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1. Introduction

Let d be a positive integer. If X is a subspace of L1(Td), then we denote by MX→L2(Td)

the class of all multipliers from X to L2(Td), that is, the class MX→L2(Td) consists of all
functions m : Z

d → C such that for every f ∈ X one has∑
(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2 <∞.

In [1], it is shown that the class of all multipliers from the (real) Hardy space H1(T)
to L2(T) is properly contained in the class of all multipliers from L log1/2 L(T) to
L2(T). Our aim in this note is to extend this result to the multi-parameter setting.
First of all, note that if H1

prod(Td) denotes the d-parameter (real) Hardy space over
the d-torus, then L logd L(Td) ⊂ H1

prod(Td) (see § 2.2), and hence one automatically has
MH1

prod(Td)→L2(Td) ⊂ ML logd L(Td)→L2(Td). On the other hand, by adapting the argument
given in [1] to the multi-parameter case, one deduces that the best we can expect is that
MH1

prod(Td)→L2(Td) is contained in ML logd/2 L(Td)→L2(Td). In this note we prove that this
is indeed the case, that is, we strengthen the trivial exponent r = d in L logr L(Td) to the
optimal one, r = d/2. In particular, our main result in this note is the following theorem.

Theorem 1.1. One has the inclusion

MH1
prod(Td)→L2(Td) ⊂ ML logd/2 L(Td)→L2(Td). (1.1)
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Moreover, this inclusion is proper and it is sharp, in the sense that the exponent r = d/2
in L logd/2 L(Td) cannot be improved.

The multiplier inclusion (1.1) is obtained by a series of reductions. First, arguing as
in [1] and using Oberlin’s characterization of the class MH1

prod(Td)→L2(Td) given in [14],
it follows that the proof of (1.1) is reduced to showing the following higher-dimensional
version of an inequality due to Zygmund (see [20, Chapter XII, Theorem 7.6]), a result of
independent interest. To state this version of Zygmund’s inequality on T

d, let J denote
the set of all ‘intervals’ of integers of the form ±{2n − 1, . . . , 2n+1 − 2}, n ∈ N0; in other
words, J consists of all the sets in Z of the form {2k − 1, . . . , 2k+1 − 2}, k ∈ N0 and
{−2l+1 + 2, . . . ,−2l + 1}, l ∈ N0.

Proposition 1.2. Let J be as above. If E ⊂ Z
d is a non-empty set satisfying the

condition

DE = sup
I1,...,Id∈J

#{E ∩ (I1 × · · · × Id)} <∞, (1.2)

then there exists a positive constant ADE
, depending only on DE , such that( ∑

(k1,...,kd)∈E

|f̂(k1, . . . , kd)|2
)1/2

≤ ADE

[
1 +

∫
Td

|f | logd/2(1 + |f |)
]
. (1.3)

In turn, (1.3) will be a corollary of a higher-dimensional extension of a result due to
Seeger and Trebels [19] concerning sharp bounds of sums involving ‘smooth’ Littlewood–
Paley projections on T

d. To state this result, fix a Schwartz function η supported in (−2, 2)
such that η|[−1,1] ≡ 1, and consider φ(ξ) = η(ξ) − η(2ξ). For k ∈ N, set φk(ξ) = φ(2−kξ),
and for k = 0, set φ0 = η. One can easily see that

∑
k∈N0

φk(ξ) = 1 for every ξ ∈ R.
Then, for k ∈ N0, the corresponding ‘smooth’ Littlewood–Paley projection in the periodic
setting is defined by

Δ̃k(f)(x) =
∑
r∈Z

φk(r)f̂(r)ei2πrx

for any, say, trigonometric polynomial f on T. On the d-torus we put

Δ̃k1,...,kd
(f)(x1, . . . , xd) = Δ̃k1 ⊗ · · · ⊗ Δ̃kd

(f)(x1, . . . , xd)

=
∑

r1,...,rd∈Z

φk1(r1) · · ·φkd
(rd)f̂(r1, . . . , rd)ei2π(r1x1+···+rdxd)

initially defined over trigonometric polynomials f on T
d. Then Proposition 1.2 is a

consequence of the following result.

Proposition 1.3. There exists a constant Cd > 0, depending only on the dimension
d and our choice of φ, such that the inequality

‖f‖Lp(Td) ≤ Cdp
d/2

( ∑
k1,...,kd∈N0

‖Δ̃k1,...,kd
(f)‖2

L∞(Td)

)1/2

(1.4)

holds for every trigonometric polynomial f on T
d and for each p > 2.

https://doi.org/10.1017/S0013091519000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000087


A multiplier inclusion theorem on product domains 1075

The proof of Proposition 1.3 is an adaptation of the work of Seeger and Trebels [19]
to the higher-dimensional setting combined with a well-known inequality on multiple
martingales; see § 2.3.

At this point, it should be mentioned that, as also remarked by Bourgain, Brezis, and
Mironescu in [5] for d = 1, one expects that the constant Cp(d) in the Littlewood–Paley
inequality

‖f‖Lp(Td) ≤ Cp(d)
∥∥∥∥
( ∑

k1,...,kd∈N0

|Δ̃k1,...,kd
(f)|2

)1/2∥∥∥∥
Lp(Td)

(1.5)

behaves like Cp(d) ∼ pd/2 as p→ ∞, which of course, if true, would imply (1.4). Note
that it is well known that Cp(d) � pd as p→ ∞; see, for example, [10, (6.1.31), p. 430].
Since (1.4) is sharp (see Remark 4.1), we deduce that pd/2 � Cp(d) � pd as p→ ∞. In this
direction, see also Remark 5.3 where a stronger version of (1.4) is obtained. However, as
our primary aim is to establish Theorem 1.1 and since (1.4) is enough for that purpose,
we shall not pursue the problem of studying the sharp behaviour of Cp(d) in (1.5) as
p→ ∞ in the present note.

The paper is organized as follows. In § 2 we give some notation and background and in
§ 3 we show how the proof of our multiplier inclusion theorem follows from Proposition 1.2.
In § 4 we prove that Proposition 1.3 implies Proposition 1.2, and then in § 5 we give a
proof of Proposition 1.3. In the final section we briefly present some further applications
of our work.

2. Notation and background

2.1. Notation

We denote by Z the set of integers, by N the set of positive integers, and by N0 the set
of non-negative integers.

The cardinality of a finite set A is denoted by #{A}.
If X and Y are positive quantities such that X ≤ CY , where C > 0 is a constant,

then we write X � Y . To specify the dependence of this constant on some additional
parameters α1, . . . , αn we write X �α1,...,αn

Y . If X � Y and Y � X, we write X ∼ Y .
In this note, we identify T with [0, 1) in the usual way.

2.2. Product Hardy spaces and the class MH1
prod(Td)→L2(Td)

For 0 < r < 1, let Pr denote the Poisson kernel on T given by

Pr(x) = (1 − r2)/(1 − 2r cos(2πx) + r2),

x ∈ T. For x ∈ T, let Γ(x) = {z ∈ D : |z − ei2πx| ≤ 2(1 − |z|)}, where D denotes the unit
disc in the complex plane. Following [8], the d-parameter (real) Hardy space H1

prod(Td)
is defined as the space of all integrable functions f on the d-torus such that f∗ ∈ L1(Td),
where for (x1, . . . , xd) ∈ T

d one has

f∗(x1, . . . , xd) = sup
r1ei2πy1∈Γ(x1),...,rdei2πyd∈Γ(xd)

|f ∗ (Pr1 ⊗ · · · ⊗ Prd
)(y1, . . . , yd)|.

If f ∈ H1
prod(Td), we set ‖f‖H1

prod(Td) := ‖f∗‖L1(Td).
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For r ≥ 0, L logr L(Td) denotes the class of all measurable functions f on T
d such that∫

Td |f | logr(1 + |f |) <∞. As mentioned in the introduction, one has the inclusion

L logd L(Td) ⊂ H1
prod(Td). (2.1)

Indeed, to see this, note that if M denotes the centred Hardy–Littlewood maximal oper-
ator on T, then there exists an absolute constant C0 > 0 such that for each g ∈ L1(T)
one has

sup
rei2πy∈Γ(x)

|g ∗ Pr(y)| ≤ C0M(g)(x) (2.2)

for every x ∈ T; see, for example, [8, p. 91]. Therefore, if Mi denotes the centred Hardy–
Littlewood maximal operator acting on the ith variable (i = 1, . . . , d), then it follows
from (2.2) that

f∗(x1, . . . , xd) ≤ Cd
0M1(M2(· · · (Md(f)) · · · ))(x1, . . . , xd) (2.3)

for every f ∈ L1(Td). Since Mi is bounded from L logk L to L logk−1 L for k ≥ 1 (see, for
example, [12, Lemma E]), (2.3) implies that

‖f‖H1
prod(Td) �d 1 +

∫
Td

|f | logd(1 + |f |)

and we thus deduce that (2.1) holds.
It follows from the work of Oberlin [14] that m : Z

d → C belongs to the class
MH1

prod(Td)→L2(Td) if and only if

sup
N1,...,Nd∈N0

∑
N1≤|k1|≤2N1

· · ·
∑

Nd≤|kd|≤2Nd

|m(k1, . . . , kd)|2 <∞. (2.4)

2.3. Dyadic square functions

If f ∈ L1(T) and m ∈ N0, then the mth conditional expectation of f is given by

Em(f)(x) = 2m

∫
I

f(x′) dx′,

where I is the unique dyadic interval in T of the form I = [s2−m, (s+ 1)2−m), s =
0, 1, . . . , 2m − 1, such that x ∈ I.

For m ∈ N, let Dm = Em − Em−1 denote the martingale differences acting on functions
defined on T. For m = 0, we set D0 = E0.
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For a given d-tuple (m1, . . . ,md) of non-negative integers, we define the corresponding
operators acting on functions on the d-torus by

Em1,...,md
= Em1 ⊗ · · · ⊗ Emd

and

Dm1,...,md
= Dm1 ⊗ · · · ⊗ Dmd

.

More precisely, if d > 1 then, given Dm1,...,md−1 , we define

Dm1,...,md
= Dm1,...,md−1 ⊗ Dmd

,

and so if md = 0 then we set Dm1,...,md
= Dm1,...,md−1 ⊗ E0, and if md ≥ 1 then

Dm1,...,md
= Dm1,...,md−1 ⊗ (Emd

− Emd−1).
It follows from the work of Chang et al. [6], in particular from [6, Corollary 3.1], that

‖f‖Lp(T) ≤ Cp1/2

∥∥∥∥
( ∑

m∈N0

|Dm(f)|2
)1/2∥∥∥∥

Lp(T)

(2.5)

for all p > 2, where C > 0 is an absolute constant; see also, for example, [19, p. 152].
Moreover, Chang et al. obtained in [6] a result analogous to (2.5) involving Lusin area
integrals. See also [2] and the references therein. In [15], Pipher extended (2.5) and
its analogous version on Lusin area integrals to the two-parameter setting, and in [9],
Fefferman and Pipher extended the aforementioned inequality of Chang et al. involving
Lusin area integrals to �2-valued functions. The argument of Fefferman and Pipher [9]
can easily be adapted to obtain an �2-valued extension of (2.5); see [7]. By using this
�2-valued extension of (2.5) together with induction on d, one deduces that there exists
a constant Cd > 0, depending only on the dimension d ∈ N, such that

‖f‖Lp(Td) ≤ Cdp
d/2

∥∥∥∥
( ∑

m1,...,md∈N0

|Dm1,...,md
(f)|2

)1/2∥∥∥∥
Lp(Td)

(2.6)

for every p > 2; see also [3] and [7, Proposition 4.5].

2.4. Thin sets in Harmonic analysis

Let G be a compact abelian group and let Λ be a non-empty set in its dual Ĝ. In this
note, we shall only consider the case G = T

d, d ∈ N. A trigonometric polynomial f on G
whose spectrum lies in Λ is said to be a Λ-polynomial.

Let p > 2. We say that Λ ⊂ Ĝ is a Λ(p) set if there exists a constant A(p,Λ) > 0 such
that

‖f‖Lp(G) ≤ A(p,Λ)‖f‖L2(G)

for every Λ-polynomial f . The smallest constant A(p,Λ) such that the above inequality
holds is called the Λ(p) constant of Λ.
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A set Λ ⊂ Ĝ is called Sidon if there is a constant SΛ > 0 such that∑
γ∈Λ

|f̂(γ)| ≤ SΛ‖f‖L∞(G) (2.7)

for every Λ-polynomial. It follows from the work of Rudin [18] and Pisier [16] that a
spectral set Λ is Sidon if, and only if, it is a Λ(p) set for any p > 2 and its Λ(p) constant
grows like p1/2 as p→ ∞.

Let q ≥ 1. A set Λ ⊂ Ĝ is said to be q-Rider if there is a constant RΛ,q > 0 such that

( ∑
γ∈Λ

|f̂(γ)|q
)1/q

≤ RΛ,q[|f |] (2.8)

for every Λ-polynomial. Here, we use the notation

[|f |] = E

[∥∥∥ ∑
γ∈Ĝ

rγ f̂(γ)γ
∥∥∥

L∞(G)

]
,

where (rγ)γ denotes the set of Rademacher functions.
It is well known that if Λ is a Λ(p) set for all p > 2 with Λ(p) constant growing as pk/2,

k ∈ N, then Λ is a q-Rider set with q = 2k/(k + 1); see [17, Théorème 6.3].

3. Proposition 1.2 implies Theorem 1.1

To prove that Proposition 1.2 implies Theorem 1.1, we adapt the argument given in [1]
to the multi-parameter setting by using the characterization of MH1

prod(Td)→L2(Td). To
be more specific, assume that Proposition 1.2 holds and take an arbitrary m in the class
MH1

prod(Td)→L2(Td). Then, by definition, we need to show that for every f ∈ L logd/2 L(Td)
one has ∑

(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2 <∞.

Towards this aim, fix an f ∈ L logd/2 L(Td) and note that the sum∑
(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2

is bounded by

∑
I1,...,Id∈J

max
(k1,...,kd)∈I1×···×Id

|f̂(k1, . . . , kd)|2
( ∑

k1∈I1

· · ·
∑

kd∈Id

|m(k1, . . . , kd)|2
)
,

where J is as in the introduction and the statement of Proposition 1.2. Hence, by (2.4),
it follows that∑

(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2 �m

∑
(k̃1,...,k̃d)∈Ef

|f̂(k̃1, . . . , k̃d)|2,
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where Ef is a set in Z
d defined as follows. Given I1, . . . , Id ∈ J , choose (k̃1, . . . , k̃d) in

I1 × · · · × Id so that

|f̂(k̃1, . . . , k̃d)| = max
(k1,...,kd)∈I1×···×Id

|f̂(k1, . . . , kd)|.

Then, having chosen a set of d-tuples (k̃1, . . . , k̃d) as above, we define

Ef = {(k̃1, . . . , k̃d) ∈ Z
d : for I1, . . . , Id ∈ J , (k̃1, . . . , k̃d) ∈ I1 × · · · × Id being as above}.

Notice that as the choice of d-tuples (k̃1, . . . , k̃d) is not necessarily unique, there might
be several choices of sets Ef . We just choose one of them to write∑

I1,...,Id∈J
max

(k1,...,kd)∈I1×···×Id

|f̂(k1, . . . , kd)|2 =
∑

(k̃1,...,k̃d)∈Ef

|f̂(k̃1, . . . , k̃d)|2.

Note that any such set Ef satisfies condition (1.2) in Proposition 1.2 with DEf
= 1.

Therefore, as f ∈ L logd/2 L(Td), it follows from (1.3) that∑
(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2 <∞,

as desired.

3.1. Sharpness of (1.1)

We remark that, in fact, the above argument shows that if m ∈ MH1
prod(Td)→L2(Td),

then there is a constant Cm > 0, depending only on m, such that( ∑
(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2
)1/2

≤ Cm

[
1 +

∫
Td

|f | logd/2(1 + |f |)
]
.

To see that the exponent r = d/2 in L logd/2 L(Td) in (1.1) cannot be improved, we
argue as in [1]. More specifically, assume that for some r > 0 every multiplier from
H1

prod(Td) to L2(Td) is a multiplier from L logr L(Td) to L2(Td). We shall prove that
r ≥ d/2. To this end, for a large positive integer N , take f to be a trigonometric poly-
nomial on T

d given by f = V2N ⊗ · · · ⊗ V2N , where V2N = 2K2N+1+1 −K2N denotes the
de la Vallée Poussin kernel of order 2N and Kn is the Fejér kernel on T of order n ∈ N.
Since ‖Kn‖L1(T) = 1 and ‖Kn‖L∞(T) � n, we deduce that∫

Td

|f(x1, . . . , xd)| logr(1 + |f(x1, . . . , xd)|) dx1 . . . dxd �r,d N
r.

So, if we take M = (m(k1, . . . , kd))k1,...,kd∈Z with m(k1, . . . , kd) = 1/
√
k1 . . . kd for k1 >

0, . . . , kd > 0 and m(k1, . . . , kd) = 0 otherwise, namely when at least one of the coordi-
nates is less or equal than 0, then M ∈ MH1

prod(Td)→L2(Td), and hence

( ∑
(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2
)1/2

�r,d N
r.
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Since

( ∑
(k1,...,kd)∈Zd

|m(k1, . . . , kd)f̂(k1, . . . , kd)|2
)1/2

≥
( ∑

1≤k1,...,kd≤2N

1
k1 . . . kd

)1/2

=
d∏

i=1

( ∑
1≤ki≤2N

1
ki

)1/2

∼ Nd/2,

we see that, by choosing N to be large enough, we must have r ≥ d/2.

Remark 3.1. A similar argument shows that the Orlicz space L logd/2 L(Td) in (1.3)
cannot be improved. Indeed, if E is a set satisfying (1.2), then by making use of the
argument presented above, we see that the exponent r = d/2 in L logd/2 L(Td) on the
right-hand side of higher-dimensional Zygmund inequality (1.3) is sharp.

To show that the inclusion (1.1) is proper, take Λ to be a Sidon set in Z that cannot
be written as a finite union of lacunary sequences; see [18, Remark 2.5(3)]. Then M =
χΛ×···×Λ belongs to the class ML logd/2 L(Td)→L2(Td); see, for example, [1, Proposition 4].
However, it can easily be checked that M = χΛ×···×Λ does not satisfy (2.4) and we thus
deduce that χΛ×···×Λ ∈ ML logd/2 L(Td)→L2(Td) \MH1

prod(Td)→L2(Td).

4. Proposition 1.3 implies Proposition 1.2

Our aim in this section is to prove that Proposition 1.3 implies Proposition 1.2. Towards
this aim, take E ⊂ Z

d to be a set satisfying the assumption of Proposition 1.2, that
is, condition (1.2). By duality (see, for example, [4, Remarque, pp. 350–351]), (1.3) is
equivalent to the fact that E is a Λ(p) set in Z

d for every p > 2 with Λ(p) constant
growing like A(p,E) ≤ CDE

pd/2 as p→ ∞. In other words, to prove (1.3), it is enough
to show that for every E-polynomial f one has for every p > 2,

‖f‖Lp(Td) ≤ CDE
pd/2‖f‖L2(Td), (4.1)

where CDE
is an absolute constant, independent of p and f . As we will soon see, if

DE = 1, then, in fact, CDE
depends only on d and, in particular, can be taken to be

independent of E.
Assume first that E satisfies (1.2) with DE = 1. To prove (4.1), fix an E-polynomial f

and note that for every (k1, . . . , kd) ∈ N
d
0 one has, by the triangle inequality,

‖Δ̃k1,...,kd
(f)‖L∞(Td) ≤

∑
(r1,...,rd)∈E∩(Ik1×···×Ikd

)

|φk1(r1) · · ·φkd
(rd)f̂(r1, . . . , rd)|

�d,φ

∑
(r1,...,rd)∈E∩(Ik1×···×Ikd

)

|f̂(r1, . . . , rd)|,
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where Ikl
denotes the set Z ∩ {(−2kl+1,−2kl−1] ∪ [2kl−1, 2kl+1)}, l = 1, . . . , d. Observe

that, thanks to condition (1.2) for DE = 1, the sum∑
(r1,...,rd)∈E∩(Ik1×···×Ikd

)

|f̂(r1, . . . , rd)|

consists of at most 6d terms. Hence,

‖Δ̃k1,...,kd
(f)‖2

L∞(Td) �d,φ

∑
(r1,...,rd)∈E∩(Ik1×···×Ikd

)

|f̂(r1, . . . , rd)|2

and we thus deduce that( ∑
k1,...,kd∈N0

‖Δ̃k1,...,kd
(f)‖2

L∞(Td)

)1/2

�d,φ

( ∑
(r1,...,rd)∈E

|f̂(r1, . . . , rd)|2
)1/2

. (4.2)

Observe that the quantity on the right-hand side of the last inequality equals ‖f‖L2(Td),
as supp(f̂) ⊂ E. Hence, (4.1) follows from (1.4) and (4.2) in the case where DE = 1.
Moreover, note that, in the case where DE = 1, the implied constant in (4.2) depends
only on the dimension d and on our choice of φ and, in particular, it is independent of E.

In the case where DE > 1, write f =
∑DE

i=1 fi, with fi being trigonometric polynomials
on T

d such that supp(f̂i) ⊂ Ei, where E =
⋃DE

i=1Ei and DEi
= 1. Then, by using the

triangle inequality and the previous step, we have

‖f‖Lp(Td) ≤
DE∑
i=1

‖fi‖Lp(Td) ≤ Cpd/2
DE∑
i=1

‖fi‖L2(Td) ≤ CDEp
d/2‖f‖L2(Td),

since, by our construction and the L2-theory of Fourier series, ‖fi‖L2(Td) ≤ ‖f‖L2(Td) for
all i = 1, . . . , DE .

Remark 4.1. As mentioned in Remark 3.1, the exponent r = d/2 in L logd/2 L(Td)
in (1.3) is sharp. Using this fact, we deduce that the behaviour of the constant on the
right-hand side of (1.4) with respect to p as p→ ∞ is best possible. That is, the exponent
r = d/2 in pd/2 in (1.4) cannot be improved.

5. Proof of Proposition 1.3

To prove Proposition 1.3, note that, as p > 2, it follows from Minkowski’s inequality that∥∥∥∥
( ∑

m1,··· ,md∈N0

|Dm1,··· ,md
(f)|2

)1/2∥∥∥∥
Lp(Td)

≤
( ∑

m1,...,md∈N0

‖Dm1,...,md
(f)‖2

Lp(Td)

)1/2

.

Moreover, since one trivially has( ∑
m1,...,md∈N0

‖Dm1,...,md
(f)‖2

Lp(Td)

)1/2

≤
( ∑

m1,...,md∈N0

‖Dm1,...,md
(f)‖2

L∞(Td)

)1/2

,
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we deduce from (2.6) that

‖f‖Lp(Td) ≤ Cdp
d/2

( ∑
m1,...,md∈N0

‖Dm1,...,md
(f)‖2

L∞(Td)

)1/2

(5.1)

for all p > 2. Hence, to prove that (1.4) holds, it suffices, in view of (5.1), to show that

( ∑
m1,...,md∈N0

‖Dm1,...,md
(f)‖2

L∞(Td)

)1/2

�d

( ∑
k1,...,kd∈N0

‖Δ̃k1,...,kd
(f)‖2

L∞(Td)

)1/2

.

This last inequality follows from the next lemma which is a d-dimensional analogue of
[19, Lemma 2.3].

Lemma 5.1. Let δ be a Schwartz function that is even, supported in (−4, 4) and such
that δ|[−2,2] ≡ 1.

Define ψ(ξ) = δ(ξ) − δ(8ξ). For k ∈ N, put ψk(ξ) = ψ(2−kξ), and for k = 0, put ψ0 = δ.
Consider the operator

Ψk(f)(x) =
∑
r∈Z

ψk(r)f̂(r)ei2πrx

acting on functions defined over the torus. For k1, . . . , kd ∈ N0 we use the notation
Ψk1,...,kd

= Ψk1 ⊗ · · · ⊗ Ψkd
.

There exists a constant Cd > 0, depending only on the dimension d and on ψ, such
that for all d-tuples of non-negative integers (m1, . . . ,md) and (k1, . . . , kd) one has

‖Dm1,...,md
Ψk1,...,kd

‖L∞(Td)→L∞(Td) ≤ Cd

d∏
j=1

2−|kj−mj |. (5.2)

The proof of Lemma 5.1 will be given in the next subsection. By using the above lemma
and in particular estimate (5.2), one can easily complete the proof of Proposition 1.3.
Towards this aim, we argue as in the proof of [19, Proposition 2.2]. More precisely, we
consider a trigonometric polynomial f on T

d and write f =
∑

k1,...,kd∈N0
Δ̃k1,...,kd

(f).
For fixed η (and φ), if ψ is as in the statement of Lemma 5.1, then ψφ = φ, and hence
Ψk1,...,kd

Δ̃k1,...,kd
= Δ̃k1,...,kd

. So, by using (5.2), we obtain

‖Dm1,...,md
(f)‖L∞(Td)

≤
∑

k1,...,kd∈N0

‖Dm1,...,md
[Δ̃k1,...,kd

(f)]‖L∞(Td)

≤
∑

k1,...,kd∈N0

‖Dm1,...,md
Ψk1,...,kd

‖L∞(Td)→L∞(Td)‖Δ̃k1,...,kd
(f)‖L∞(Td)

�d

∑
k1,...,kd∈N0

( d∏
j=1

2−|mj−kj |
)
‖Δ̃k1,...,kd

(f)‖L∞(Td),
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and it thus follows that( ∑
m1,...,md∈N0

‖Dm1,...,md
(f)‖2

L∞(Td)

)1/2

�d

[ ∑
m1,...,md∈N0

( ∑
k1,...,kd∈N0

( d∏
j=1

2−|mj−kj |
)
‖Δ̃k1,...,kd

(f)‖L∞(Td)

)2]1/2

,

where the implied constant depends only on the dimension d (and on our choice of ψ).
Hence, by Minkowski’s integral inequality,

[ ∑
m1,...,md∈N0

( ∑
k1,...,kd∈N0

( d∏
j=1

2−|mj−kj |
)
‖Δ̃k1,...,kd

(f)‖L∞(Td)

)2]1/2

≤
∑

m1,...,md∈Z

( d∏
j=1

2−|mj |
)( ∑

k1≥−m1

· · ·
∑

kd≥−md

‖Δ̃k1+m1,...,md+kd
(f)‖2

L∞(Td)

)1/2

.

Since we have

∑
m1,...,md∈Z

( d∏
j=1

2−|mj |
)( ∑

k1≥−m1

· · ·
∑

kd≥−md

‖Δ̃k1+m1,...,md+kd
(f)‖2

L∞(Td)

)1/2

�
( ∑

k1,...,kd∈N0

‖Δ̃k1,...,kd
(f)‖2

L∞(Td)

)1/2

,

the proof of Proposition 1.3 will be complete once we prove Lemma 5.1. This will be done
in the following subsection.

5.1. Proof of Lemma 5.1

The proof of Lemma 5.1 can easily be obtained by iterating the corresponding one-
dimensional result of Seeger and Trebels [19, Lemma 2.3], which, in particular, asserts
that for all m, k ∈ N0 one has

‖DmΨk‖L∞(T)→L∞(T) ≤ C2−|m−k|, (5.3)

where C > 0 is an absolute constant. More precisely, to prove Lemma 5.1 we shall induct
on the dimension d ∈ N. Note that the one-dimensional case is (5.3). Assume now that,
for some d > 1, estimate (5.2) holds for the (d− 1)-dimensional case, namely

‖Dm1,...,md−1Ψk1,...,kd−1‖L∞(Td−1)→L∞(Td−1) ≤ Cd−1

d−1∏
j=1

2−|kj−mj |. (5.4)

To establish the d-dimensional case, fix a trigonometric polynomial f on T
d and observe

that one has

Dm1,...,md
[Ψk1,...,kd

(f)] = Dmd
Ψkd

[Dm1,...,md−1Ψk1,...,kd−1(f)]. (5.5)
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Indeed, to show (5.5), note that for md ≥ 1 one has

Dm1,...,md
= Dm1,...,md−1 ⊗ Emd

− Dm1,...,md−1 ⊗ Emd−1 ,

and hence, for (x1, . . . , xd) ∈ T
d, we may write

Dm1,...,md
[Ψk1,...,kd

(f)](x1, . . . , xd)

= 2md

∫
Id

∑
rd∈Z

ψ(2−kdrd)Dm1,...,md−1 [Ψk1,...,kd−1(frd
)](x1, . . . , xd−1)ei2πrdx′

d dx′d

− 2md−1

∫
Ĩd

∑
rd∈Z

ψ(2−kdrd)Dm1,...,md−1 [Ψk1,...,kd−1(frd
)](x1, . . . , xd−1)ei2πrdx′

d dx′d,

where Id is the unique interval in T of length 2−md containing xd, Ĩd is the unique interval
in T of length 2−(md−1) containing xd, and for rd ∈ Z we use the notation

frd
(x1, . . . , xd−1) =

∑
r1,...,rd−1∈Z

f̂(r1, . . . , rd)ei2π(r1x1+···+rd−1xd−1).

Note that we may write∑
rd∈Z

Dm1,...,md−1 [Ψk1,...,kd−1(frd
)](x1, . . . , xd−1)ei2πrdxd

= Dm1,...,md−1 [Ψk1,...,kd−1(fxd
)](x1, . . . , xd−1),

where for fixed xd ∈ T we use the notation fxd
(x1, . . . , xd−1) = f(x1, . . . , xd). We thus

obtain that

Dm1,...,md
[Ψk1,...,kd

(f)]

= Emd
Ψkd

[Dm1,...,md−1Ψk1,...,kd−1(f)] − Emd−1Ψkd
[Dm1,...,md−1Ψk1,...,kd−1(f)],

and this completes the proof of (5.5) in the case where md ≥ 1. If md = 0, one shows
(5.5) similarly.

Hence, using (5.5) and applying (5.3) to the dth variable, for fixed (x1, . . . , xd−1) ∈
T

d−1, we get

|Dm1,...,md
[Ψk1,...,kd

(f)](x1, . . . , xd)|
≤ C2−|md−kd| sup

x′
d∈T

|Dm1,...,md−1Ψk1,...,kd−1(fx′
d
)(x1, . . . , xd−1)|

for all xd ∈ T. By using the inductive hypothesis (5.4), we obtain

|Dm1,...,md−1Ψk1,...,kd−1(fxd
)(x1, . . . , xd−1)|

≤ Cd−1

d−1∏
j=1

2−|mj−kj | sup
x′

d∈T

(
sup

(x′
1,...,x′

d−1)∈Td−1
|fx′

d
(x′1, . . . , x

′
d−1)|

)
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for all (x1, . . . , xd−1) ∈ T
d−1. We thus deduce that

|Dm1,...,md
[Ψk1,...,kd

(f)](x1, . . . , xd)| ≤ CCd−1

d∏
j=1

2−|mj−kj |‖f‖L∞(Td)

for all (x1, . . . , xd) ∈ T
d, and this implies the desired result. Hence, the proof of the lemma

is complete.
Note that the argument above gives Cd = Cd, where C > 0 is the constant in (5.3).

Remark 5.2. We remark that one can give an alternative proof to Lemma 5.1 by
adapting the argument in the proof of [19, Lemma 2.3] to higher dimensions.

Remark 5.3. At this point, it is worth noting that, by using (5.3) together with a
result due to Grafakos and Kalton [11, Proposition 4.4] (see also [10, Theorem 6.4.8]),
one obtains a stronger version of (1.4), where the L∞(Td)-norms of the Littlewood–Paley
projections on the right-hand side of (1.4) are replaced by Lp(Td)-norms, p > 2.

To be more specific, by adapting the argument of Grafakos and Kalton [11] to the
torus, it follows that there exist absolute constants C, c0 > 0 such that

‖DmΨk‖L2(T)→L2(T) ≤ C2−c0|m−k|, (5.6)

where in the one-dimensional periodic case one can take c0 = 1/2. Hence, by interpolating
between (5.3) and (5.6), we deduce that for every p > 2 one has

‖DmΨk‖Lp(T)→Lp(T) ≤ A2−|m−k|/2, (5.7)

where A > 0 is an absolute constant. Therefore, by using (5.7) and arguing as in the proof
of Lemma 5.1, it follows that

‖Dm1,...,md
Ψk1,...,kd

‖Lp(Td)→Lp(Td) �d

d∏
j=1

2−|kj−mj |/2. (5.8)

Hence, by using (5.8) and arguing as in the proof of Proposition 1.3, we deduce that, for
every trigonometric polynomial f on T

d and for each p > 2, a stronger version of (1.4),

‖f‖Lp(Td) �d p
d/2

( ∑
k1,...,kd∈N0

‖Δ̃k1,...,kd
(f)‖2

Lp(Td)

)1/2

, (5.9)

holds true.

6. Some further remarks and applications

6.1. Applications in thin sets

Proposition 1.2 gives examples of Λ(p) sets in Z
d whose corresponding Λ(p) constant

grows like pd/2 as p→ ∞ and they cannot be written as products of Sidon sets. Moreover,
those sets, namely the class of the sets E ⊂ Z

d that cannot be written as d-fold products of

https://doi.org/10.1017/S0013091519000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000087


1086 O. Bakas

sets in Z and satisfy the condition supI1,...,Id∈J #{E ∩ (I1 × · · · × Id)} <∞, are examples
of 2d/(d+ 1)-Rider sets in Z

d that cannot be written as products of Sidon sets in Z.
Note that if Λ1, . . . ,Λd are lacunary sequences in Z, then Λ1 × · · · × Λd satisfies (1.2)

and we thus recover the well-known fact that Λ1 × · · · × Λd is a Λ(p) set in Z
d whose

constant grows like pd/2 as p→ ∞. However, Proposition 1.2 cannot handle spectral sets
of the form Λ1 × · · · × Λd, where Λj is a Sidon set that is not a finite union of lacunary
sequences (j = 1, . . . , d).

6.2. A version of (1.4) for ‘rough’ projections

For k ∈ N, consider the classical Littlewood–Paley projection Δk given by

Δk(f)(x) =
2k−1∑

n=2k−1

f̂(n)ei2πnx +
−2k−1∑

n=−2k+1

f̂(n)ei2πnx.

For k = 0, set Δ0(f)(x) = f̂(0). For k1, . . . , kd ∈ N0, we write

Δk1,...,kd
= Δk1 ⊗ · · · ⊗ Δkd

.

Since for every trigonometric polynomial f on the d-torus we may write

f =
∑

m1,...,md∈N0

Δm1,...,md
(f),

we have
Δ̃k1,...,kd

(f) =
∑

m1,...,md∈N0

Δ̃k1,...,kd
Δm1,...,md

(f).

Observe that Δ̃k1,...,kd
Δm1,...,md

= 0 whenever there exists an index j0 ∈ {1, . . . , d} such
that |kj0 −mj0 | > 1. Hence, for every p > 2 one has

‖Δ̃k1,...,kd
(f)‖Lp(Td) ≤

∑
(m1,...,md)∈N

d
0 :

|kj−mj |≤1 for all j∈{1,...,d}

‖Δ̃k1,...,kd
Δm1,...,md

(f)‖Lp(Td)

�d

∑
(m1,...,md)∈N

d
0 :

|kj−mj |≤1 for all j∈{1,...,d}

‖Δm1,...,md
(f)‖Lp(Td).

Therefore,( ∑
k1,...,kd∈N0

‖Δ̃k1,...,kd
(f)‖2

Lp(Td)

)1/2

�d

( ∑
k1,...,kd∈N0

‖Δk1,...,kd
(f)‖2

Lp(Td)

)1/2

,

and hence it follows from (5.9) that

‖f‖Lp(Td) �d p
d/2

( ∑
k1,...,kd∈N0

‖Δk1,...,kd
(f)‖2

Lp(Td)

)1/2

.
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We thus deduce that for every trigonometric polynomial f on T
d one has

‖f‖Lp(Td) �d p
d/2

( ∑
k1,...,kd∈N0

‖Δk1,...,kd
(f)‖2

L∞(Td)

)1/2

(6.1)

for each p > 2. Note that (6.1) also follows directly from (1.4). Estimate (6.1) is a
multi-parameter version of an inequality due to Moore [13]. In particular, we obtain
the following multi-parameter extension of [13, Theorem, p. 30].

Proposition 6.1. There exist positive constants c1(d) and c2(d), depending only on
the dimension d, such that whenever∑

k1,...,kd∈N0

‖Δk1,...,kd
(f)‖2

L∞(Td) <∞

one has∫
Td

exp
{
c1(d)

[ |f(x1, . . . , xd)|( ∑
k1,...,kd∈N0

‖Δk1,...,kd
(f)‖2

L∞(Td)

)1/2

]2/d}
dx1 . . . dxd < c2(d).
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