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Abstract

On compact oriented differentiable manifolds, we define a well behaved Riemann type integral which
coincides with the Lebesgue integral on nonnegative functions, and such that the exterior derivative of
a differentiable (not necessarily continuously) exterior form is always integrable and the Stokes
formula holds.

1980 Mathematics subject classification (Amer. Math. Soc): primary 26 B 20, 58 C 35; secondary
26 A 39.

1. Introduction

The philosophical basis for the present work is a well established maxim: if we
can calculate the value of an integral of a function, then such a function ought to
be integrable. In the past, an apphcation of this maxim to the bounded conver-
gence theorem for the Riemann integral led to the Lebesgue integral, and an
apphcation to the one dimensional fundamental theorem of calculus led to the
Denjoy-Perron integral. More recently, J. Mawhin and the author (see [12], [13],
and [16], [17]) applied it to the divergence theorem, which is the local multidimen-
sional fundamental theorem of calculus. While the resulting integral is well
adapted to the local situation, it is coordinate bound and cannot be lifted to
manifolds. In this paper, we apply the maxim to the global fundamental theorem
of calculus, that is, to the Stokes theorem.
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144 Washek F. Pfeffer [2]

THEOREM. Let M be an oriented compact differentiable manifold with boundary
9M, and let w be a continuous exterior form on M which is differentiable in
M — dM. Then JaM « = JM dw whenever the integral on the right exists.

If w is continuously differentiable in M, then the Lebesgue integral JMdw
exists. However, in general, dw is not Lebesgue integrable even in dimension one.
On the other hand, the Lebesgue integral JdM w exists and its value depends only
on dw. In accordance with the maxim, under these circumstances the nonex-
istence of the Lebesgue integral JM dw is not a reflection of an inherent pathology
of dw, but rather a shortcoming of the Lebesgue integral. Indeed, we show that
there is a well behaved integral which coincides with the Lebesgue integral on
nonnegative functions, and for which the integral fM dw exists and has the correct
value.

Initially, we define the integral in an w-dimensional Euclidean space by
substantially modifying the basic idea of Henstock and Kurzweil (see [3] and [6]).
We integrate over sets from a family invariant with respect to diffeomorphisms
(to achieve the coordinate independence) and employ partitions satisfying a
strong Vitali condition (to prove the divergence theorem). As it is not possible to
satisfy the Vitali condition along the boundary of the integration domain, we use
only partitions which lie in the interior, and bridge the resulting gap by a suitable
continuity requirement imposed on the indefinite integral. Using standard tech-
niques, we lift the integral to differentiable manifolds, and obtain the Stokes
theorem from the divergence theorem by means of triangulations.

This approach is quite different from that employed in [4] and [5], and it yields
the Stokes theorem (Theorem 7.3) which is considerably more general.

The paper is divided into eight sections whose content is sufficiently indicated
by their titles.

2. Preliminaries

By R and R+ we denote the sets of all real and all positive real numbers,
respectively. All functions in this paper are real-valued, and often the same letter
is used to denote a function on a set A as well as its restriction to a set B c A.
The algebraic operations, partial order, and convergence among functions on the
same set are defined pointwise.

Throughout, m 3* 1 is a fixed integer, and Rm denotes the w-dimensional
Euclidean space equipped with the usual inner product x • y and the correspond-
ing norm |JC| = (x • x)1/2. The distance between a point x e Rm and a set
E c Rm is denoted by dist(x, E). If E c Rm, then E~, E°, E\ and d{E) denote,
respectively, the closure, interior, boundary, and diameter of E.

https://doi.org/10.1017/S1446788700029293 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029293


[3] Multidimensional fundamental theorem 145

For an integer k > 1, we denote by \ k the outer Lebesgue measure in R*. We
write X instead of \x, and | £ | instead of Xm(£) whenever E c Rm. Unless
specified otherwise, the words "outer measure", "measure", and "measurable", as
well as the expression "almost all", always refer to Xm.

In Section 3, we shall define a new Riemann type integral which will be
denoted by the usual integral sign / . Thus to avoid confusion, throughout, we
denote the Lebesgue integral by the sign (L)f.

For E c Rm and i\ > 0, we let U(E,-q) = {x e Rm:dist(x, £ ) < ? / } . We say
that a set E c Rm is, respectively, thin or slight if it is compact and %U(E, -q)\ =
O(TJ) or \U(e, TJ)| = o(ij) as i) approaches zero.

Clearly, each slight set is thin, and each thin set is of measure zero. Moreover,
the families of all thin and slight sets are closed with respect to finite unions, and
also with respect to intersections by compact sets. For heuristic purposes it is
convenient, though inaccurate, to think of thin and slight sets as compact
rectifiable pieces of (m - 1)- and (m - 2)-dimensional submanifolds of Rm,
respectively. More precisely, the (m - l)-dimensional upper Minkowski content of
a thin set is finite, and that of a slight set is zero (see [1, Section 3.2.37]).

A bounded subset of Rm whose boundary is thin is called admissible. In view of
the previous paragraph, the family J / of all admissible sets is a ring of measurable
subsets of Rm, and A e s# whenever A ~ is compact and A' is thin. For E c Rm,
we set rf(E)= {A <Etf:A c £}.

Let A G j / . By [9, Theorems 42, 16, and 18], on A' there is a unique finite
Borel measure aA, called the surface measure, and a o^-almost everywhere unique
unit Borel vector field n^, called the unit exterior normal field, such that

(L) / V -vd\m = (L)f v-nAdaA
JA JA-

for each vector field v = (flt..., fm) continuously differentiable in an open set
containing A "; here V • v = EJ1X 9/)/9x, is the divergence of v. It follows from
[9, Theorems 4 and 33] that the number ||v4|| = aA(A'), called the surface area of
A, is positive if and only if A° ¥= 0. Thus we can define the regularity r{A) of A
by setting r(A) = |^ | / r f (v i )P | | if A° # 0 , and r(A) = 0 if A° # 0 . This
notion of regularity controls both the shape and surface area of A.

The traditional shape indicator of a set E c Rm is the number r*(E) defined
by r*(E) = \E\/[d(E)]m if E contains at least two points, and r*{E) = 0
otherwise (see [19, Chapter IV, Section 2, p. 106]). For an admissible set A, the
relationship between r(A) and r*(A) takes a form of an isoperimetric inequality.

2.1. PROPOSITION. IfAfEs/, then [2r(A)]m < r*(A).

PROOF. Let A e s4 and A° # 0 . if At, i = 1 , . . . , m, is the projection of A° to
the hyperplane perpendicular to the ith coordinate axis, then it follows from [9,
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146 Washek F. Pfeffer [4J

Theorems 4 and 33] that 2Xm_1(>4,) < \\A\\. By [8],

1 m

tin — i i i

and hence

[2r(A)]m =

As r{A) = r*(A) = 0 if A° = 0 , the proposition is proved.

2.2. REMARK. If A is an interval, then ||^|| < 2w[^(^)]m"1, and we have
r*(A) < 2/M r(v4). On the other hand, setting

for w = 1,2,..., we obtain r*(^n) > l/2w1 / 2 and r(y*n) < l/2w.
A division of an admissible set .4 is a finite disjoint family S c ^ with

U ^ = -<4. An additive function in an admissible set A is a function /" on s/{A)
such that F(^) = T.DeS) F(D) for each division 3) of 4̂.

2.3. DEFINITION. An additive function F in an admissible set A is called
continuous whenever we can find a slight set SF c yl ~ so that the following
conditions are satisfied

(i) Given e > 0, there is an ij > 0 such that \F(B)\ < e for each B e
s/[A n t/(S,,, TJ)] with P | | < i).

(ii) Given e > 0 and a thin set T <z A~— SF, there is an TJ > 0 such that
\F(B)\ < e for each B e j/[vl n U(T, T?)] with | |5| | < 1/e.

The family of all continuous additive functions in an admissible set A is a real
vector space denoted by ^(A). If F e #(^4) and 5 e J^( /4) , then the restriction
G = F[ s/(B) belongs to ^(B); indeed, it suffices to let Sc = SFn B~.

2.4. PROPOSITION. If A ejtfandFe W(A), then F(B) = 0 for each B c A for
which B~ is thin.

PROOF. Let B c A be such that B~ is thin, and let e > 0. Then B e J / and
||5| | = 0. Hence there is an r\ > 0 such that |F[f if l{/(Spi | ) ] |<£. As
[5 — U(SF, TJ)]~ is a thin subset of A ~ disjoint from SF, we see that

\F[B-U(SF,r,)]\<e.

Thus \F(B)\ < 2e by the additivity of F, and the proposition follows.
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Let £ c R * A partition in £ is a set P = {(A1,x1),...,(Ap,xp)} where
Ax,..., Ap are disjoint admissible sets, xt e A~, and A~ c £ ° , / = 1 , . . . , p. If, in
addition, r(At) > e > 0 for / = 1,...,/>, then P is called an e-partition in £ .
Given 8 : £ -> R+, we say that 7* is 8-fine whenever d(A() < 8(xt), i = 1 , . . . ,p .
The family of all 8-fine e-partitions in £ is denoted by ^ ( £ , e; 8). If £ * c £ ,
8* < 8 t £* , and e* > e, then clearly 0>{E*, £*; 8*) c ^>(£, £; 8).

A half-open interval is an interval of the form Flj i^a; , bt) where at, bt G R and
a, < 6,, J = 1 , . . . , /M. The following existence result is sometimes referred to as
Cousin's lemma. For its proof, which is a simple compactness argument, and
some historical discussion we refer to [11].

2.5. PROPOSITION. Let E c Rm, 8 : £ -» R+, and let A be a half-open interval
with A~c E°. Then there is a 8-fine partition {(Av xx),... ,(Ap, xp)} in E such
that Uf_x Al; = A and each At is similar to A.

3. Definition and basic properties of the integral

We begin with the definition of integrability.

3.1. DEFINITION. Let / be a function on an admissible set A. We say that / is
integrable in A if there is a continuous additive function F in A satisfying the
following condition: we can find a thin set TF c A ~ so that given e > 0, there is a
8:A ^> R+such that

£ \f{xi)\A\-F{Ai)\<E
i-i

for each 8-fine e-partition {(Av xx),..., (Ap, xp)} in A - TF.
The family of all functions integrable in an admissible set A is denoted by

J{A).
Let A &sf and / e / ( / l ) . Any F G ^{A) satisfying the condition of Defini-

tion 3.1 is called an indefinite integral of / . If F is an indefinite integral of / and
B es/(A), then G = F\ sf(B) is an indefinite integral of ft B; indeed, it
suffices to let TG = TF n B~. In particular, we have the following proposition.

3.2. PROPOSITION. A function integrable in an admissible set A is integrable in
each admissible subset of A.

Our first goal is to show that each integrable function has only one indefinite
integral.
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148 Washek F. Pfeffer [6]

3.3. LEMMA. Let A e j / , feS(A), and let F1 and F2 be indefinite integrals off.
Then for each e > 0, there is a partition {{Ax, xx),..., {Ap, xp)} in A such that

£ f(Xi)\A,\- Fj{A) < s
1 = 1

for j = 1,2.

PROOF, (a) For n = 1,2,..., we denote by Jfn the family of all cubes
U1L1[ki2-",(ki + 1)2"") where k1,...,km are integers. Throughout this proof
j = 1,2. Let Tj = TF and S, = SF be thin and slight sets associated to Fj by
Definitions 3.1 and 2.3, respectively. Choose an e > 0 and let a =
min(e/4, l / 2 w 3 / 2 ) . In three steps we shall construct a set A 0 which is a finite
disjoint union of cubes, and for which A$<z [A - (7\ U T2)]~ and \Fj(A - Ao)\
< 3a.

(b) Let So = Sxn S2, and choose TJ0 SO that \Fj(B)\ < a for each B e
s/[A n U(S0, Vo)] with p | | < T,0. Set JTn,0 = {K e JTn: 50 n ^ " ^ 0 } and ^n>0

= UA"B>0. For / > 0, let /?(f) = \U(S0, t)\/t. If A:o is the number of cubes in Jfn0,
then

and hence

Since 50 is slight, we see that limn_>00||A"n 0|| = 0. By [14, Section 3], there is an
integer n0 such that 2""°w1/2 < i)0 and \\A n Kn_0|| < TJ0. Thus letting Ko = Kn0,
we have So c ^ and \Fj(A n AT0)| < a.

(c) Choose T)! > 0 so that |Fy(fi)| < a / 2 for each

with ||.fi 11 < TJX. Such a choice is clearly possible for y = 1; it is also possible for
y = 2 because 5X - K% is a thin subset of A~- S2. Analogously, choose TJ2 > 0
so that | ^ ( £ ) | < a/2 for each B e j / [ / l n C/(S2 - A"g, TJ2)] with | |5 | | < T;2. Let
S = 5X U Sj. Since Sj — K% are disjoint compact sets, there is a positive T)S <
min(r)1, T)2) such that U(S - K%, ijs) is a disjoint union of Uj = U(Sj - K$, -qs).
Now if B e jtf[A n f/(S - A:g,Tjs)] and ||B|| < TJS, then \\B n f/y|| < ||2?|| < TJ>(

and we have

|Fj(B) | < |Fj(B n f/J | + |Fj(B n f/2) | < a.

For n ^ «0, set

U e J C : 5 n / i r - ¥ = 0 and Ko n K = 0 } .
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[7] Multidimensional fundamental theorem 149

Arguing similarly as in (b), we find an integer ns > n0 such that 2~"sm1/2 < %
and \\A n Kn$ s\\ < i\s. Thus letting Ks = Kns s, we have S c ( ^ o n Ks)° and
\Fj(A n Ks)\< a.

(d) Since T = A' U 7\ U T2 - (Ko U A:s)° is a thin subset of A " - 5, there is
a positive i)r < 1 such that \Fj(B)\ < a for each B es/[A n U(T,-qT)] with

1/2 + 2m3/2y where

Find nT > ns so that 2""r/w1/2 < T/r, and set

JfT= {K<EJfnT:Tn K~± 0 and (K0U KS)HK= 0 }.

If # r = \JX~T, then J 4 i u r 1 u r 2 c ( ^ 0 U ^ U ^ r ) ° . Denoting by kT the
number of cubes in JTr, we have

kT2-nTm =\KT\ < | f / ( r ,2 -"^ 1 / 2 ) | < l—'mWy.

From this and [9, Theorem 9(c) and Lemma 36] we obtain

\\A n KT\\<Y.{\\A n K\\:K tJTT} ^\\A\\mV2 + lt{\\K\\:K ^JfT)

and hence \Fj(A n # r ) | < a. Now if Ao = A - (Ko U Ks U ATr), then A^ c
[̂ 4 - (rx U r2)]0 and ^ 0 = U{ /<: e Jfnr: K c ^ 0 }. Moreover,

\Fj(A - A0)\<\Fj(A H K0)\ + \Fj(A n Ks^ + ̂ A n KT)\< 3a.

(e) Find 8: A -» R+ so that

for each S-fine a-partition {(fi1; ^ J , . . . ,(Bq, yq)} in A - (7\ U T2). As v40 is a
finite disjoint union of cubes which are half-open intervals, it follows from
Proposition 2.5 that there is a S-fine partition P = {(Ax,JCX) , . . . , (Ap,xp)} in
A - (7\ U T2) such that ^ j , . . . , Ap are cubes and Uf_!^, = ̂ 40- The regularity
of a cube equals l/2w3/2, and so P is an a-partition by our choice of a. Thus

.l-Fj(A) I \fixd\A.\- FjiA^FjiA - AQ
l

< 4a < e.

3.4. PROPOSITION. All indefinite integrals of an integrable function are equal.

PROOF. Let A e s# and f ^J{A\ and assume that Fx and F2 are indefinite
integrals of / such that F^B) =h F2(B) for some B ̂ jtf(A). Since Fx \ sf(B)
and F2 \ s?(B) are indefinite integrals of / \ B,a direct application of Lemma 3.3
yields a contradiction.
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Let A G s/ and / eS(A). In view of Proposition 3.4, we can talk about the
indefinite integral of / denoted by / / . Its value at B G s/(A) is called the integral
of / over B denoted by JB f.

3.5. PROPOSITION. If A e J / , then S{A) is a linear space, and the map f' >-* jA f
is a nonnegative linear functional on

Lemma 3.3 shows that JAf>0 for each nonnegative function f &J(A). The
rest of the proposition follows directly from Definition 3.1.

3.6. PROPOSITION. Let)"be a function on A e i , and let 2 be a division of A. If
f G J(D) for each D &J, thenf^J(A) and fAf= I D E S / J .

PROOF. For D e 9, let FD = j(f\ D), and let TD = 7>o be a thin set
associated to FD by Definition 3.1. Setting

for each B e s?(A), it is easy to see that F e f(A). Choose e > 0, and denote
by k the number of elements in 3). Given D e Si, find a 8D: D -» R+ so that

for every {(^1; x,),..., (Ap, xp)} in ^(Z) - TD, e; 8fl). Let T = UOe@(Z)- U7D),
and for x G v4 set

8(JC) = min[8z,(x),dist(x,D" UTD)]

if x e D° - TD and D e 3, and S(x) = 1 otherwise. Now if P G
^ ( ^ - T, e; 8), then PD = {(B, x)&P: j e D ) belongs to 0>(D - TD, e; 8D)
for each D e ^ , and P is a disjoint union of the PD's. Consequently,

E |/(x)|s|-F(i?)|= E E l/
(B,x)ePD

and we see that F = / / . The proposition follows.

4. The relationship to the Lebesgue integral, and its consequences

If E c Rm is a measurable set, we denote by ̂ (E) the family of all functions /
on E for which the finite Lebesgue integral (L)JEfd\m exists. When no
misunderstanding is possible, we write (L)fEf instead of (L)JEfd\m.
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[9] Multidimensional fundamental theorem 151

4.1. PROPOSITION. IfAes/, then £f{A) c J(A) and JAf = (L)JAffor each

PROOF. Let f<=3C(A), and set F(B) = {L)jBf for each B (=jtf(A). As thin
sets are compact and of measure zero, it is easy to conclude from the absolute
continuity of the Lebesgue integral that f e ^{A). We now show that F = / / .

Given e > 0, there are functions g and h on A which are, respectively, upper
and lower semicontinuous, and such that g < / < h and {L)jA{h — g) < e. Find
8: A -* R+ so that g(y) < g(x) + e and h(y) > h(x) - e for each x, y e A
with \x - y\ < 8(x). Now let {(A^ Xj),... ,{Ap, xp)} be a 5-fine partition in A.
By the choice of 8,

j g - e\A,\ < g(*,)M,.| <f(xi)\A,\ < M*,MI

and since (L)jAi g < ^(/l;) < (L)jA h, we conclude

£ | / ( * , ) k l - F(A,) I < £ \(L)f (h-g) + e\At

Let A G J / , x e ,4", and let F be a function on J#(A). We say that F is
derivable at x if a finite Um[F(fin)/|5n|] exists for each sequence {Bn} in J</(^4)

such that x e fin", limd(5n) = 0, and inf /•(£„) > 0. If all these limits exist, then
they have the same value, which is denoted by F'(x) and called the derivative of
F at x. In view of Proposition 2.1, it is clear that for each x e A°, the existence of
the derivative F\x) implies the existence of the ordinary derivative of F at x
defined in [19, Chapter IV, Section 2, p. 106]; both derivatives have the same
value.

4.2. PROPOSITION. Let A £ ^ , / e J(A), and let F = ff. Then for almost all
x e A the function F is derivable at x and F\x) = f(x).

PROOF. Let T be a thin set associated to F by Definition 3.1, and let E be the
set of all x G A° — T such that either F is not derivable at x, or F'(x) # /(x).
Then given x G E, we can find an a(x) > 0 so that for each y8 > 0 there is a
closed set B &s/(A) with x G 5, J (5) < 0, /•(£) > a(x), and |[F(5)/|£|] -
/ (x ) | > a(x); for by Proposition 2.4, F(B~) = F(5) for each B (=si?(A) with
B~c A. Fix an integer n > 1, and let Fn = {x G £:a(x) > l / « ) . Choose a
positive e < 1/n, and find & 8: A -» /{+ such that

i-i
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for each {(^1,x1),...,(^4/,,xp)} in @{A - T,e;S). Let 38 be the family of aft
closed sets B G s/(A° - T) such that r(B) > e, d(B) < S(xB) for some xB G 5,
and | / ( J C B ) | 5 | - F{B)| > |B|/«. Using Proposition 2.1, it is easy to see that 98
covers En in the sense of Vitali. Thus by [19, Chapter IV, Theorem (3.1)], there
are disjoint sets Bv B2, . . . in 98 such that \En - 11°!,! Bt\ = 0. As
{(#!, xBi),..., {Bk, xBk)} belongs to &>(A - T, e; 8), we have

i=i i-i

for A: = 1,2,..., and consequently

As e can be arbitrarily small, |£n| = 0, and as E = U^=1£n, also |£ | = 0. Since
|/T U r | = 0, the proposition is proved.

4.3. COROLLARY. Each function integrable on an admissible set is measurable.

The corollary follows immediately from Proposition 4.2 and [19, Chapter IV,
Theorem (4.2)].

4.4. PROPOSITION. Let f be a function on an admissible set A. Then f belongs to
if and only if both f and \f\ belong to

PROOF. AS the converse is given by Proposition 4.1, assume that / and | / | are
integrable, and let gn = min(|/|,«), n = 1,2, Since \A\ < +oo, it follows
from Corollary 4.3 that gn G £f(A). By Propositions 4.1 and 3.5, we have
gn G J(A) and

(L)j\f\ = lim(L)jf gn = lim jT gn < jf | / | < + oo.

Thus / G <e(A) by Corollary 4.3.

4.5. COROLLARY. Let f be a function on an admissible set A. Then f = 0 almost
everywhere if and only iff G S(A) and jf = 0.

Indeed, if f &J{A) and / / = 0, it follows directly from Definition 3.1 that
| <=S(A) and / | / | = 0.
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4.6. COROLLARY. Let g, h, and/„, n = 1,2,..., be integrable on an admissible

set A, and let f — lim/n. Suppose that either of the following conditions holds:

(i) /„</„+! , n = 1,2,.... and Urn fA fn< + oo;

(ii) g < / B < A, n = 1,2,....

Indeed, in view of Propositions 3.5, 4.1, and 4.4, it suffices to apply the

monotone and dominated convergence theorems for the Lebesgue integral to the

sequences {/„ - / x } and {/„ - g}, respectively.

N O T E . If m > 2, then a countable union of slight sets need not be a thin set.

Thus it is unclear how to obtain Corollary 4.6 directly from Definition 3.1.

5. The divergence theorem

We say that sets A, B c R are X-equivalent if X[(A - B) U (B - A)] = 0. For
z = (Si, •••, L - i ) i n R m l and r in R, we write (z, t) instead of (f1; ...,Sm-i, ')•

Given E c Rm, we let Ez = {t 6 R:(z , /) G E) for each z e W~l, and we set

£ A = { Z G R I " " 1 : £ ' # 0 } " . I f i e < we denote by ô  the completion of the

surface measure o^.

We begin by summarizing some results of J. Mafik.

5.1. LEMMA. Let A e j / a«rf te nA = (vx,..., vm). There is a set A* c A A

?/ze following conditions are satisfied.

(ii) For each z e A*, there is an integer k(z) > 0 and real numbers a\ < b[<

• • • < ajt(r) < bz
k(z) such that Az and \}k^\(a), bj) are X-equivalent. In particular,

the points (z, aj) and (z, bj), j = 1 , . . . , k(z), belong to A'.

(iii) vm(z, a)) < 0 < vm(z, bj) for each z e A* and) = 1 , . . . , k(z).

(iv) Iff is a bounded (immeasurable function on A\ and

/•(*)- *E [/(',*;)-/(*.«;)]

/or eac/i z £ # , thenf* is Lebesgue integrable on A* and

fvmdaA.
A'
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In particular,

jf \m\A

where k denotes the function z >-» k(z).

PROOF. The existence of A* c A* which satisfies (i) and (ii) follows directly
from [9, Theorem 33]. Moreover,

by [9, Remark 2 to Theorem 18]. Using [9, Theorem 20], we see that (iv) is
satisfied whenever/ is a bounded Borel function on A'. In particular,

(L)f (signrm)*rfXm_1 = ( L ) / \vm\daA = (L)f 2kdXm.l.
JA* JA' JA*

Since (sign^)* < 2k in A*, replacing A* by {z e A* -.(signpm)*(z) = 2k(z)}
proves (iii). Now let / be a bounded function on A' which is zero aA-almost
everywhere. Then there is a nonnegative bounded Borel function g on A' which is
zero o^-almost everywhere, and for which | / | < g. By (iii), we have | /*| <
(g sign »>„,)*, and so

(L)j \f*\d\m_x<(L)f (gsign,'m)VXm_1 = ( L ) / g | r m | ^ = 0.
JA* JA* JA-

As the map / • - » / * is Unear, it is easy to see that (iv) holds in general.

5.2. PROPOSITION. Let A e ^ , and let B c A'be aA-measurable. Then aA(B) <

PROOF. Let nA = (vv..., vm), and let x be the characteristic function of B.
Then

aA(B)=(L)f XdoA= £ (L)f X"fdaA.
JA- , = 1

 JA-

In the notation of Lemma 5.1, fix a z e A* and observe that

7 = 1

If Un = U(B, 1/n), n = 1,2,..., then Uj contains intervals (a* - 1/w, ay
z + 1/n)

and (i>J — 1/n, £>y
z + 1/n) whenever \{z, aj) = 1 and x(̂ > ̂ /) = 1. respectively.

Thus

7 - 1
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for all sufficiently large n. It follows that 2(x»"m)*(z) < Uminfn_00 n\{U*), and
so by Lemma 5.1, (iv), the Fatou lemma and Fubini theorem,

2{L)( x»>doA = 2(L)j (x" m )*^ m _ 1 <(L) / liminf «X([/;) c/Xm_1
JA- JA* JA* n->ao

<liminf n(L)f X(Un
z)dXm_1 = Uminfn|[/J.

n —* oo •* A * n—*oo

From this the proposition follows by symmetry.

5.3. COROLLARY. If A e s/, then oA(S) = 0 for each slight set S c A.

5.4. LEMMA. Let A e s/, let S be a slight subset of A~, and let v be a bounded
vector field on A~ which is continuous in A~ — S. Then v \ B' is a B-measurable for
each B&s/(A), and the map B -* (L)JBv • nBdaB is a continuous additive
function in A.

PROOF. The aB-measurability of v [ B' for each B £s/(A) follows from
Corollary 5.3. Thus letting F(B) = (L)fBv • nBdaB for B es/(A), we see from
[9, Remark 2 to Theorem 14] that F is an additive function in A. Furthermore, if
a = sup{|i>(.x)|: x(=A~} then \F(B)\ < a | | 5 | | for each B

Let T c A ~- S be a thin set and let

Choose a positive e < l /2 /?m, and find a positive TJ0 < 1 so that C = [U(T, T) 0 ) ]~

does not meet S. Then v is uniformly continuous in A "Pi C, and hence there is a
positive h < T J O / W 1 / 2 such that \v(x) — v(y)\ < e2/2m1/2 for each x, y e A~C\
C with \x - y\< hml/2. Among all cubes 11,1! [k,h, (&, + \)h] where k1,...,km

are integers, let Kv..., Kn be those which meet T. Then

nhm =

and so

n

£ \\Kj\\ = n(2mhm-1) < 20m3/2.
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Moreover,
U(T,7j) c

c U(T, T)0) and r
and for j = \,...,n

Find TJ > 0 so that
select an Xjj

n t/(r,Tj)] and p | | < 1/e, then by [9, Theorem 36],

A,, n 5". Now if

7 - 1

7 - 1

. 2 n

2m1/2

daBnK(x)

7 - 1

It follows that F is continuous.
Throughout this paper, the word differentiable is used in the usual sense (see,

e.g. [18, Definition 9.11]). Thus differentiability of a function implies its continu-
ity and the existence of partial derivatives which need not be continuous. The /th
partial derivative of a differentiable function / is denoted by 3,/, / = 1,.. . , m. If
v = ( / j , . . . , fm) is a vector field on a set E c Rm, we call a divergence of t> any
function g on £ such that g(x) — £,1i9,/(*) for each x e E° at which v is
differentiable. Each divergence of a vector field t> is denoted by V • v.

5.5. LEMMA. Let v be a bounded vector field in an open set U c Rm, and let
x G U. Suppose that v is differentiable at x, and that v \ B' is aB-measurable for
each B e ^ with B~a U. Then given e > 0, there is a S > 0 such that

V • v(x)\B\-(L)j vnBdal <e\B\

for each B e ^ with B~a U, x e B~, d(B) < 8, andr(B) > e.

PROOF. It suffices to prove the lemma for v = (0,.. . , 0, / ) . Let x = (£1(.. . , £m),
and let y = (T/1; . . . , i\m) be in U. By our assumption, there is a function a in U
such that

f(y)-fix) = I a , / (*)( i»,- i , )+\y- x\a(y)
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and lim xa(y) = 0. Given e > 0, choose a S > 0 so that \a(y)\ < e2 whenever
\y - x\< S. Select 5 e j / with B~c U, x e 5", rf(#) < 5, and
the notation of Lemma 5.1, for z e B* and 7 = 1,.. . , k(z) we have

e. In

^
1 - 1

m - 1

= dmf(x)(bj - a]) +\(z,bj) - x\a(z,b*) -\{z,a>) - x\a(z,a<),

and hence

\f*(z)-dmf(x)\(B')\<2k(z]

By Lemma 5.1(iv) and the Fubini theorem, we obtain

V • v{x)\B\-(L)j v • nBdaB = dmf(x)\B\

f*{z)d\m_l{z)9mf(x)(L)f A(^
Jg*

(L)f Jdmf(x)\(B^)-f*(z)\dXm_1(z)

\vm\doB

Next we prove the divergence theorem.

e\B\.

5.6. THEOREM. Let A e J / , a«</ let C, S, and T be, respectively, a countable,
slight, and thin subset of A~. Let v be a bounded vector field on A~ which is
continuous in A~— S anddifferentiable in A° — C U T. Then v f A'is a^-measur-
able, V • v is integrable in A, and fAV • v = (L)fAv • nA daA.

PROOF. By Lemma 5.4, v \ B' is o^-measurable for each B es/(A), and if
F(B) = (L)fBv • nBdaB for B &s/(A), then F is a continuous additive func-
tion in A. Choose an e > 0, and enumerate C - S as {zv z2,. . . }. For each zn
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find a positive

so that \v(x) - v(zn)\ < 2-"-2e2 whenever x e A~ and \x - zn\ < S(zn). If
B <= s/(A), zn G B~, d = d(B) < 8(zn), and r(B) > e, then

\V -v(zn)\B\-F(B)\

< \ v - v ( z a ) \ . \ B \ + ( L ) f [ v ( x ) - v ( z n ) ] - n B t

l-n-2

Given x e ^° - C U 71, use Lemma 5.5 to find a S(x) > 0 such that
|V • v(x)\B\ - F(B)\ < e\B\/2(\A\ + 1) for each B e jf(A) with x e 5", rf(fi)
< 5(x), and r(fi) > e. Finally, set S(x) = 1 whenever x&A- [(A° -CUT)
U (C - S)]. Now let { (^^ x x ) , . . . , ( ^ , x^)} be in 9>(A - SU T,e; S). Then
each JC,., / = 1 , . . . , p, belongs to (A - S U 7)° = A° - S U T, and hence either
to C - 5 or to A° - C U T. It follows that

Since S U I is a thin set, F = / V • v and the theorem is proved.
Letting C = S = T = 0 i n Theorem 5.6 yields the following corollary.

5.7. COROLLARY. Let A e i , and let v be a continuous vector field in A ~ which
is differentiable in A°. Then V • v is integrable in A and jAV • v = (L)jA- v •
"A daA-

The estimates in the proof of Theorem 5.5 suggest that the boundedness of the
vector field v may not be essential. Specifically, it appears that at countably many
points z e Z~ a mere growth condition such as v(x) = o(\x — z\l~m) when x
approaches z should be sufficient (see [17, Theorem 5.4]). However, the next
example shows that such a generalization is not possible for the integral defined
in this paper (see Remark 7.5).

5.8. EXAMPLE. Let x0 = (0,0), and set v(x0) = x0 and v(x) =
X\X\'3/2COS'7T\X\-1/2 for each x e R2 - {x0}. Then o is a vector field in R2
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which is continuously differentiable in R2 - {x0}, and \v(x) — v(xQ)\ =
O(\x - xo\~

l/2) as x approaches x0. If Ak = {x e R2:(2A; + I ) " 2 < \x\ <
(lk)~2}, k = 1 ,2 , . . . , then it is easy to see that A = U f=1 Ak belongs to j / . For
x e R2 — { x 0 } , we have

V • v(x) = | | X | - 3 |

Using the polar coordinates, we see that the finite integral

exists, and that

j \x\-2sinv\x\-1/2d\2(x) = +oo.

Since sin7r|;c|~1/2 > 0 for each x e A, it follows from Propositions 3.5 and 4.4
that jA V • v does not exist. An easy calculation also reveals that (L)fA- v •

»AdaA = +00.

6. Change of variable

Let E c Rm and $ : E -* Rm. We say that $ is a regular map of £ if it can be
extended to a C^diffeomorphism (also denoted by O) of an open set ( / c R ™
containing E~. For a regular map $ , we denote by de tO the determinant of its
Jacobi matrix. If $ is regular, then $ and det<& are defined uniquely in E~ and
(E°)~, respectively, and they both extend continuously to a neighborhood of E~.

• 6.1. LEMMA. Let $ be a regular map of E c Rm. / / E is, respectively, thin or
slight, then so is •&(£).

PROOF. Let E be compact. There is an open set ( / c R " containing E, and
positive numbers a and /} such that \x - y\ < a\$(x) - $(y)\ for each x, y e U
and |$(.B)| < P\B\ for each B c U. Since $ ( £ ) is a compact subset of the open
set $(!/), there is an TJ0 > 0 with £/($(£), ij0)

 c ®(U)- Now if 0 < TJ < TJ0, then
U(Q(E),ri) c $[(/(£,OTJ)] and consequently |£ / ($ (£ ) ,T) ) | < j8|t/(£,arj)|. Thus
as TJ approaches zero, we have |l/(<&(£), TJ) | < /}0(aTj)or |1 / ($ (£) ,TJ ) | < /io(a-q)
according to whether E is thin or slight, respectively. The lemma follows.
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6.2. COROLLARY. / / $ is a regular map of an admissible set A, then <b(A) is 
admissible. 

Indeed, since [$(^4)]' = 0(>4*). 

6.3. THEOREM. Let 0 be a regular map of an admissible set A, and let f be an 
integrable function in $(A). Then / • $ • |det<&| is integrable in A and jAf°<b • 
|det<D| = fnA)f. 

PROOF. There is an open set t / c R " containing A ~ and positive numbers a, B, 
/?*, and Y such that the following conditions are satisfied: 

(i)y>l and B*/ay < 1 /2 ; 
(ii) \<&(x) - ®(y)\ < a\x - y\ for each x, y & U; 
(iii) B*\B\ < \Q(B)\ < B\B\ for each B c U; 
(iv) \\Q(B)\\ < y\\B\\ for each B<=J*(A). 

Here condition (iv) follows from [9, Theorem 52]. Let F = ff, and let TF and SF 

be the thin and slight sets associated to F by Definitions 3.1 and 2.3, respectively. 
Applying Lemma 6.1 to we see that the sets T = <b~l(TF) and S = ®~\SF) 
are thin and slight subsets of A ~, respectively. We define an additive function G 
in A by setting G(B) = F[$(B)] for each B <= s/(A). 

Choose e s > 0, and find an i j s > 0 so that \F(C)\ < es whenever C e 
s/[<b(A) n U(SF, T)s)] and ||C|| < i)s. Letting T;£ = rj s/max(a, y) and using (ii) 
and (iv), it is easy to verify that |G (5) | < es for each B e st\A n U(S, i)£)] with 

< TJ£. Now let E c A~— S be a thin set, and let E E > 0. By Lemma 6.1, 
$ ( £ ) is a thin subset of [<J>(>1)]~- SF, and hence there is an i\E > 0 such that 
\F(C)\ < eE/y for each C G i [ $ ( ^ ) n £/($(£), « T ) £ ) ] with ||C|| < y / e £ . From 
this, (i), (ii), and (iv) it is easy to see that \G(B)\ < eE for each B e 
s/[A n U(E, r)E)] with \\B\\ < l/eE. It follows that G is continuous, and we 
show next that G = j f ° $ • |det $|. 

Choose e > 0, and for each x e A find T / ( X ) > 0 so that 

| | t W H d e , * M H f i l l < 2 ( / W ^ 1 ) ( M | + 1 ) 

for each measurable 5 c ^ with I G B " and ^(.B) < r\{x). This is possible, for 
det3> is continuous and |0(B) | = (Z,)/ B |det 0|. Letting e* = eB*/ay, there is a 
8*:<&(A) R+ such that Ef = 1 | / ( ^ , ) |C , | - F(C,) | < e* for each 
{ ( d , - - - , (C„, / , ) } in - TF, e*; 8*). Now set 8(x) = 
min(r)(x), 5*[<J>(jc)]/a) for each x & A , and choose a partition 
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{(Bl,xl),...,(Bp,xp)} in 0>{A - T,e;8). If C, = *(B,) and y, = *(*,.), i =
1,. . . , p, then {(Q, ^)> • • •,(C,,^)} belongs to &(9(A) - TF, e*; «•); for 7> =
$ ( J ) , d(Ct) < «/(/?,) < a«(*,) < «*(>>), and r(C,) > (B*/«i)r{B,) > e*, i =
l,...,p.As d(Bt) < i)(x,) for i = 1,. . . , p, we have

i\f(y.)\c,\-F(c,)\

< • -

Since e* < e/2 by (i), the theorem is proved.

7. Integration on manifolds and the Stokes theorem

A certain familiarity with manifolds and exterior forms is assumed in this
section. For the notation and terminology, we refer to [20] and [2].

Throughout, Rm and R"1"1 are oriented by the standard volume elements
Hm = d£x A • • • A d£m and /i"1"1 = d£x A • • • A d£m_l, respectively. By a mani-
fold we mean a paracompact C1 manifold M with boundary 3M, which may be
empty. If a manifold M is oriented, then 3Af is always given the induced
orientation. For a subset £ of a manifold M, we give the symbols E~, E°, and
E' the obvious meaning, and we let dE = E' U(E~C\ dM).

Let Af be an w-dimensional manifold. We say that E c M is an elementary
admissible set if there is a chart (U, 0 ) such that £ " c ( / and $ ( £ ) e sf. Using
Corollary 6.2, it is easy to show that the family SM of all elementary admissible
subsets of M is closed with respect to differences. A finite union of elements of
SM is called an admissible subset of M. Slight and thin subsets of M are defined
similarly. The family s/M of all admissible subsets of Af is a ring which contains
all compact submanifolds of M. It is not difficult to see that A es/M if and
only if A ~ is compact and dA is a thin subset of M.

Let A be an admissible subset of an oriented manifold M, and let 0 be an
m-form on A. If A e SM, then there is a positively oriented chart (U, 4>) with
A~a U, and a unique function g on 4>(^) such that ( O 1 ) * ^ = gjum. We let
//«^ =

 JQ<.A) 8 whenever the integral on the right exists. In general, A is a disjoint
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union of elementary admissible sets Ax,...,Ak, and we let jA6 = Ef_j fAi6
whenever the integrals on the right exist. It follows from Theorem 6.3 and
Proposition 3.6 that the value of jA 6 does not depend on the choice of (U, $ ) and
Ax,...,Ak. We say that 6 is integrable in A whenever fA 6 is defined.

Let N be an oriented (m — l)-dimensional manifold. In complete analogy to
the previous paragraphs, we define families J(N and JVN of measurable and
null subsets of N, respectively, and (L)fAu for a bounded J(N-measurable
(m — l)-form « on A e J(N. We note that according to our definition the family
J(N is a ring, which becomes a a-algebra whenever N is compact. Similarly, the
family JVN is an ideal in JtN, which becomes a o-ideal whenever N is compact.
We omit further details as this is a well-known process of Lebesgue integration on
manifolds.

Let M be an w-dimensional manifold, and let u be an (m — l)-form on a set
E c M. We denote by du any m-form on E such that du(x) is the exterior
derivative of u at each x e E° at which w is differentiable.

For k = m — 1, m, let

rt f t ) e R » : £ /,. < 1 and t, > 0, i = 1, . . . , A: j .

To simplify the notation, we write /x and A instead of nm and Am, respectively.
We define maps e,: R m - 1 -» Rm by setting

( m - l

1 ~ Z^ i»> »i> • • • > i m -

and

for y = 1, . . . , m. If A7 = e/A"1"1), then A' = UJlo A,. Let « 0 =
( l / w 1 / 2 , . . . , l / w 1 / 2 ) , and for ; = 1 , . . . , m, let n, = (0 , . . . , - 1 , . . . , 0) where -1
is the y th coordinate. Clearly A e j / , and using Lemma 5.1 and the symmetry of
A, it is not difficult to see that nA(x) = ny for aA-almost all x e A ,̂ j = 0 , . . . , m.

Given a vector field v on a set E c Rm, we define an (m - l)-form nv on E
by setting (nvix)\v1,...,vm_1) = (p\v(x),«i,...,um_i> for each x e £ and
each « ! , . . . , um_! in Rm. If v = (a^,..., am), then

i - l
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where d£x A . . . d£. ... Adi-m stands for d£ 1 A . . . Ad£i_1 A d£i+1 A ... Ad£m.

Thus for each (w - l)-form 10 on £ c R* there is a unique vector field o o n £
such that « = /*„. Clearly, a = fiv is, respectively, bounded, continuous, or
differentiable if and only if v is.

7.1. LEMMA. Let n be a unit vector in W, and let N = {x e R"1: x • n = 0}. / /
v e Rm, then pv = (v n)(in on N.

PROOF. Let n = (vl,...,vm)and v = (a1,...,am).On N, we have LJ11 v,^ = 0,
and by symmetry, we may assume that vl # 0. Then

' • -2 \ y = 2

rf£2 A ... Ad£m + £ ( - 1 ) ' - ^ ^ , A
i'-2 1

v • n

and similarly, pn = (1/»'1) d£2 A . . . A J | m . The lemma follows.
Throughout, we orient the linear submanifold Nj = e7(Rm~l) of Rm by the form

Hn,, j = 0 , . . . , m.

7.2. LEMMA. Let C, S, and T be, respectively, a countable, slight, and thin
subset of A, and let u be a bounded (m - \)-form on A which is continuous in
A - S and differentiable in A° - C U T. Then u \ A, is MN'-measurable for
j = 0 , . . . , m, du is integrable in A, and

f du= £ (L)f «.
^ ; _ 0

 J*J

PROOF. Let w = \iv where v = ( a ^ . . . , am). Then

) = £ (-l)'+V/(*)«/ A ^ A ...3i,,.. A^m = [ v «(*)]/i

for each x G A° - C U T. It follows from Theorem 5.6 that v \ A" is aA-measur-
able, du is integrable in A, and f&du = (L)/A- v • nAdaA.
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It is easy to check that e$nno = mx/2\>.m~x and ejf/i = (-l)^tm~1 for j =
1 , . . . , m. Thus (A^.,(-lyej1) is a positively oriented chart of A ,̂ j = 0 , . . . , m. If
X is a characteristic function of Ao, then in the notation of Lemma 5.1, we have

a.•?!,...,£m-i,l- E

It follows from Lemma 5.1(iv) that v°e0 is Xm_1-measurable in A"1"1, and
similarly we establish that so are v ° ex, ...,v ° em. Thus w \ A; is ^ ^-measurable
for 7 = 0 , . . . , m.

By Lemma 7.1,

[ w ( * ) ] | K i , . . . , H m - i ) = (liv(x)\ej*u1,...,eJtUm_1)

= [o(x)-nj\ -(nHj\ejmu1,...,ej,um_1

for each x e Ay, y = 0 , . . . , m, and each u 1 ; . . . , um_1 in R"1"1. Thus on Am-1, we
have ejw = m1/2(v ° e0 • M0)ju

m"1, and (-l)Jefa = (v ° ey • «y)ju
m"1 for y =

1 , . . . , m. Consequently,
m m

L ( L ) / a, = m ^ l L ) / v°eo-nQd\m_l+ I (L) f « • £ , • « / ^ » , - i

= E
If «A = ( p j , . . . , j»m), then by Lemma 5.1(iv),

(L) f , ( a m ° e 0 - « m ° £
m ) ^ m - l

flmfi- E ^
- ( L ) / am(z,0)^m_x

( m

r i , . - - , L - i , i - E

m-\

A*

, amVmd°b.\
A'
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here A* and (am)* are the symbols introduced in Lemma 5.1. Now by symmetry,

(L)f (aiOe0- aioe,)d\m_1 = (L) [ aiV,da^f
for / = 1 , . . . , m - 1. It follows that

and the lemma is proved.
Now we can prove the Stokes theorem.

7.3. THEOREM. Let M be an m-dimensional compact oriented manifold, and let C,
S, and T be, respectively, a countable, slight and thin subset of M. Let w be a
bounded (w — \)-form on M which is continuous in M - S and differentiable in
M - (dM U C U T). Then u f dM is J?dM'-measurable, du is integrable in M,
and JMdu = (L)f3Mu.

PROOF. By [21, Chapter IV, Theorem 12A], the manifold M has a finite C1

triangulation 5". For each A e 9~, there is a positively oriented chart (UA,$A)
such that A <z UA and <&A(A) = A. Given i e 5 and j: = 0 , . . . , m, we denote
by Aj the (w - l)-dimensional submanifold $^(A°) of M oriented by the form
Oj7in . In particular, if Aj c 3M the the orientation of Aj is induced by that of
dM. If A G 9~, then^ is an elementary admissible set, and it follows from
Lemma 7.2 that « \ A} is Jl^-measurable, du is integrable in A, and

m m

fdu-f {*?)•*<> = / d(*?yo = I (L)f ($;1)*w = E (i.)/ «.

If 4̂ and B are in ^" and Oyj'
1(Ay-) = Og^A,) for some integers y and /', then

(L)fA u = -(L)jBu; for the oriented manifolds Aj and Bt have opposite
orientations. Since M = U^" and 3^ / = U{A~ :A e y , Aj c dM}, we see that
du is integrable in M and w f 3Af is ^#3A/-measurable. As the integrals of du
and u vanish on the overlaps, we have

f « =

and the theorem is proved.
Letting C — S = T = 0 i n Theorem 7.3, we obtain the following corollary.

7.4. COROLLARY. Let M be an m-dimensional compact oriented manifold, and let
u be a continuous (m - \)-form on M which is differentiable in M - dM. Then du
is integrable in M and jMdu = (L)/9M<o.
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7.5. REMARK. At this point it appears appropriate to mention that our choice of
admissible sets is only one of many. For example, replacing j / by a smaller
family of all diffeomorphic images of simplices or convex linear cells, leads to an
integration process very similar to ours. Whether there is an optimal family of
admissible sets is unclear.

8. The one-dimensional case

Throughout this section, we assume that m = 1. Our aim is to compare the
integral of Definition 3.1 to the classical Denjoy-Perron integral (see [19, Chapter
VI, Section 6, and Chapter VIII]), or equivalently to the Henstock-Kurzweil
integral defined in [10]. For a simple proof of the fact that the Denjoy-Perron and
Henstock-Kurzweil integrals are indeed equivalent we refer to [7] or [15, Appen-
dix B].

8.1. LEMMA. Slight sets are empty, and thin sets are finite.

PROOF. The first part of the lemma is obvious, because \U(E, TJ)| > 2TJ for each
nonempty set E c R and each ij > 0. Let E c R be infinite, and let {x1,x2,..-}
be an infinite sequence of distinct points from E. Given an integer n > 1, find
T) > 0 so that 2TJ < \xi - x,| for all distinct i, j = 1 , . . . , n. Then \U(E, ?))| > 2«rj,
and it follows that E is not thin.

8.2. COROLLARY. Modulo finite sets, each admissible set is a finite disjoint union
of nondegenerate compact intervals.

For A, B c /?, we write A ~ B whenever the symmetric difference {A - B)U
(B - A) is finite.

Let A G jtf. By Corollary 8.2, there is an integer k > 0 and real numbers
ax < b1 < • • • < ak< bk such that A ~ Uf=1(a,, bt). It follows from Lemma 5.1
that aA is the counting measure concentrated on {al,...,ak,b1,...,bk}, and that
nA(bi) = -n^Oj) = 1 for / = 1 , . . . , k. If F is a function on A\ then extending
the notation of Lemma 5.1, we let F*(A) = Ef.JFCfe,) - F(a,)]. As F is also a
vector field on A\ we have F*(A) = (L)JAF • nA daA. Now if F is a function on
A ~, then the map F* given by B >-* F*(B) for B e s/(A) is an additive function
in A. Moreover, F* is continuous if and only if F is; for the continuity of F*
clearly implies that of F, and the converse follows from Lemma 5.4.

If / is an integrable function in [a, b], we write / / / instead of f[a b]f. From
Theorem 5.6, we obtain immediately the following proposition.
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8.3. PROPOSITION. Let f and F be functions on [a, b] such that F is continuous
and F'(x) = f(x) for all but countably many x e (a,b). Then f is integrable in
[a,b]andJa

bf=F(b)-F(a).

Next we show that the integral is closed with respect to the formation of
improper integrals.

8.4. PROPOSITION. Let f be a function on [a,b] which is integrable in [a,x] for
each x e [a, b), and let a finite lim^.,,,. / / / = / exist. Then f is integrable in
[a,b]andfbf=I.

PROOF. If F(x) = j b / for x e [a, b) and F(b) = I, then F is continuous in
[a,b], and by Lemma 5.4, so is F*. Choose an e > 0 and a sequence {bn} such
that a — bl < b2 < • • • < b and limZ>n = b. Now F* = / / in each [bn, bn + 1],
n = 1,2, By extending the sequence {bn}, we may assume that {bn,bn+1} is a
thin subset of [bn, bn+l] associated to F* by Definition 3.1. Choose an e > 0, and
for fi = 1,2,..., find 8n:[bn,bn+1] -» R+ so that T.U\f(yi)\B,\ - F*(B,)\ <
e/2"+1 for each {(Bv yx),.. .,(Bq, yq)} in 0><[bn, bn+1], e; Sn). There is a S: [a, b]
-* R+ such that for n = 1,2,... the following conditions are satisfied:

(i) S(x) = min(8n(x), x - bn, bn+l - x) for each x e (bn, bn+1);
(ii) \f(bn)\8{bn) < e/3 • 2n+1, and \F*(B)\ < e/3 • 2"+1 for each admissible

set B c [fl, 6] n £/[{*>„}, «(&„)] with | |5| | < 1/e.
Let P={(A1,xl),...,(Ap,xp)} be in ^ ( [ a , H e ; 5 ) . By (i), we see that

{(Alt x,) e P: x, e (6a, ftn+1)} belongs to ^([6n, 6B+1], e; «„), « = 1,2,.... Since

we obtain from (ii) that \f(x,)\Ai\ - F * ( ^ , ) | < e /3 • 2" whenever x, = &„ for
some n = 2 , 3 , . . . ; of course, no xt equals bx = a. As the map / -» xt is at most
three-to-one, we have

= E
n = 2

oo

and the proposition is proved.
The Denjoy-Perron integral over [a, b] of a Denjoy-Perron integrable function /

in [a, b] is denoted by (DP)ja
bf.
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8.5. PROPOSITION. If f is an integrable function in [a, b], then f is Denjoy-Perron
integrable in [a, b] and (DP)tf f = /„* / .

PROOF. Let / be an integrable function in [a, b]. We may assume that {a, b) is
a thin set TF associated to F = / / by Definition 3.1; for if TF c {zo,...,za}
where a = z0 < • • • < zn = b, we can repeat the argument for each interval
[zi_l,zi], i = l,...,n. Given e > 0, there is a 8:[a, fc]-> R+ satisfying the
following conditions:

(i) 8(x) < min(x - a, b — x) for each x e (a, b);
(ii) 8(a) = 8(b) = T, where max(|/(a)|, \f(b)\) < e/8r,;
(iii) \F(B)\ < e/8 for each admissible set B c [a, b] n U({a, b},ri) with

(iv) Ef=1 | /(x,) |^. | - F(^,) | < e/2 for each {(A,, x,),... ,(Ap, xp)} in

Now let a — t0 < • • • < tk = b and xl,...,xk be such that ti_l < xt < /, and

tt - ti_l < 8(xi), i = l,...,k. Set At = [f,_x, tt) for i = 1 , . . . , k - 1, and ^ =

[**-i>'*l- By (i), x t = a, xk = b, and { ( J 4 2 > X I X • - • » ( ^ * - I > * & - I ) } belongs to

a, i ] , 1 /2 ; 8). Thus by (ii)-(iv), we have

if(x,)(t, -t.-J-fffb- <\M\

+ \F(A2)\ +

and the proposition follows from the aforementioned equivalence of the
Henstock-Kurzweil and Denjoy-Perron integrals.

The next example shows that the converse of Proposition 8.5 is false. In view of
Propositions 4.1, 8.3, and 8.4, this is somewhat surprising.

8.6. EXAMPLE. If J = (a, b) c R is nonempty, let

•/" = \a + 2 " | . / 1 , a + 2" I^D* Jn- = (" + 2 " l-^l, a + 2 " |y|)>
n = 1,2,. . . . For x e R, set fj(x) = 22"/n if x e / ^ , / 7 (x) = 2 2 " " 1 / " i f x e

7 " , and /y(x) = 0 otherwise. Since jj»fj= -jj-_fj = \J\/n, n = 1,2,..., it
follows from Proposition 8.4 that fj is integrable in J with /a

6/y = 0, and that

sup

Let D be the Cantor ternary set in [0,1], and let £ be the collection of all
components of [0,1] - D. Letting / = T.jeJ,fj, it is easy to see from [19, Chapter
VIII, Theorem (5.1)] that / is Denjoy-Perron integrable in [0,1] with (DP) ft f =
0. We show next that the integral /Q1 / does not exist.
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Proceeding towards contradiction, suppose that / is integrable in [0,1], and
choose a S : [0,1] -» R+. Using the Baire category theorem in D, we find an open
set U c R with D O £/ # 0 , and an TJ > 0 such that the set E = {x e D n
f/:5(x) > TJ} is dense in Z) Pi t/. Select a / = (a, b) in , / with J~c U, and
construct a sequence {xn} in £ so that x1 < x2 < • • • < a, and a — xn< 2~2n\J\
for « = 1,2,.... If An = J"+ U {*„}, then p j = 2, MJ = 2~2"\J\, and J ( ^ J
< 3 • 2'2n\J\, n = 1,2, There is an nQ with d(AnJ < rj, and we see that
{(Ano, xj,..., (Ano+p, xno+p)} belongs to 0>([0,1], 1/6; °TJ) for each /> = 0 , 1 , . . . .
Since thin sets are finite and

"o+P

the contradiction follows.

"o+P . "o+/>

+
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