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Abstract
Course-prerequisite networks (CPNs) are directed acyclic graphs that model complex academic curricula
by representing courses as nodes and dependencies between them as directed links. These networks are
indispensable tools for visualizing, studying, and understanding curricula. For example, CPNs can be used
to detect important courses, improve advising, guide curriculum design, analyze graduation time distri-
butions, and quantify the strength of knowledge flow between different university departments. However,
most CPN analyses to date have focused only on micro- and meso-scale properties. To fill this gap, we
define and study three new global CPN measures: breadth, depth, and flux. All three measures are invari-
ant under transitive reduction and are based on the concept of topological stratification, which generalizes
topological ordering in directed acyclic graphs. These measures can be used for macro-scale compari-
son of different CPNs. We illustrate the new measures numerically by applying them to three real and
synthetic CPNs from three universities: the Cyprus University of Technology, the California Institute of
Technology, and Johns Hopkins University. The CPN data analyzed in this paper are publicly available in
a GitHub repository.

Keywords: course-prerequisite networks; direct acyclic graphs; directed ordered graphs; topological stratification;
curriculum analytics; network data analysis

1. Introduction
Complex systems, consisting of many interconnected and interacting components, are embedded
in the material and informational fabric of the modern world. One approach to understanding
complex systems is based on modeling a system by a graph (or network), which is a collection of
nodes connected by links, that captures the pattern of connections between the system’s compo-
nents and represents its structural skeleton. This natural idea coupled with advances in computing
power and statistical analysis of real network data has led to a new interdisciplinary field, network
science Newman (2018); Newman et al. (2006); Dorogovtsev (2010); Easley and Kleinberg (2010),
which emerged at the intersection of graph theory, computational statistics, computer science,
and statistical physics. Networks were used to model and study different technological, informa-
tion, biological, and social systems such as the Internet Faloutsos et al. (1999); Pastor-Satorras and
Vespignani (2004), power grids Arianos et al. (2009); Pagani and Aiello (2013), the World Wide
Web Broder et al. (2000), citation networks Radicchi et al. (2012), food websMartinez (1991), pro-
tein interactions Jeong et al. (2001), social groups of people Zachary (1977); Borgatti et al. (2009)
and animals Lusseau (2003), and even the universe Krioukov et al. (2012); Cunningham et al.
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(2017) and brain Krioukov (2014). In this paper, we focus on the study of course-prerequisite net-
works Stavrinides and Zuev (2023), a class of information networks that model complex academic
curricula.

A course-prerequisite network (CPN) is a directed graph where nodes represent courses offered
at a university and directed links represent the prerequisite relationships between them. Namely,
a directed link from node i to node jmeans that the course i serves as a prerequisite for the course
j. A CPN is a structural model of the university’s academic curriculum, which represents the flow
of knowledge in the curriculum and helps visualize, analyze, and optimize the complex system of
courses that forms the core of the university’s educational mission.

In recent years, CPNs have attracted a lot of attention from various research groups due to
their important role in quantifying and understanding academic curricula. For example, CPNs
have been used for detecting critical courses Slim et al. (2014), improving advising and curricu-
lum reform Aldrich (2015), studying the distribution of graduation time Molontay et al. (2020),
and guiding curriculum design Simon de Blas et al. (2021). A more recent work Stavrinides and
Zuev (2023) proposed a general network-science-based framework for the analysis of CPNs, which
allows users to identify important courses using classical centrality measures, describe the hierar-
chical structure of a CPN using the concept of topological stratification, quantify the strength
of knowledge flow between different university divisions, and identify the most intradependent,
influential, and interdisciplinary areas of study. This analysis was demonstrated using a network
of courses taught at the California Institute of Technology. The CPNs of five Midwestern public
universities were thoroughly analyzed in Yang et al. (2024), where a new graph theoretic mea-
sure of node importance, which is tailored to CPNs and quantifies the criticality of introductory
courses, was introduced.

To our knowledge, all CPN analyses conducted so far have primarily focused on either mea-
suring the importance of individual nodes within a CPN (using classical or new CPN-tailored
centrality measures) or describing the internal organization of a CPN (using various network
structures, such as community structure and topological stratification). In other words, the anal-
yses have focused only on the micro- and meso-scale properties of CPNs, and no macro-scale
measures for an entire CPN have been defined (except for the basic notion of the size of the
network).

To fill this gap, in this paper, we propose and study three new global measures of a whole CPN:
breadth and depth, which quantify how wide and how deep the span of knowledge provided by the
academic curriculum represented by the CPN is, and flux, which quantifies the average amount
of knowledge flow through the CPN. To illustrate these new measures, we use them to compare
synthetic CPNs generated by two different network models, as well as CPNs of three universities:
the Cyprus University of Technology (CUT), the California Institute of Technology (CIT), and
Johns Hopkins University (JHU). The real CPN data analyzed in this paper are publicly available
in the GitHub repository https://github.com/pstavrin/Course-Prerequisite-Networks.

To define the breadth, depth, and flux of a CPN (Section 5), we first need to pre-process
the network data via transitive reduction (Section 2), discuss the difference between directed
acyclic graphs and directed ordered graphs (Section 3), and review the concept of topological
stratification (Section 4) on which the new CPN measures are based.

2. Transitive reduction of a CPN
Similar to many other complex networks (transportation networks, citation networks, food webs,
and the World Wide Web), a course-prerequisite network is a directed graph consisting of nodes
connected by directed links. In a CPN, nodes represent courses that are offered at the university.
A directed link i→ j from node i to node j means that course i serves as a prerequisite for course
j. In this case, we will also say that course j is a postrequisite for course i. For example, a course on
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Figure 1. Left: a small directed acyclic graph G. Right: the transitive reduction Gtr of G. The links β → η, δ→ η, γ → ζ , and
γ → η are removed as redundant.

differential geometry (DG) often serves as a prerequisite for a course on general relativity (GR).
Here, DG is a prerequisite for GR, and GR is a postrequisite for DG.

Consider a directed graph containing three nodes i, j, and k and three directed links i→ j,
j→ k, and i→ k. In many applications (for instance, in the context of transportation networks or
theWorldWideWeb), the link i→ k can be interpreted as a “shortcut” that allows one to go from
i to k without visiting j. In the context of CPNs, however, i→ k is a redundant link: the fact that i
is a prerequisite for k follows from the facts that j is a prerequisite for k (thanks to link j→ k) and
i is a prerequisite for j (thanks to link i→ j). Given links i→ j and j→ k, the link i→ k does not
provide any conceptually new information and its removal does not change the function of the
CPN.

A transitive reduction of a directed graph, introduced in Aho et al. (1972), can be viewed as a
mechanism for removing redundant links in a CPN. By definition, any CPN is a directed acyclic
graph (DAG), that is, a directed graph without cycles—closed paths that start and end at the same
node and follow links only in their forward direction. The transitive reduction of a directed acyclic
graph G is a subgraph Gtr ⊂ G, which has the same nodes and is obtained from G by removing all
links i→ k such that there exists a longer directed path i→ . . .→ k from i to k. The transitive
reduction Gtr is uniquely defined, and it is the smallest (with respect to the number of links)
subgraph of G that has the same reachability relation: there exists a directed path from node i to
node j in G if and only if there exists a directed path from node i to node j in Gtr . Figure 1 shows a
small DAG and its transitive reduction.

Since removing redundant links does not change a CPN conceptually and does not alter its
function, any global measure of a CPNmust be invariant with respect to transitive reduction. That
is, if for any meaningful CPN measure m, we must have m(G)=m(Gtr). In what follows, we will
assume that instead of the original “raw” CPN, we work with its transitive reduction. Computing
the transitive reduction can be viewed as a pre-processing step, as a “cleaning” of the network
data.

In this paper, we assume that all prerequisites in a CPN are conjunctive, meaning that if two
or more courses are listed as prerequisites for a given course, then all of them are required. In
real course catalogs, however, there is often a fraction of disjunctive prerequisites, that is, cases
where only one or a subset of listed prerequisites is sufficient. In such cases, when disjunctive
prerequisites are present, transitive reduction may over-constrain the curriculum structure. Even
when two prerequisites are formally disjunctive (i.e., one or the other is sufficient), in practice,
almost all students take the same one of the two. This is why, when constructing a CPN from
the course catalog, it is important to incorporate expert knowledge (whether from students, staff,
or faculty) about the actual structure of the curriculum. In any case, the fraction of disjunctive
prerequisites is (usually) relatively small, and their effect on the overall structure of the CPN and
its global measures is minimal.
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3. Dags and dogs
Directed acyclic graphs (DAGs) serve as models for many natural and man-made networks, such
as citation networks Radicchi et al. (2012), where nodes represent documents (e.g., academic
papers) and directed links represent citations between them, and food webs Dunne et al. (2002),
where nodes represent species in an ecosystem and directed links represent predator–prey rela-
tionships. In many real networks, the acyclic structure is induced by a natural topological ordering
of the network nodes. Recall that a topological ordering of a directed graph with n nodes is a total
ordering of its nodes, i1 < i2 < · · ·< in, such that for each link ik → im from node ik to node im,
we have ik < im, i.e., ik appears before im in the ordering. A directed graph admits a topological
ordering of its nodes if and only if it is a DAG, and the topological ordering is unique if and only
if the graph has a Hamiltonian path (a directed path that visits all nodes exactly once) Sedgewick
and Wayne (2011).

Many networks are acyclic because the nature of the network imposes a natural topological
ordering on its nodes. For example, in citation networks, papers can only cite other papers that
have already been published: all links, therefore, must point backward in time. Thus, the pub-
lication time induces a natural topological ordering of the papers: i< j if and only if paper i
was published after paper j. This time-induced ordering is the fundamental reason why citation
networks are acyclic.

Following Karrer and Newman (2009b), we will refer to a DAG with a fixed topological order-
ing as a directed ordered graph (DOG). Every DOG is clearly a DAG, and every DAG can be
formally turned into a DOG by fixing one of its topological orderings. Unless a DAG has a
Hamiltonian path, it has more than one topological ordering. For example, α < β < γ < δ < ε <
ζ < η and β < γ < δ < α < ζ < ε < η are two orderings of the DAG in Figure 1. Fixing an arbi-
trary topological ordering of a DAG, however, introduces an artificial (non-natural) total order on
the DAG’s nodes, which are only partially ordered by the DAG’s links.

Any real CPN is fundamentally a DAG but not a DOG, since it does not have a natural or
canonical way to topologically order its nodes. In the next section, we describe a topological strat-
ification Stavrinides and Zuev (2023) of partially ordered CPN nodes, which is a generalization of
topological ordering and the DAG structure on which all three proposed CPNmeasures are based.

4. Topological stratification
Let G = (V , E) be a CPN, where V and E are the sets of its nodes (vertices) and directed links
(edges). A topological stratification of G is a partition of V into disjoint subsets, called strata, of
topologically equivalent nodes, which is defined as follows. The first stratum S1 ⊂ V is the subset
of nodes with zero in-degree (“sources”), that is, the set of courses with no prerequisites. The
second stratum S2 ⊂ V is obtained by first removing all nodes in S1 along with their outgoing
links from the CPN and then taking the nodes with zero in-degree in the remaining network. This
process continues until all nodes are assigned to their strata. Let T denote the total number of
strata. As a result of this process, the CPN nodes are partitioned into T disjoint strata,

V = S1 � S2 � . . . � ST . (1)

This partition is illustrated in Figure 2 for a small CPN.
Each stratum St consists of topologically equivalent nodes, i.e., nodes that are not connected

by a directed path (courses that are not direct or indirect prerequisites or postrequisites of each
other). Indeed, if u ∈ St and u→ v is a directed link, then, after removing the first (t − 1) strata,
the node v has in-degree at least one, since u is still in the network. This means that v belongs to
one of the higher strata: v ∈ S>t = St+1 � . . . � ST .
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Figure 2. Left: a small course-prerequisite network. Right: its topological stratification, consisting of four strata.

Within each stratum nodes are unordered, but the strata themselves are ordered. We refer to
this ordered partition

S(G)= {S1, . . . , ST} (2)

as the topological stratification of CPN G. Note that the topological stratification is invariant with
respect to the transitive reduction, namely, S(Gtr)= S(G). This follows directly from the property
established above that if St � u→ v, then v ∈ S>t .

The topological stratification is a meso-scale structure of a CPN or, more generally, of a DAG.
Other meso-structures often used for studying complex networks include the community struc-
ture Girvan and Newman (2002); Porter et al. (2009); Fortunato (2010), core-periphery structure
Holme (2005); Csermely et al. (2013); Rombach et al. (2014), and k-core decomposition Alvarez-
Hamelin et al. (2005). A common feature of all these constructions is that they partition the set
of network nodes V into a collection of subsets according to a certain criterion. For the structures
cited above, this criterion measures the density and sparsity of links within and between subsets of
nodes or quantifies the “coreness” of the nodes. For the topological stratification, which is defined
only for DAGs, this criterion is the topological equivalence of nodes, i.e., the absence of directed
paths between nodes within the same subset (stratum). In the context of CPNs, the topological
stratification produces subsets S1, . . . , ST of courses of approximately the same level of difficulty,
with more advanced courses lying in higher strata.

The topological stratification not only induces a hierarchy of the CPN nodes with respect to the
level of course advancement but also helps describe the organization of the CPN links. LetN−

v be
the set of all prerequisites of node v, that is, the set of all nodes u for which there is a link from u
to v. Similarly, let N+

v be the set of all postrequisites of node v, that is, the set of all nodes u for
which there is a link from v to u. ThenNv =N−

v �N+
v is the set of all “neighbors” of node v. The

number of nodes in N−
v , N+

v , and Nv is, respectively, the in-, out-, and total degree of node v.
Obviously,

u ∈N−
v ⇐⇒ v ∈N+

u . (3)

For any node v in stratum St , all its incoming links come from nodes lying in strictly lower
strata, that is,

∀v ∈ St , N−
v ⊂ S<t = �t−1

i=1Si. (4)

Indeed, by definition of St , if we remove all nodes in S1, . . . , St−1 together with their outgoing
links, then any v ∈ St will have zero in-degree. This means precisely that any incoming link of v
comes from a node lying in a lower stratum Si, where i< t.

Moreover, any node v in stratum St must have at least one incoming link from a node lying in
the strictly previous stratum:

∀v ∈ St , N−
v ∩ St−1 �= ∅. (5)
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Figure 3. Every node v ∈ St has at least one prerequisite from a node u ∈ St−1 (a solid link that must exist), and all its
prerequisites and postrequisites are in lower and higher strata, respectively (potential dashed links that may or may not
exist).

Indeed, if this is not true and N−
v ∩ St−1 = ∅, then v will have zero in-degree after removing all

nodes in strata S1, . . . , St−2 along with their outgoing links, which contradicts the assumption
that v ∈ St , as it would instead belong to St−1 or an even lower stratum.

Next, as was already discussed above, for any node v in stratum St , all its outgoing links point
to nodes lying in strictly higher strata, that is,

∀v ∈ St , N+
v ⊂ S>t = �T

i=t+1Si. (6)

However, there is no analog of property (5) for N+
v . Namely, a node v ∈ St may have no

postrequisites in St+1. In other words, if v ∈ St , then the setN−
v ∩ St−1 may be empty.

To sum up, every CPN node lies in a single stratum of topologically equivalent nodes, all its
prerequisites lie in lower strata, all its postrequisites lie in higher strata, and it has at least one pre-
requisite in the directly preceding stratum. The topological stratification of a CPN is schematically
illustrated in Figure 3. This meso-scale structure serves as a basis for defining the proposed global
CPN measures.

5. New CPNmeasures
The key quantitative characteristics of education are its breadth and depth, which describe, respec-
tively, how wide the scope of knowledge provided by education is and how deep and advanced it
is. We can define the breadth and depth of a CPN that represents an academic curriculum used
for education as follows.

5.1 Breadth
Let G be a CPN, S(G)= {S1, . . . , ST} be its topological stratification, and nt = |St| be the number
of nodes in stratum St . It is natural to define the breadth of G as the average stratum size:

B(G)= 1
T

T∑
t=1

|St| = 1
T

T∑
t=1

nt = n
T
, (7)

where n is the total number of nodes in G. This simple definition implies two intuitively expected
properties of the breadth: (a) for two CPNs with the same number of strata, the one with more
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courses has greater breadth, and (b) for two CPNs with the same number of courses, the one with
a smaller number of strata has greater breadth. Note also that since the topological stratification
is invariant with respect to the transitive reduction, so is the breadth: B(Gtr)= B(G).

The number of strata T has a useful interpretation: T is the number of nodes in a longest
directed path in G (there may be several different longest directed paths in G, but the number of
nodes in any such path is the same).

Indeed, let L be the number of nodes in a longest directed path. On the one hand, L≤ T since
if L were larger than T, then there would be at least two nodes in the same stratum connected by
a link, which is impossible (since there are no links between nodes lying in the same stratum). On
the other hand, property (5), namely the presence of a solid link in Figure 3, allows us to construct
a directed path of length T as follows. Consider any node ω ∈ ST in the last stratum. It necessarily
has a prerequisite in the previous stratum ω ∈ ST−1, which has a prerequisite in ST−2, and so
one, until a zero in-degree prerequisite α ∈ S1 in the first stratum is reached. The corresponding
directed path α→ · · · →ω has T nodes. Therefore, the number of nodes in a longest path L≥ T.
Combining L≤ T and L≥ T leaves us with the only possibility: L= T.

So, the breadth B(G) of a CPN G is the ratio of the total number of nodes n of the CPN to the
number of nodes T in its longest directed path. The larger the n, the broader the network; the
longer a longest path, the narrower the CPN.

5.2 Depth
Intuitively, the depth of a CPN should be defined in terms of the lengths of directed paths in the
network, and it should be negatively correlated with the breadth: the longer the paths, the deeper
the network is. This idea can be formalized as follows.

Let 
⊂ V be the set of all nodes with zero out-degree. Nodes ω ∈
 represent the most
advanced (“deepest”) courses students can possibly take by traversing G. We define the depth of G
as the average depth of nodes in
:

D(G)= 1
|
|

∑
ω∈


d(ω), (8)

where |
| is the number of nodes in
 and d(ω) is the depth of node ω, a quantity which is still to
be defined.

Let
t =
∩ St be the subset of nodes with zero out-degree lying in the stratum St , and

=
1 �
2 � . . . �
T (9)

be the partition of 
 induced by the partition of V (1). Then the CPN depth can be rewritten as
follows:

D(G)= 1
|
|

T∑
t=1

∑
ω∈
t

d(ω). (10)

Consider a node w ∈
t . Since ω ∈ St , according to the property (5), it has at least one prereq-
uisite ψ ∈ St−1 in the previous stratum, which, in turn, has at least one prerequisite φ ∈ St−2,
and so on until a course α ∈ S1 in the first stratum is reached. Taking a sequence of courses
α→ . . .→ φ→ψ is a necessary condition for taking ω (but not necessarily sufficient since ω
may have other direct and indirect prerequisites). The path α→ . . .→ φ→ψ →ω is the longest
directed path in the CPN that ends in ω, see Figure 4.We define the depth ofω ∈
t as the number
of nodes in that path, that is:

d(ω)= t, ω ∈
t . (11)
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ω

ψ

φ

α

Figure 4. Every stratum St is partitioned into the subset
t of zero out-degree (purple) nodes and the subset of positive out-
degree (blue) nodes. The depth of ω ∈
t is the number of nodes in the longest path α→ . . .→ φ→ψ →ω. The depth of
the CPN is the average depth of nodes in
.

The depth of the CPN G is, therefore,

D(G)= 1
|
|

T∑
t=1

∑
ω∈
t

t = 1
|
|

T∑
t=1

t|
t|, (12)

where |
t| is the number of nodes in
t .
This definition of the CPN depth is invariant with respect to the transitive reduction, D(Gtr)=

D(G), and it has a simple probabilistic interpretation. Indeed,

D(G)=
T∑
t=1

t
|
t|
|
| =

T∑
t=1

tP(ω∗ ∈
t)=E[t∗], (13)

where ω∗ is a random node chosen uniformly from 
, and t∗ is the random index of the stratum
to which ω∗ belongs, that is, ω∗ ∈ St∗ . The depth of a CPN is then the expected value of the index
of the stratum that contains a randomly chosen node with zero out-degree.

The definition of the CPN breadth (7) can also be interpreted probabilistically:

B(G)= 1
T

T∑
t=1

|St| =
T∑
t=1

|St|P(t
 = t)=E[|St
 |], (14)

where t
 is a random index chosen uniformly from the set {1, . . . , T}, and |St
 | is the size of
stratum St
 . So, the breadth of a CPN is then the expected size of a randomly chosen stratum
(which is the average stratum size).

An interesting depth-related structure, called the Longest Paths Induced sub-Graph (LPIG),
was introduced in Yang et al. (2024). Given a length parameter d, LPIGd is the subgraph of the
CPN induced by all nodes that lie on paths of length d or longer in the CPN (where “length”
is understood as the number of links in the path). For example, LPIG1 is the subgraph induced
by nodes V \
1, and LPIGT−1 is the subgraph induced by all nodes lying on the longest paths
starting in S1 and ending in ST . This one-parameter family of LPIGs contains rich depth-related
information about the CPN and, in particular, can be used to analyze constrained degree programs
and course sequences in a university.

The measure of depth introduced in (12) is a single-number statistic that intuitively quanti-
fies the overall depth of the CPN. It has a simple probabilistic interpretation, is invariant under
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transitive reduction, and can be used for macro-level comparison of different CPNs as well as for
assessing the accuracy of random graph CPN models.

5.3 Flux
The last proposed CPN measure is the concept of flux, which is inspired and motivated by a
similar concept introduced by Karrer and Newman in Karrer and Newman (2009b). In that paper,
however, the flux is defined as a property of the gap between two successive nodes of a DOG (a
directed acyclic graph with a fixed total order of nodes, see Section 3). Since a CPN is a DAG, but
not a DOG, and it does not have a canonical or natural way to order its nodes, we define the flux
at the level of strata, not at the level of gaps between successive nodes.

Conceptually, a CPN represents the flow of knowledge in an academic curriculum, where
knowledge “flows” along directed paths in the CPN from lower strata containing more introduc-
tory courses to higher strata containingmore advanced courses. In the physical sciences that study
transport phenomena, the flux�(t) at time t is defined as the rate of flow of a certain quantity per
unit area,

�(t)= q̇(t)
A

= 1
A

lim
�t→0

q(t +�t)− q(t)
�t

(15)

where q(t) is the quantity that flows and A is the area of the surface through which the quantity
flows. A discrete analog of (15), in the context of CPNs, is the flux �t through stratum St , which
we define as follows:

�t =
Lt+1
t − Ltt−1

nt
, (16)

where nt = |St| is the number of nodes in stratum St , Ltt−1 is the number of incoming links from
St−1 to St , and Lt+1

t is the number of outgoing links from St to St+1. Here, nt quantifies the size
of St and plays the role of the area A in (15). The number of links Ltt−1 between two successive
strata acts as the flowing quantity q(t).

Note that in the definition (16) of the flux �t through stratum St , we intentionally do not
count incoming links from S<t−1 = S1 � . . . � St−2 to St and outgoing links from St to S>t+1 =
St+2 � . . . � ST . The reason is twofold. First, �t is intended to be a “local” property of St that
quantifies its interactions with the neighboring strata St−1 and St+1. Second,�t must be invariant
with respect to the transitive reduction. The definition (16) has this property since links from St−1
to St and from St to St+1 are present in both G and Gtr (these links are not redundant in the sense
of Section 2). Counting links from S<t−1 to St or from St to S>t+1, that is, defining the flux as
�t = (Lt+1:T

t − Lt1:t−1)/nt , where L
t+1:T
t and Lt1:t−1 are the numbers of links, respectively, from St

to S>t and from S<t to St , will destroy the invariance. For example, removing a redundant link
from S<t−1 to St will decrease Lt1:t−1 and increase�t . Similarly, removing a redundant link from
St to S>t+1 will decrease Lt+1:T

t and decrease�t .
The flux �t through stratum St can be expressed as the average of local fluxes through nodes

of St . Let A be the adjacency matrix of the CPN G, where Aij = 1 if there is a link i→ j and Aij = 0
otherwise. Then

Lt+1
t =

∑
i∈St

∑
j∈St+1

Aij,

Ltt−1 =
∑
i∈St

∑
k∈St−1

Aki. (17)
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Therefore,

�t =
Lt+1
t − Ltt−1

nt

= 1
nt

∑
i∈St

⎛
⎝ ∑

j∈St+1

Aij −
∑

k∈St−1

Aki

⎞
⎠ = 1

nt

∑
i∈St

φi, (18)

where

φi =
∑

j∈St+1

Aij −
∑

k∈St−1

Aki (19)

is the local flux through node i ∈ St .
The flux �t quantifies the average amount of “knowledge flow” that is emitted from (�t > 0)

or absorbed by (�t < 0) the nodes in stratum St . The more courses in St collectively serve as
prerequisites for courses in St+1 compared to their role as postrequisites for courses in St−1, the
larger the value of �t . Strata consisting of introductory courses tend to have positive flux, while
those consisting of more advanced courses tend to have negative flux.

Finally, we define the flux of a CPN as the average flux through its strata:

�= 1
T

T∑
t=1

�t . (20)

The CPN flux can be positive, negative, or zero, depending on the values of �t . For example, the
flux through the first stratum is always positive,�1 > 0 (except in the extreme case where the CPN
consists of a single stratum, in which case �=�1 = 0), and the flux through the last stratum is
always negative,�T < 0.

To illustrate the proposed CPN measures and provide the reader with a better intuitive under-
standing of these measures, Figure 5 shows all 16 different CPNs consisting of 4 nodes (after
topological reduction and up to isomorphism), along with their breadths, depths, and fluxes. As
intuitively expected, the breadth and depth are negatively correlated. The average values of depth
for breadth B= 1, 4/3, 2, 4 are, respectively, D= 4, 2.75, 1.8125, 1.

6. Two random graph CPNmodels
In this paper, we compare the breadth, depth, and flux of three real CPNs—the course networks
of the Cyprus University of Technology (CUT), the California Institute of Technology (CIT), and
Johns Hopkins University (JHU)—as well as those of synthetic CPNs generated by two random
graph models, which are roughly analogous to the classical Erdős–Rényi model Erdös and Rényi
(1959) and the standard configuration model Bollobás (1980) for undirected graphs.

It is important to highlight that we consider these two random graph models not because
they generate DAGs similar to real CPNs (as we will see, they do not). We leave the develop-
ment of a good random graph model for CPNs to future research. Here, our goal is to compare
the breadth, depth, and flux of the real CPNs of CUT, CIT, and JHU with those of other
DAGs that have the same numbers of nodes and links or the same degree sequence. For this
purpose, we use synthetic CPNs (model-generated DAGs) because real CPNs are surprisingly
difficult to find, and to the best of our knowledge, there are no other public datasets contain-
ing entire university CPNs (and code that constructs the CPNs), except for our GitHub repository
https://github.com/pstavrin/Course-Prerequisite-Networks.
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Figure 5. All 16 different CPNs with 4 nodes and their breadths (B), depths (D), and fluxes (�), computed via (7), (12), and
(20), respectively. The purple nodes indicate the nodes with zero out-degree, which are used for computing the CPN depth.
The numbers next to strata are the values of fluxes�t through those strata, as defined in (16).

6.1 The Erdős–Rényi CPNmodel
As discussed in Section 3, any CPN is fundamentally a DAG (but not a DOG). A directed graph
is acyclic if and only if its nodes can be topologically ordered. In other words, the nodes can be
ordered (numerically labeled) such that the adjacency matrix A of the graph with respect to that
order is upper triangular.

Let U(n,m) be the set of all n× n strictly upper triangular binary matrices (whose elements
are zeros and ones) with exactly m ones. Let A ∈U(n,m) be a random n× n matrix with m ones
uniformly distributed above the diagonal. Algorithmically, A can be generated by starting with
the zero n× n matrix, choosing m out of n(n− 1)/2 elements above the diagonal via random
sampling without replacement, and replacing them with ones. Matrix A generated this way is
sampled uniformly at random from U(n,m). We say that the random graph G with the adjacency
matrix A is generated according to the Erdős–Rényi CPN model, denoted

G∼ ER(n,m). (21)

The random graph G is then sampled uniformly from the ensemble of all DOGs with n nodes
and m links. It is not, however, uniformly distributed on the ensemble of all DAGs with n nodes
andm links, because two different DOGs can be isomorphic to the same DAG after dropping the
fixed topological ordering (numerical labels on nodes). To the best of our knowledge, no method
of sampling uniformly from the ensemble of DAGs is known.

6.2 The Karrer−Newman CPNmodel
The Karrer−Newman (KN) CPNmodel is based on the KNmodel for DOGs Karrer and Newman
(2009a, b), which is an analog of the standard configuration model for undirected graphs.

Consider a DOG with n nodes, i.e., a directed acyclic graph with a fixed topological ordering of
the nodes, denoted by 1, . . . , n. Thus, the graph can have a link from node i to node j only if i< j.
Let kini and kouti be the in- and out-degree of node i, and let

(kin, kout)= (kin1 , k
out
1 ), . . . , (kinn , k

out
n ) (22)

be the corresponding degree sequence of the graph.
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Figure 6. A node with 2 incoming and 3 outgoing stubs.

The original KN model takes the ordered degree sequence (kin, kout) as its input and generates
a random DOG with precisely this degree sequence as follows. It is convenient to represent the
degree sequence as a collection of link “stubs” (half-links) pointing in and out of nodes in the
appropriate numbers. As an illustration, Figure 6 shows a node with in-degree 2 and out-degree 3
represented by stubs.

Now, given n nodes with no links but with the appropriate number of incoming and outgoing
stubs at each node, as described by the degree sequence (kin, kout), we visit all nodes in order from
2 to n. For each node i, we randomly attach all its kini incoming stubs to kini outgoing stubs of previ-
ous nodes 1, . . . , i− 1, chosen uniformly from the set of all such outgoing stubs that are currently
unattached. This process allows multilinks (just as in the standard configuration model), but they
usually constitute a negligible fraction of all links. It can be shown that this model generates a
random DOG sample uniformly from the ensemble of all DOGs (possibly with multilinks) with
the degree sequence (kin, kout) Karrer and Newman (2009a, b).

The KN CPN model is based on the original KN model for DOGs described above. It takes a
real CPN G as its input and generates a randomCPNGwith the same unordered degree sequence.
Since any real CPN G is a DAG and has many possible topological orderings of its nodes, to use
the original KN models, we need to first convert the DAG G into a DOG by selecting a specific
ordering. Thus, given G, a random CPN G is generated as follows:

(1) Compute the topological stratification of G,

S(G)= {S1, . . . , ST}. (23)

(2) For each stratum St , select a random ordering of its nodes uniformly from the set of all nt!
permutations of nt nodes.

(3) Concatenate the orderings obtained in step 2 into a single ordering of nodes of G, which,
by construction, will be a topological ordering of G.

(4) Let (kin, kout) be the degree sequence of G with respect to the topological ordering from
step 3.

(5) Generate a random graph G using the original KN model with the degree sequence
(kin, kout).

(6) Replace all multilinks in G (if any) with single links.

We say that the random graph G produced this way is generated according to the Karrer-
Newman CPN model, denoted

G∼KN(G). (24)

This notation highlights that generating a random CPN G that mimics the degree properties of G
requires the full network G.
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Table 1. Three real CPNs and their six global measures

n m̃ m B D �

CUT 416 322 319 59.43 2.66 −0.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CIT 771 772 640 110.14 2.37 −0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JHU 10291 4287 3499 857.58 1.34 −0.55
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Figure 7. The depth versus breadth for CUT, CIT, JHU, and synthetic CPNs generated by the ER and KNmodels.

7. Empirical and simulation results
We consider three real CPNs corresponding to three very different universities: one European
university, Cyprus University of Technology (CUT), and two US universities, California Institute
of Technology (CIT) and Johns Hopkins University (JHU). CUT is the smallest and youngest
university (established in 2004), located in Limassol, Cyprus. It comprises seven faculties and a
language center. It was established to fill gaps in the Cyprus higher education system by offering
degrees not provided by other institutions. CIT is a top-tier private research university, based in
Pasadena, California, with a very strong emphasis on research in STEM fields. It has the highest
number of Nobel laureates per capita (as of October 2024), is consistently ranked among the top
universities in the world, and has more graduate than undergraduate students. JHU is the largest
and oldest of the three considered universities (founded in 1876), located in Baltimore, Maryland.
It is considered the first research university in the US. Compared to CIT, JHU is much larger, more
diverse academically, offers a broader curriculum, and is renowned for its medical and public
health research.

Table 1 summarizes the six global CPNmeasures for CUT, CIT, and JHU: the number of nodes
n, the number of links m̃ (before transitive reduction), the number of links m (after transitive
reduction), breadth B, depth D, and flux �. As intuitively expected, the larger the size n of the
network (i.e., the more courses are offered by the curriculum), the larger its breadth B. Also, as
discussed in Section 5.2, the breadth and depth are negatively correlated: when new courses are
added to the curriculum, they are not likely to increase the lengths of the longest paths.

Figure 7(a) shows depth D versus breadth B for the three universities: CUT (green), CIT
(orange), and JHU (blue). We compare these true values with synthetic ones obtained from
N = 500 random graphs generated according to both the Erdős–Rényi (ER) and Karrer–Newman
(KN) CPN models and plot the average values of their depths and breadths in Figure 7(b). The
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Figure 8. The depth versus flux for CUT, CIT, JHU, and synthetic CPNs generated by the KNmodel.

average values of ER- and KN-generated graphs are represented by circles and diamonds, respec-
tively. While the ER model deviates substantially, the KN model, on average, accurately captures
CUT’s breadth and depth (the green diamond is close to the green star). The green scatter
plots show the individual values generated by the ER and KN models for CUT, namely, the val-
ues of depth and breadth for G1, . . . ,GN ∼ ER(nCUT,mCUT) and G1, . . . ,GN ∼KN(GCUT). For
CIT and JHU, however, both models fail to capture the real CPNs’ breadth and depth, and the
corresponding scatter plots are not shown.

In Figure 8(a), we plot depth D versus flux � for CUT, CIT, and JHU (stars), as well as the
average values of D and � computed from N = 500 CPNs generated by the ER (circles) and KN
(diamonds) models. As before, the ER model is inaccurate in all three cases, and the KN model
accurately captures, on average, only the depth and flux of CUT, the smallest of the three real
CPNs. Figure 8(b) shows scatter plots of the individual values generated by the KNmodel for CUT
(green) and Caltech (orange), namely, the values of depth and flux for G1, . . . ,GN ∼KN(GCUT)
and G1, . . . ,GN ∼KN(GCIT).

The KN CPN model generates a random CPN with the same unordered degree sequence as
the real CPN it attempts to model. Therefore, the accuracy of reproducing the real values of
breadth, depth, and flux depends on the extent to which these global measures are determined
by the unordered degree sequence alone. As simulation results in Figures 7 and 8 indicate, for the
smaller CUTCPN, its unordered degree sequence tightly constrains the possible values of breadth,
depth, and flux. For the larger CPNs of CIT and JHU, however, this is not the case; the same degree
sequence allows for much greater variability in these measures.

Finally, Figure 9 shows the evolution of the flux through stratum �t as the stratum number
increases. The flux�t tends to decrease as we climb higher strata, since introductory courses tend
to emit knowledge flow by serving as prerequisites for more advanced courses, which, in turn,
tend to absorb the flow.

8. Summary and discussion
In this paper, we propose three new global CPN measures that can be used for macro-scale com-
parison of course-prerequisite networks and for assessing the accuracy of random graph CPN
models. The new measures are: breadth, depth, and flux, which quantify 1) how wide, 2) how
deep the span of knowledge provided by the academic curriculum is, and 3) the average amount
of knowledge flow through the CPN.
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Figure 9. The flux through stratum versus the stratum number for CUT, CIT, and JHU.

All three measures are invariant with respect to the transitive reduction and are based on the
concept of topological stratification, a meso-scale structure defined for directed acyclic graphs that
generalizes the concept of topological ordering. To illustrate the proposed measures, we compute
them for the Cyprus University of Technology, the California Institute of Technology, and Johns
Hopkins University https://github.com/pstavrin/Course-Prerequisite-Networks.

The proposed global CPN measures reflect key structural features of academic curricula and
can be used for benchmarking peer institutions and guiding curriculum reform. Breadth reflects
the horizontal structure of the curriculum, and can inform discussions about curriculum flexi-
bility and modularity. Depth, on the other hand, captures the vertical structure, quantifies how
hierarchical or sequential the curriculum is, and can inform discussions about the accessibility
of advanced content and the pacing of student progression. Flux quantifies the average imbal-
ance of prerequisite and postrequisite links across strata, reflects the intensity of knowledge
flow through different stages of the curriculum, and can help identify bottlenecks or overloaded
strata. Together, these measures provide a quantitative lens for assessing curricular architecture,
diagnosing structural issues, and benchmarking curricula across peer institutions or disciplines.

In addition to real CPNs, we also consider synthetic CPNs generated by two random graph
models: the ER and KN models, which are roughly analogous to the Erdős–Rényi model and the
standard configuration model for undirected graphs. The KN model tends to be more accurate
than the ER model in approximating the breadth, depth, and flux of real CPNs. This is not sur-
prising, since it uses more information about the real CPN it aims to model. While the ER model
uses just the number of nodes and links, the KN model uses the topological stratification and in-
and out-degree sequences. Nevertheless, both models are rather inaccurate and cannot serve as
realistic CPN models.

Over the years, the development and analysis of random graph models have helped to better
understand the structure and function ofmany different real networks. Since the ER and KNmod-
els cannot serve this purpose for CPNs, this leads to the following natural question: are there any
relatively simple, amenable-to-analysis, random graphmodels with a few parameters that can gen-
erate synthetic DAGs similar to real CPNs? The similarity between networks can bemeasured with
respect to classical network measures (average degree, clustering coefficient, power-law exponent,
etc.) as well as the new measures proposed in this paper.

Course-prerequisite networks originate and evolve in a highly decentralized manner: there is
no single authority that decides what courses to add to the network and what links to estab-
lish between courses. These decisions are made collectively by course instructors. What local
mechanisms are responsible for the formation of the global CPN structure? The answer to this
question—and the appropriate modeling approach—may depend on how we interpret the links
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between nodes. Do they represent merely formal prerequisites, faculty beliefs, or objective depen-
dencies between different areas of scientific knowledge represented by courses? We leave these
important questions for future research.
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