J. Appl. Prob. 34, 818–822 (1997) Printed in Israel © Applied Probability Trust 1997

LETTERS TO THE EDITOR

Dear Editor,

The extremal index in 10 seconds

Introduction. In a recent paper, Smith [3] introduces a method to calculate the extremal index of a stationary Harris chain $\{X_n\}$. Loosely speaking, a stationary sequence $\{X_n\}$ with marginal distribution F has extremal index θ if

$$\boldsymbol{P}\{\max(X_1,\cdots,X_n)\leq u_n\}-(F(u_n))^{n\theta}\to 0,$$

as $n \to \infty$, for sequences u_n with $F^n(u_n) = c \in (0, 1)$. The main assumption of Smith is that the transition density q of the Harris chain satisfies

$$\lim_{u\to\infty}q(u,u+x)=h(x),$$

for some limiting function h, with $h(x) \ge 0$ and $\int h(x) dx \le 1$.

In this letter we show that there is a simple way to compute the extremal index. The numerical method given here is adapted from the Wiener-Hopf algorithm developed by Grübel [2], designed to calculate the distribution of the stationary waiting time of a stable G/G/1 queue.

Implementation. From (2.6)-(2.8) of [3],

(1)
$$\theta = \int_{-\infty}^{0} e^{x} \boldsymbol{P} \{S_{1} < x, S_{2} < x, \cdots \mid S_{0} = 0\} dx,$$

where $S_0 = 0$, S_1 , S_2 ,... is a random walk with stepsize density *h*. In order to facilitate the use of Grübel's algorithm, consider the random walk $S'_k = -S_k$, with density *g*, g(x) = h(-x). To avoid trivial cases, assume that

(2)
$$\int xg(x)dx > 0$$

As h may be defective, with missing mass transferred to $-\infty$, g may be defective with mass at ∞ , in which case the expectation in (2) is infinite.

Define

$$M = \inf_{k \ge 0} \{ S'_k \mid S'_0 = 0 \};$$

condition (2) implies that M is finite. Its distribution can be computed with Grübel's algorithm. From (1), we obtain

818

(3)

$$\theta = \int_{0}^{\infty} e^{-x} P\left\{ \inf_{k \ge 1} S'_{k} > x \mid S'_{0} = 0 \right\} dx$$

$$= \int_{0}^{\infty} e^{-x} \int_{x}^{\infty} P\{M > x - y\} g(y) dy dx$$

$$= \int_{0}^{\infty} e^{-x} \int_{-\infty}^{\infty} P\{M > x - y\} g(y) dy dx;$$

the last equality follows from $P{M > 0} = 0$.

Note that θ can be expressed as the probability of an event: let Z, Y, and M be independent random variables, with Z exponentially distributed with mean 1, M as defined, and Y a copy of the stepsize of the random walk S'_0, S'_1, \cdots . Then

(4)
$$\theta = \mathbf{P}\{Y + M - Z > 0\}.$$

This leads to the following algorithm for the computation of θ . Steps 3–6 below are steps (iii)–(viii) in Grübel's algorithm; for details we refer to [2]. Note that steps 1 and 2 differ from the first two steps in Grübel's algorithm: for the G/G/1 case the stepsize distribution first has to be computed as the difference of two independent random variables representing an interarrival time and a service time.

Step 1. Discretize the distribution of the stepsize Y. For a large positive integer m the distribution of Y is approximated by the vector p of length 2m with

$$p(k) = \mathbf{P}\{(k-\frac{1}{2})h < Y \leq (k+\frac{1}{2})h\}, \quad k = -m, -m+1, \cdots, m-1.$$

The gridsize h should be as small as possible, whereas m should be chosen so that (-mh, mh) gives a fair coverage of the range of both Y and Z. For computational efficiency it is advised to take m equal to a power of 2.

Step 2. Calculate the discrete Fourier transform (fft) fp on 2m points of the vector p:

$$fp(k) = \sum_{n=-m}^{m-1} p(n) e^{2\pi i k n/2m}, \qquad k=0,\cdots, 2m-1.$$

For the non-defective case we need the fft of the tailvector r,

$$r(k) = \mathbf{P}\{Y > h(k + \frac{1}{2})\}, \qquad k = 0, 1, \dots, m-1,$$
$$= -\mathbf{P}\{Y \le h(k + \frac{1}{2})\}, \qquad k = -m, \dots, -1,$$

given by

$$fr(k) = \sum_{n=-m}^{m-1} r(n) e^{2\pi i k n/2m}, \qquad k=0,\cdots, 2m-1.$$

Step 3. Calculate $fs = -\log(fr)$, where $x \to \log x$ denotes the complex logarithm.

Step 4. Calculate the inverse Fourier transform of fs:

$$s(k) = \frac{1}{2m} \sum_{n=-m}^{m-1} f_s(n) e^{-2\pi i k n/2m}, \qquad k = -m, -m+1, \cdots, m-1,$$

(in shorthand s = ifft(fs)), and define

$$sm(k) = s(k), \qquad k \leq 0,$$
$$= 0, \qquad k > 0.$$

The vector *sm* is an approximation to the harmonic renewal function of the descending ladder height H^- , corresponding to the random walk generated by Y.

Step 5. Apply the Fourier transform and then the transformation $y \rightarrow 1 - \exp(-y)$ to obtain the Fourier transform of the (defective) probability mass function *fh* of the ladder height:

$$fh = 1 - \exp(-(\mathrm{fft}(sm)))$$

Step 6. Compute the Fourier transform of M from the Fourier transform of the ladder height by

$$fm = (1 - fh(0))/(1 - fh).$$

Step 7. On the same grid $-mh, \dots, (m-1)h$ make a discretization of an exponentially distributed random variable Z, with mean 1, and calculate the discrete Fourier transform *fminz* on 2m points of -Z. Compute the product $fm \cdot fr \cdot fminz$, this is an approximation to the Fourier transform of Y+M-Z.

Step 8. Apply the inverse Fourier transform and sum the probabilities corresponding to positive subscripts to get the extremal index θ . Adding half of the probability at zero generally improves the accuracy.

Note. In the defective case the vector of tail probabilities r is not needed and fs in step 3 can be computed directly from the defective vector p by $fs = -\log(1-fp)$.

Runtimes. We illustrate the method with Example 2 from Smith [3]. In this example $H(z) = \int_{-\infty}^{z} h(x)dx = (1 + e^{-rz})^{1/r-1}$, where r > 1. For *m* we use powers of 2: $m = 2^{k}$, $k = 8, 9, \dots; h = 15/m$ gives adequate coverage for *r* between 2 and 5.

Using a 386 20 MHz personal computer and 386-MATLAB, we obtained the values of θ , for r=2 shown in Table 1.

The approximation can be improved considerably by applying a simple extrapolation method. It is conjectured by Grübel in [2] that the approximation of M_h , with gridsize h, is of the form

$$\boldsymbol{P}\{M_h \leq t\} = \boldsymbol{P}\{M \leq t\} + ch + o(h),$$

for $h \to 0$. If this is true and the density g of the stepsize of the random walk S'_k is sufficiently smooth, then the same discretization error is present in θ . If we call θ_k the

https://doi.org/10.2307/3215109 Published online by Cambridge University Press

I ABLE I								
т	Computer time	θ	т	Computer time	θ			
2 ⁸	2 sec	0.32148	212	25 sec	0.32809			
2°	4 sec	0.32498	2 ¹³	59 sec	0.32831			
210	6 sec	0.32675	214	173 sec	0.32842			
211	12 sec	0.32764						

TABLE 1

approximation of θ , based on $m = 2^k$, then $2 * \theta_{k+1} - \theta_k$ should have a discretization error of the order o(h), since the discretization parameter h used to calculate θ_{k+1} is half the value of the discretization parameter for θ_k . Embrechts *et al.* [1] give a rigorous mathematical derivation of this method, called Richardson's deferred approach to the limit, and apply it to compound distributions.

We found as a rule of thumb that the maximum of h^2 and 10 times the maximum of the missing probability masses can be used as an error upper bound, where h is the smallest of the two grid sizes used for the extrapolation.

The calculation with extrapolation for $m = 2^8$ takes only 6 seconds of computing time. It can even be done on an 80286 or 8086 personal computer using PC-MATLAB (the computing time is then ≈ 30 seconds). Table 2 presents the values of θ for r = 2, 3, 4, 5, which are also included in Smith [3]; as before, we took h = 15/m.

TABLE 2							
r	т	θ	т	θ			
2	28	0.32848	213	0.32853			
3	2 ⁸	0.15794	213	0.15806			
4	28	0.09218	2 ¹³	0.09234			
5	28	0.06024	2 ¹³	0.06043			

The value 0.0616 for r = 5 given by Smith seems to be slightly off.

Remark. As noted by the referee, for $r \rightarrow 1$ the value of *mh* has to be increased considerably to obtain a fair coverage of the distribution of the stepsize, hence for *r* close to 1 the algorithm becomes unstable.

An alternative approximation for θ can be given through

$$\theta' := \lim_{u \to \infty} \boldsymbol{P}\{X_2 < u \mid X_1 > u\}$$

It is easy to show that θ' is an upper bound for the extremal index $\theta: \theta \leq \theta' \leq 1$. It depends on the length of the arrays that can be stored efficiently in the working memory at which point one should abandon the algorithm and switch to the approximation θ' . It seems that the algorithm can safely be used in the range $r \geq 1.01$, provided that *mh* is chosen in such a way that the missing probability mass of Y and Z is small; this missing mass directly affects the error. For r=1.01, mh=800 and extrapolating on the values $m=2^{13}$ and $m=2^{14}$ we obtain: $\theta=0.98629$. In this case $\theta'=2^{1/r}-1=0.98632$.

References

[1] EMBRECHTS, P., GRÜBEL, R. AND PITTS, S. M. (1993) Some applications of the fast Fourier transform algorithm in insurance mathematics. Statist. Neerlandica 47, 59-75.

[2] GRÜBEL, R.(1991) Algorithm AS 265: G/G/1 via fast Fourier transform. Appl. Statist. 40, 355-365. [3] SMITH, R. L. (1992) The extremal index for a Markov chain. J. Appl. Prob. 29, 37-45.

Yours sincerely, GERARD HOOGHIEMSTRA LUDOLF E. MEESTER

Vakgroep SSOR Faculteit TWI Mekelweg 4 2628 CD Delft The Netherlands