ferromagnetic
instability. To understand this QCD magnetic instability, recall that, in
a constant magnetic field of magnitude B, a particle with spin projection
σ and orbital momentum l = 1, 2, 3, . . ., with reference to the direction
of B has the Landau energy

E2lσ = m2 + k2‖ + 2gsB(l + σ + 1
2), (3.6)

and the effective degeneracy is

gB =
V 2/3

2π
gsB. (3.7)

For σ = −1
2 (leptons, quarks), the lowest energy level for k‖ = l = 0 is

at E20 = m2, as is seen in Eq. (3.6). However, for spin-1 gluons, states
with σ = −1 display an instability whereby E20 becomes negative for
gB > m2 = gsBcr. For gluons with mg = 0, this occurs for an arbitrarily
small value of B. Therefore, the spectrum of Landau states begins at a
minimum momentum, k‖ >

√
gsB for the relevant case of gluons with

σ = +1 and l = 0. This has a profound impact on the zero-point energy
of the vacuum.
The sum over all (stable) modes of particles (+) and antiparticles (−)

yields the vacuum energy, that is the expectation value of the Hamiltonian
in the perturbative state |B〉 in the presence of the magnetic field B:

〈B|H|B〉 = (−)2σ 1
2

(∫∑
+

E+(B)−
∫∑
−

E−(B)

)
≡ Eσ0 (B)V. (3.8)

The coefficient of the zero-point energy density Eσ0 reflects the spin-statis-
tics relation. The appearance of the lowest-angular-momentum states
of the minimum allowable momentum leads for the gluon fields (after
subtraction of the perturbative state and renormalization) to [35, 199, 200]

EQCD0 (B) =
b0
2
(gsB)2

4π
log
(
(gsB)2

Λ2

)
, (3.9)

where b0 = (1/2π)(11nc/3− 2nf/3) > 0 is as given by Eq. (14.14). Equa-
tion (3.9) proves that the vacuum state acquires an instability in the limit
at B = 0, since the vacuum energy does not exhibit a minimum in this
limit. We find a new minimum of the vacuum energy at a finite value of
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(gsB)2. The scale of the ‘condensation’ field is determined by the renor-
malization scale Λ.
While these results prove the instability of the perturbative state |P 〉,

given the variational approach the ferromagnetic-vacuum model may be a
very poor approximation to the actual vacuum structure of |V 〉. Though
the energy of the |P 〉 vacuum is lowered, and we find a minimum at a
finite value of the magnetic field B, it cannot be expected that we have,
within this crude model, reached the lowest energy corresponding to the
true state |V 〉. Even so, Eq. (3.9) allows a first estimate of the latent
energy involved in melting the (magnetic) QCD vacuum structure to be
made:

BB ≡ −E(Bmin) =
b0
8π
(gsB)2min <∼ B. (3.10)

BB is seen as the variational approximation to the true value B. The
value at the minimum underestimates the true gain in energy within a
more accurate vacuum structure model. To determine the scale of the
magnetic field near the minimum of the energy density, we take as the
average value of the square of the vacuum magnetic field the vacuum
expectation value of the field operator squared, Eq. (3.3):

1
2π2

(gsB)2min ≡ δ
αs
π
〈V |F aµνFµνa |V 〉. (3.11)

δ is a positive number by definition. It can not be bigger than unity. The
example of the quantum oscillator expression for 〈x2〉 suggests that it is
probably small relative to unity. The nonperturbative energy density of
the vacuum state Eq. (3.10) is then of the magnitude

B >∼
11− 2

3nf

8
〈V |εαs

π
F 2|V 〉 � δ 2.5 GeV fm−3. (3.12)

We also note the Curie-point (the temperature at which the magnetic
ferric structure melts) of the magnetic QCD state at temperature Tcr �
B1/4B , at which one finds a strong first-order phase transition [192].
We infer from this exploration of a magnetic-vacuum model that the

perturbative QCD vacuum |P 〉 is unstable for T < Tcr, and that the tran-
sition to the true vacuum state involves a considerable release of latent
heat. However, the quantitative results discussed here are merely provid-
ing an order-of-magnitude estimate. In fact, many other more complex
semi-analytical models of the QCD vacuum structure were developed, of
which the other most often addressed case is the instanton vacuum. In
this approach, one draws on the (infinite) degeneracy of the unstructured
state. A more thorough discussion of this model is offered in the mono-
graph of Shuryak [245].
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3.3 Chiral symmetry

The light u and d quark masses, which we have considered in table 1.1,
are just slightly different when they are measured on the energy scale
associated with the QCD vacuum structure, which is of the order of a
few hundred MeV. This opens up an interesting interplay between the
effective flavor symmetry of QCD and the vacuum properties. Recall that
up and down quarks satisfy the relativistic Dirac quantum field dynamics,
Eq. (13.79),

(iγµ∂µ −m)Ψ = 0, (3.13)

from which there arise two identities,

∂µj
µ
+≡∂µ(ūγµd) = i(mu −md)ūd, (3.14)

∂µj
5µ
+ ≡∂µ(ūγµγ5d) = i(mu +md)ūγ5d, (3.15)

where u and d are the Dirac spinor-field operators representing the two
light-quark flavor fields of current-quark masses mu and md, respectively.
The subscript ‘+’ reminds us that these currents ‘lift’ the ‘down’ quark
to the ‘up’ quark; in the quantum-field-theory formulation this current is
an iso-raising operator that increases the electrical charge by +|e|.
When the quark masses are equal, the isospin-quark current is con-

served in Eq. (3.14), which implies that the Hamiltonian is symmetric
under transformations that mix equal mass ‘u’ with ‘d’ quarks; this is
an expression of the isospin-SU(2) symmetry of strong interactions; this
symmetry is broken by the electromagnetic and weak interactions, and
by the difference in current-quark masses mu = md, as seen in Eq. (3.14).
In case that the light quark masses were to vanish, by virtue of Eq. (3.15),

the pseudo-vector isospin-quark current would also be conserved. Thus,
when we are dealing with physical situations in which the current quark
masses can be neglected, each isospin quark doublet operator q ≡ (u, d)
must be invariant under transformations that comprise two ‘isospin rota-
tions’ associated with the two current-conservation laws.
When we are motivated by the physical properties of weak interactions,

it is common to study the left- and right-handed quark fields

qL,R ≡ 1
2(1± γ5)q.

The reader is reminded that, for the right-handed case, the spin rotates
right-handedly around the propagation axis, that is the spin and momen-
tum vectors are pointing in the same direction; the ‘helicity’ is positive. It
can be shown, on general grounds, that, for massless fermions, the helicity
is conserved.
On forming the sum and difference of Eqs. (3.14) and (3.15), one finds

that both the right- and the left-handed doublets form conserved iso-
currents; thus the overall symmetry is SU(2)L × SU(2)R. This is the
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so-called chiral symmetry, i.e., ‘handedness’ symmetry. It is important to
remember that this symmetry can be exact only if the masses of u and
d quarks vanish exactly, and electro-weak interactions that distinguish
the light quark flavor can be neglected. Since mu +md = 5–15MeV, we
expect this nearly exact chiral symmetry to be manifesting itself strongly
at the hadronic energy scale O(1) GeV, literally wherever we ‘look’. Yet,
there is no sign of the corresponding symmetry in the hadronic spectrum;
there are no double doublets of hadronic parity states, e.g., we know that
there is only one isospin doublet of nucleons (proton–neutron), not two:
the second, chiral-symmetry-motivated opposite-parity, isospin doublet of
nucleons is not observed. It would seem that chiral symmetry is badly
broken by strong interactions, presumably the mass difference of quarks
somehow matters.
However, the Adler–Weisberger sum rules, which relate weak and strong

properties, confirm the presence of the intrinsic SU(2) × SU(2) symme-
try in the elementary Hamiltonian. We refer to the recent discussion of
Weinberg for a more comprehensive introduction to this rather important
matter [268]. Nambu resolved this conflict between weak and strong in-
teractions by proposing that the required symmetry-breaking mechanism
is part of the structure of the strongly interacting vacuum state, and the
physical hadron spectrum can indeed break the intrinsic (almost) chiral
symmetry of the Hamiltonian [195]. Weinberg is of the opinion that the
immediate acceptance of QCD as the dynamic theory of strong inter-
actions was very much the result of a rather natural implementation in
terms of practically massless ‘current’ u and d quarks (see Eqs. (3.14) and
(3.15)) of these contradictory properties of weak and strong interactions.
The Nambu breaking of chiral symmetry in the hadronic spectrum re-

quires that, in the limit that the quark masses vanish exactly, there would
be an exactly massless Goldstone boson, a particle with quantum num-
bers of the broken symmetry, thus spin zero, negative parity, and isospin
I = 1. Since the chiral symmetry of the strong-interaction Hamiltonian
is not exact, the lowest-mass particle with these quantum numbers, the
nearly massless pion state, expresses the properties of the massless Gold-
stone meson of strong interactions.
One could argue that the finite pion mass noticeable on the scale of

hadronic interactions is removing from the hadronic spectrum most of
the signature of chiral symmetry. The missing parity doublets of all
strongly interacting particles are a ‘direct product’ of the Goldstone bo-
son (pion) with all elementary hadron states. This, in turn, implies that
many features of the hadronic spectrum, and possibly of the vacuum
structure, should depend on the small, and seemingly irrelevant, current
quark masses we see in Eqs. (3.14) and (3.15). How this could happen is
not understood.
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We show now that, in the limit of vanishing quark masses, we expect
the pion mass also to vanish. This behavior plays an important role in the
conceptual understanding of the vacuum structure of strong interactions.
We consider matrix elements of the pseudo-scalar and the pseudo-vector
quark currents between the vacuum state and one pion state,

〈π+(p)|ū(x)γµγ5d(x)|V 〉≡−i
√
2pµfπe

ipµxµ
, (3.16)

〈π+(p)|ū(x)γ5d(x)|V 〉≡ i
√
2gπe

ipµxµ
, (3.17)

where pµpµ = m2
π = (139.6 MeV)

2. The form of the right-hand sides of
Eqs. (3.16) and (3.17) arises by virtue of the Lorentz symmetry properties
of the (true) vacuum state |V 〉 and the π+ state |π+(p)〉. We consider
the divergence ∂µ of Eq. (3.16). Using relation Eq. (3.15), the following
well-known result is found:

m2
πfπ = (mu +md)gπ. (3.18)

The matrix element fπ is well known, since it governs the weak-inter-
action decay of pions, see, e.g., Weinberg, and the value gπ is determined
by sum rule methods [242, 243]:

fπ = 93.3MeV, gπ � (350MeV)2. (3.19)

Equation (3.18) implies that

mu +md = 0.1mπ, (3.20)

a somewhat unexpected result in the present context, since the (current)
quark masses are found to be much lighter even than that of the ‘massless’
pion.
Weinberg also presents an in-depth discussion of the exploration of the

Nambu–Goldstone structure of the vacuum, in terms of symmetry rela-
tions between current-matrix elements (current algebra). In our context,
the most important vacuum property involving quarks is the Gell-Mann–
Oakes–Renner (GOR) relation, which, adapted to the quark language (see
section 31 of [280], or [125]), implies a relation with the quark fluctuations
(condensate) in the true vacuum:

m2
πf

2
π = 0.17× 10−3GeV4 � −1

2(mu +md)〈ūu+ d̄d〉+ · · · . (3.21)

On dividing Eq. (3.21) by Eq. (3.18), we obtain

−fπgπ = 1
2〈ūu+ d̄d〉|1GeV ≡ 1

2〈q̄q〉 = −(225± 9 MeV)3, (3.22)

where we have used the values of fπ and gπ given in Eq. (3.19). When
Eq. (3.22) is combined with Eq. (3.21), and some of its generalizations, we
can determine the values of current quark masses [105]. This shows how
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the use of matrix-element properties and sum rules allows one to establish
the physical values of the light quark masses presented in table 1.1.
We have introduced, in section 3.2, the condensates of glue, and above,

of quark fields as if these were two quite independent physical effects of
strong interactions. There remains an important question: is there a
relation between glue-condensate melting (confinement-to-deconfinement
transformation of the vacuum) and quark-condensate melting (the restora-
tion of chiral symmetry)? One could be tempted to infer that the chiral
symmetry-breaking features in QCD and gluon condensation have little
in common. However, studies of restoration of symmetry of the vacuum
at high temperature [103] have yielded contrary evidence: the two differ-
ent vacuum structures of QCD always disappear together in the numer-
ical studies as, e.g., the temperature is varied [103]. Model calculations
[106, 107, 109, 251] employing mean-field configurations of gauge fields in
the QCD vacuum suggest that it is the presence of the glue-field con-
densate which is the driving force causing the appearance of the quark
condensate.
The mechanism connecting the two structures in the QCD vacuum

(glue condensate, Eq. (3.3), and chiral condensate, Eq. (3.22)) is a major
unsolved theoretical problem of strong-interaction physics. We will not
pursue further in this book this interesting subject, which is undergoing
rapid development.

3.4 Phases of strongly interacting matter

It is expected that, in nuclear collisions at relativistic energies, we at-
tain conditions under which the structured confining vacuum is dissolved,
forming a domain of thermally equilibrated hadronic matter comprising
freely movable quarks and gluons. A qualitative sketch of the phase dia-
gram of dense hadronic matter is shown in Fig. 3.1. The different phases
populate different domains of temperature T and baryon density ρb pre-
sented in units of the normal nuclear density in heavy nuclei, ρ0 � 1

6 nucle-
ons fm−3. For high temperatures and/or high baryon density, we have the
deconfined phase. If deconfinement is reached in the nuclear-collision re-
actions, it ‘freezes’ back into the state containing confined hadrons during
the temporal evolution of the small ‘fireball’, as indicated by the arrows
in Fig. 3.1. Almost the entire ρ–T region can be explored by varying the
collision energy of the colliding nuclei.
The most difficult domain to reach experimentally is the one of low

baryon number density, at high T , corresponding to the conditions per-
taining in the early Universe. This demands extreme collision energies,
which would permit the baryon number to escape from the central rapid-
ity region, where only the collision energy is deposited; see chapter 5.
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Fig. 3.1. The regions of the principal forms of hadronic matter are shown in the
baryon-density–temperature plane. Their exploration with various accelerators
is indicated, as are the domains relevant for cosmology and astrophysics. Also
indicated is the behavior of the quark condensate.

The vertical arrow at the lowest temperatures, in Fig. 3.1, corresponds
to the case of the stellar explosion of a supernova. Rather low-energy
collisions at the AGS lead to such baryon-dense environments, which are
more similar to nova explosions than they are to the early-Universe big-
bang (horizontal arrow), which is better simulated by RHIC and future
LHC experiments. In between these two extremes, we find the SPS con-
ditions. The specific beam capabilities of the various accelerator facilities
are complementary; section 5.1.
There are three regions indicated in Fig. 3.1 by the quark condensate,

the expectation value of the quark fields 〈q̄q〉, see Eq. (3.22), and 〈qq〉.
The attractive quark–quark interaction present in some of the two-particle
channels allows this di-quark color-condensate to form at low tempera-
ture and high quark density. We will not discuss the extensive work
which recently addressed the properties of ‘cold’ quark matter, in which a
‘color–flavor’ locking (pairing) of quarks introduces yet other interesting
structures in the deconfined state [31]. This color-superconductive phase
had already been proposed early on in the study of properties of quark
matter [53].
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Recent studies have confirmed that the temperature at which such a
color–flavor-locked phase of quark matter could exist is too low for an
exploration in present-day laboratory experiments involving relativistic
heavy-ion collisions [207]. At the temperature of interest in our studies,
T > 100 MeV, the quark pairing will be largely dissolved. Work on this
subject is rapidly evolving, for its current status we refer the reader to a
recent review [227].
Where exactly an equilibrium transition between two phases occurs is

determined from Gibbs’ conditions for phase equilibrium. These establish
the boundary between the physical phases considered, for bulk matter
embedded in heat and particle-number ‘baths’. These baths supply energy
and particles to maintain given thermodynamic conditions. Although
the circumstance of a nuclear-collision fireball is very different, the logic
inherent in Gibbs’ conditions will guide our understanding. The first
condition is

P1 = P2, (3.23)

which assures that there is no physical force acting on the phase boundary.
We will momentarily return to discuss what happens when the phase
boundary is in (relativistic) motion, see Eq. (3.28) below. The second
Gibbs condition is

T1 = T2, (3.24)

which assures that there is no radiative transport of energy between the
phases.
How these conditions define the phase boundaries is illustrated in the

P–V diagram in Fig. 3.2. The pressure in two phases (QGP and HG) is
considered at fixed temperature T (and at given conserved baryon num-
ber b) as a function of volume V , at variable baryon density ρb = b/V .
We distinguish three domains in Fig. 3.2:

1. the HG region for V > V2 (corresponding to ρb < ρ2), where the
pressure rises modestly with the reduction of the volume;

2. the QGP region where the hadrons have disappeared at V < V1 (cor-
responding to ρb > ρ1); and

3. the Van der Waals regime in the intermediate region from V1 to V2; a
way to understand this domain is, e.g., that, at V1, the progenitors of
individual hadrons begin to emerge in the QGP phase in the form of a
localized cluster of quarks. Similarly, beginning at V2 and with decreas-
ing volume, one can, e.g., consider clustering of individual hadrons into
quark-drops [220].

Because clustering of hadrons leads naturally to the formation of drops of
the QGP-like phase, we refer to the coexistence region, between V1 and
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Fig. 3.2. The p–V diagram for the QGP–HG system, at fixed temperature
and baryon number; dashed lines indicate unstable domains of overheated and
undercooled phases.

V2, also as the mixed phase, comprising a mixture of hadrons and drops
of QGP or perhaps hadron-like clusters of quarks and free quarks. To find
out at which pressure the transformation between the phases occurs, at
a given temperature T (and fixed baryon number b), we find the value of
the pressure, P1 = P2 ≡ P12, connecting the volumes V1 and V2, requiring
that the work done along the metastable branches vanishes:∫ V2

V1

(P − P12) dV = 0. (3.25)

The integrand is shown shaded in Fig. 3.2.
This Maxwell construction can be repeated for different values of b

and T , and the set of resulting points 1 and 2 forms then two phase-
boundary lines shown on the left-hand side in Fig. 3.3, in the (ρb–T )
plane. The Maxwell-construction line, seen in Fig. 3.2, is the vertical
line connecting at fixed temperature T the two different values of baryon
density found – in general, a jump in baryon density (and energy density
and entropy density) is encountered if a first-order phase transition occurs.
The region of high T , at fixed ρb, is associated with the deconfined QGP
and the region of small T with HG. The shape of the phase boundary
is expressing the fact that a baryonless hadronic-gas phase cannot exist
at a high enough temperature, and that dense compressed cold baryon
matter will transform into the deconfined quark matter phase of quark
matter.
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Fig. 3.3. Left: the regions of QGP and HG in the (ρb–T ) plane are separated by
a band in which the phases coexist. The Maxwell-construction line corresponding
to Fig. 3.2 is also shown, as is the path for the evolution of the Universe. Right:
the same in the (µb–T ) plane. The qualitative evolution of fireballs of dense
matter created at the AGS, SPS, and RHIC is shown.

When we conserve the baryon number b on ‘average’ and introduce the
baryochemical potential µb as a variable, the representation of the phase
boundary changes. According to the third Gibbs condition,

µ1 = µ2, (3.26)

the two chemical potentials must have the same value at each given T in
order to assure that no transport of particles across the phase boundary
occurs. Given Eq. (3.26), there is just a simple line separating any two
hadronic phases in the (µb–T ) plane, as is shown on the right-hand side
in Fig. 3.3. There is a discontinuity of the energy density, baryon density,
and entropy density across the phase boundary.

3.5 The expanding fireball and phase transformation

The lines shown on the right-hand side in Fig. 3.3 suggest the possible
evolution of the fireball of dense matter formed in a heavy-ion collision. If
a QGP fireball were indeed formed in the micro-bang, it will not expand
along a fixed-temperature trajectory such as is encountered under the
isothermal conditions of a heat bath. In our case, instead, entropy is the
(nearly) conserved quantity for an isolated system subject to ideal flow.
The evolution at constant entropy per baryon corresponds nearly to a
straight line in the µb–T diagram in the domain of QGP (dark shaded),
since the dimensionless ratio entropy per baryon is a function of other
dimensionless variables – which, in the absence of significant scales other
than µb, and T is µb/T . A considerable change in temperature must occur
during the evolution of a fireball, as is indicated in qualitative terms by
the trajectories shown in the right-hand panel of Fig. 3.3.

https://doi.org/10.1017/9781009290753.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.005


3 The vacuum as a physical medium 51

A phase transition that is ‘strong’, i.e., involves significant changes
in physical properties, will be easier to find. As a strong transition, we
understand a case with, e.g., a jump in magnitude of the energy, or baryon
density. Should such a strong phase transition separate the two phases,
the super-cooling effect of a rapidly expanding (exploding) fireball of finite
size could be much more pronounced.
We recall that both the QGP and the HG phases have metastable

phase branches indicated by dashed lines in Fig. 3.2. However, now we
look at these at constant entropy and variable temperature. Therefore,
these domains are referred to as the undercooled plasma (continuation of
1 in Fig. 3.2), or the overheated hadronic-gas states (continuation of 2
in Fig. 3.2). Thus, the pressure of the QGP phase can evolve to be well
below the transition pressure.
In fact, when a fireball of dense quark–gluon matter (phase 1) rapidly

explodes, driven by the high internal temperature and pressure, it is pos-
sible that it continues even beyond P = 0. Namely, the fluid-flow motion
of quarks and gluons expands the domain of deconfinement by exercising
against the vacuum component in the total pressure a force originating
from the collective velocity /vc.
Let P and ε be the pressure and energy density of the deconfined

phase in the local restframe, subject to flow velocity /vc = (v1, v2, v3).
The pressure-tensor component in the energy–momentum tensor (com-
pare with Eq. (6.6)) is

T ij = Pδij + (P + ε)
vivj
1− /v 2

. (3.27)

The rate-of-momentum-flow vector /P at the surface of the fireball is ob-
tained from the energy-stress tensor Tkl:

T̂ · /n = P/n+ (P + ε)
/vc(/vc ·/n)
1− /v 2c

. (3.28)

The pressure and energy comprise particles (subscript p) and the vac-
uum properties:

P = Pp − B, ε = εp + B. (3.29)

Equation (3.28) for the condition T̂ · /n = 0 reads

B/n = Pp/n+ (Pp + εp)
/vc(/vc ·/n)
1− v2c

, (3.30)

and it describes the (equilibrium) condition under which the pressure of
the expanding quark–gluon fluid is just balanced by the external vacuum
pressure. On multiplying by /n, we find
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B = Pp + (Pp + εp)
κv2c
1− v2c

, (3.31)

where we introduced the geometric factor κ:

κ =
(/vc · /n)2

v2c
. (3.32)

κ characterizes the angular relation between the surface-normal vector
and the direction of flow. Under the condition Eq. (3.31), the total QGP-
phase pressure P = Pp−B, Eq. (3.29), is negative, as we set out to show.
Expansion beyond P → 0 is in general not possible. A surface region of

a fireball that reaches condition Eq. (3.31) and continues to flow outward
must be torn apart. This is a collective instability and the ensuing disinte-
gration of the fireball matter should be very rapid. We find that a rapidly
evolving fireball that supercools into the domain of negative pressure is
in general highly unstable, and we expect that a sudden transformation
(hadronization) into confined matter can ensue under such a condition.
It is important to note that the situation we have described could arise
only since the vacuum-pressure term is not subject to flow and always
keeps the same value.

3.6 QGP and confined hadronic-gas phases

We next seek to qualitatively understand the magnitude of the tempera-
ture at which the deconfined quark–gluon phase will freeze into hadrons.
The order of magnitude of this transition temperature (if a phase change
occurs) or transformation temperature (if no phase transition occurs, see
Fig. 3.1) is obtained by evaluating where a benchmark value for the energy
density occurs:

εH � 3PH = 1 GeV fm−3.

The generalized Stefan–Boltzmann law (Eqs. (1.6) and (4.66)) describes
the energy density ε and pressure P as functions of the temperature T of
a massless relativistic gas:

P SB =
1
3
εSB =

π2

90
gT 4. (3.33)

The quantity g is the number of different (relativistic) particle states
available and is often called the ‘number of degrees of freedom’ or ‘degen-
eracy’. In the deconfined phase,

g ≡ gg + 7
4gq, (3.34)
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which comprises the contribution of massless gluons (bosons) and quarks
(fermions). The relative factor 2 × 7

8 =
7
4 expresses the presence of par-

ticles and antiparticles (factor 2) and the smaller fermion phase space,
compared with the boson case, given the exclusion principle (factor 7

8 ,
section 10.5).
We use the degrees of freedom of quarks and gluons many times in

this book. Here, we ignore the role of interactions. Gluons carry color
and spin, and so do quarks, which, in addition, come in two (nf = 2)
flavors u and d; see table 1.1. Since at high temperatures the flavor count
may include the strange quark, we leave nf as a variable. We obtain the
following degeneracy in a QGP:

gluons: gg=2(spin)× (N2
c − 1)(color) = 2× 8 = 16, (3.35a)

quarks: gq=2(spin)×Nc(color)× nf(flavor) = 2× 3× nf. (3.35b)

When the semi-massive strange quarks are present, the effective number
of ‘light’ flavors is �2.5. Thus, g � 40 in Eq. (3.33), to be compared with
just two directions of polarization for photons.
For a massless ideal quark–gluon gas, we find

TH = 160 MeV, for εH = 1.1 GeV fm−3.

Hagedorn introduced this critical temperature in his study of the boil-
ing point of hadronic matter [140]. Numerical simulations obtained by
implementing QCD on a space–time lattice are available for zero baryon
density, and these results confirm that, at approximately TH, there is a
phase transformation between confinement and deconfinement [160]. One
also finds a rapid change in the behavior as the number of quarks and
their masses ms and mq are varied.
The resulting complexity of the phase structure is shown, in Fig. 3.4,

as a function of ms and mq. In this qualitative representation, we look
at the plane spanned by the light-quark mass mq = mu = md and the
strange-quark mass ms. On two boundaries of Fig. 3.4 these masses are
infinite. Only near the origin is the effective number of massless flavors
three, along the diagonal we have three massive flavors. Depending on
the actual values of quark masses, different phase properties emerge [162].
The theoretical finding that a smooth crossover between the confined

and deconfined phases is a possibility raises the question of how to un-
derstand qualitatively the gradual onset of color (quark, gluon) mobil-
ity. A gradual change implies that free quarks can coexist with confined
hadrons. This then also suggests that liberation of quarks is possible
since permanent confinement could be assured only at zero temperature,
a mathematical limit. For any finite excitation of the system, quark mo-
bility remains, akin to the transition of an atomic gas to an electron–ion
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Fig. 3.4. The nature of finite-temperature QCD phase structure as a function
of quark masses mq and ms.

plasma. However, experimental searches for quarks have not succeeded
[186]. The experimental limits which were set suggest that confinement
is a fundamental physical property. This being the case, we are of the
opinion that, in the physical world, the transformation from the confined
to the deconfined phase is a discontinuous phase transition, most likely
of first order. For this reason, we placed the physical quark-mass point
within the region of first-order phase transition in Fig. 3.4. This topical
area is undergoing a rapid evolution.

4 Statistical properties of hadronic matter

4.1 Equidistribution of energy

The physical tools required to describe in further detail the properties of
hot hadronic matter are much like the usual ones of statistical physics,
which we briefly introduce and review. A more detailed analysis will
follow.
Consider a large number N of identical coupled systems, distinguish-

able, e.g., by their energies Ei. To simplify the matter, we assume that
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