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LETTERS TO THE EDITOR

Dear Editor,

The extremal index in 10 seconds

Introduction. In a recent paper, Smith [3] introduces a method to calculate the extremal
index of a stationary Harris chain {Xn } . Loosely speaking, a stationary sequence {Xn }

with marginal distribution F has extremal index () if

as n ~ 00, for sequences u; with Fn(un) = c E (0, 1). The main assumption of Smith is
that the transition density q of the Harris chain satisfies

lim q(u, u+x)=h(x),
U-+OO

for some limiting function h, with h(x) ~ 0 and Jh(x)dx ~ 1.
In this letter we show that there is a simple way to compute the extremal index. The

numerical method given here is adapted from the Wiener-Hopf algorithm developed by
Grubel [2], designed to calculate the distribution of the stationary waiting time of a
stable GIGII queue.

Implementation. From (2.6)-(2.8) of [3],

() = foo eXp{S\ <x, S2<x,···1 So=O}dx,

where So = 0, Sh S2'··· is a random walk with stepsize density h. In order to facilitate
the use of Grubel's algorithm, consider the random walk Sfc = - Si; with density g,
g(x)=h( -x). To avoid trivial cases, assume that

(2) fxg(x)dx > O.

As h may be defective, with missing mass transferred to - 00, g may be defective with
mass at 00, in which case the expectation in (2) is infinite.

Define
M = inf {Sk IS~=O};

k~O

condition (2) implies that M is finite. Its distribution can be computed with Grabel's
algorithm. From (1), we obtain
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(3) = l'" e- X 1'" P{M> x-y}g(y)dy dx

=100

e- X f'" P{M> x-y}g(y)dy dx;
o -00
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the last equality follows from P{M> O} =0.
Note that 0 can be expressed as the probability of an event: let Z, Y, and M be

independent random variables, with Z exponentially distributed with mean 1, M as
defined, and Ya copy of the stepsize of the random walk S~, Sf,···. Then

(4) O=P{Y+M-Z>O}.

This leads to the following algorithm for the computation of fJ. Steps 3-6 below are
steps (iii)-(viii) in Grabel's algorithm; for details we refer to [2]. Note that steps 1 and
2 differ from the first two steps in Grabel's algorithm: for the GIGII case the stepsize
distribution first has to be computed as the difference of two independent random
variables representing an interarrival time and a service time.

Step 1. Discretize the distribution of the stepsize Y. For a large positive integer m
the distribution of Y is approximated by the vector p of length 2m with

p(k) =P{(k- ~)h< Y ~ (k+ ~)h}, k= -m,-m+ 1,.··, m-I.

The gridsize h should be as small as possible, whereas m should be chosen so that
(-mh, mh) gives a fair coverage of the range of both Yand Z. For computational
efficiency it is advised to take m equal to a power of 2.

Step 2. Calculate the discrete Fourier transform (fft) fp on 2m points of the vector p:

m-l

fp(k) = L p(n)e21tiknI2m,
n=-m

k=0,.··,2m-I.

For the non-defective case we need the fft of the tailvector r,

given by

r(k) = P{ Y> h(k+ ~)},

= -P{ Y ~ h(k+ ~)},

m-l

fr(k) = L r(n)e21tiknl2m,
n=-m

k=O, 1,.··, m-I,

k= -m,.··,-l,

k=O,···,2m-I.

Step 3. Calculate fs = -log(fr), where x -+ log x denotes the complex logarithm.
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Step 4. Calculate the inverse Fourier transform of fs:

1 m-l .

s(k) = - L fS(n)e-21tlknI2m,
2m n=-m

(in shorthand s = ifft( fs)), and define

sm(k) = s(k),

=0,

k= -m, -m+ I,.··, m-1,

k~O,

k>O.

The vector sm is an approximation to the harmonic renewal function of the descending
ladder height H-, corresponding to the random walk generated by Y.

Step 5. Apply the Fourier transform and then the transformation y ~ 1~exp( -y)
to obtain the Fourier transform of the (defective) probability mass function jh of the
ladder height:

jh = I-exp( -(fft(sm))).

Step 6. Compute the Fourier transform of M from the Fourier transform of the
ladder height by

fm=(I- jh(O))/(I- jh).

Step 7. On the same grid - mh,· .. , (m - l)h make a discretization of an exponentially
distributed random variable Z, with mean I, and calculate the discrete Fourier transform
fminz on 2m points of - Z. Compute the product fm . fr . fminz, this is an approxi
mation to the Fourier transform of Y + M - Z.

Step 8. Apply the inverse Fourier transform and sum the probabilities corresponding
to positive subscripts to get the extremal index O. Adding half of the probability at zero
generally improves the accuracy.

Note. In the defective case the vector of tail probabilities r is not needed and fs in
step 3 can be computed directly from the defective vector p by fs= -log(I-.fp).

Runtimes. We illustrate the method with Example 2 from Smith [3]. In this example
H(z) = S~X) h(x)dx=(1 +e-r z

) lIr - l , where r> 1. For m we use powers of 2: m=2k
,

k=8, 9,.··; h= 151m gives adequate coverage for r between 2 and 5.
Using a 386 20 MHz personal computer and 386-MATLAB, we obtained the values

of 0, for r=2 shown in Table 1.
The approximation can be improved considerably by applying a simple extrapolation

method. It is conjectured by Grubel in [2] that the approximation of M h , with gridsize
h, is of the form

P{Mh.~ t} =P{M ~ t} +ch+o(h),

for h ~ O. If this is true and the density g of the stepsize of the random walk Sic is
sufficiently smooth, then the same discretization error is present in O. If we call Ok the
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TABLE 1

m Computer time f) m Computer time f)

28 2 sec 0.32148 212 25 sec 0.32809
29 4 sec 0.32498 213 59 sec 0.32831
210 6 sec 0.32675 214 173 sec 0.32842
211 12 sec 0.32764
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approximation of 0, based on m = 2k, then 2 * Ok+ 1 - Ok should have a discretization error
of the order o(h), since the discretization parameter h used to calculate Ok + 1 is half the value
of the discretization parameter for Ok. Embrechts et ale [1] give a rigorous mathematical
derivation of this method, called Richardson's deferred approach to the limit, and apply
it to compound distributions.

We found as a rule of thumb that the maximum of h2 and 10 times the maximum of
the missing probability masses can be used as an error upper bound, where h is the
smallest of the two grid sizes used for the extrapolation.

The calculation with extrapolation for m = 28 takes only 6 seconds of computing time.
It can even be done on an 80286 or 8086 personal computer using PC-MATLAB (the
computing time is then ~ 30 seconds). Table 2 presents the values of 0 for r = 2, 3, 4, 5,
which are also included in Smith [3]; as before, we took h = 151m.

TABLE 2

r m f) m f)

2 28 0.32848 213 0.32853
3 28 0.15794 213 0.15806
4 28 0.09218 213 0.09234
5 28 0.06024 213 0.06043

The value 0.0616 for r = 5 given by Smith seems to be slightly off.

Remark. As noted by the referee, for r ~ 1 the value of mh has to be increased
considerably to obtain a fair coverage of the distribution of the stepsize, hence for r
close to 1 the algorithm becomes unstable.

An alternative approximation for 0 can be given through

0' := lim P {X2 < u IXl > u}.
U-+OO

It is easy to show that 0' is an upper bound for the extremal index 0: 0 ~ 0' ~ 1. It
depends on the length of the arrays that can be stored efficiently in the working memory
at which point one should abandon the algorithm and switch to the approximation 0'.
It seems that the algorithm can safely be used in the range r ~ 1.01, provided that mh
is chosen in such a way that the missing probability mass of Y and Z is small; this
missing mass directly affects the error. For r = 1.01, mh = 800 and extrapolating on the
values m =213 and m =214 we obtain: 0=0.98629. In this case 0'=21/r -1 =0.98632.
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