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Nuij Type Pencils of Hyperbolic
Polynomials

Krzysztof Kurdyka and Laurentiu Paunescu

Abstract. Nuij’s theorem states that if a polynomial p € R[z] is hyperbolic (i.e., has only real roots),

then p+sp’ is also hyperbolic for any s € R. We study other perturbations of hyperbolic polynomials

of the form pa(z,s) := p(z) + Z‘If:l aps*p(¥) (2). We give a full characterization of those a =

(a1,...,a4) € RY for which p,(z,s) is a pencil of hyperbolic polynomials. We also give a full
characterization of those a = (a1,...,a4) € RY for which the associated families Pa(z,s) admit
universal determinantal representations. In fact, we show that all these sequences come from special
symmetric Toeplitz matrices.

1 Introduction

Hyperbolic polynomials emerged from PDE’s (¢f. Garding [2]), and they now appear
in various branches of mathematics; see for instance an excellent survey of Peman-
tle [8] for applications in combinatorics. In real algebraic geometry many activities
concern hyperbolic polynomials and their determinantal representations. Vinnikov’s
survey [11] is a good source on recent developments in this subject. The goal of this
paper is a study of 1-parameter families of hyperbolic polynomials and their universal
determinantal representations. Recall that a polynomial p € R[z] is called hyper-
bolic if all its roots are real. Clearly any monic hyperbolic polynomial of degree d is a
characteristic polynomial of a symmetric d x d matrix. First, we recall the following
theorem proved by W. Nuij [7].

Theorem 1.1  Let p € R[z] be a hyperbolic polynomial; then p + sp’ is hyperbolic for
anys € R.

We give below a proof of this result, based on the existence of determinantal rep-
resentation of the family of the polynomials p + sp’, s € R. In fact, we state and prove
a generalization of Nuij’s result. To this end, we propose the following definition.
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Definition 1.2 We say that a = (ay,...,a) € R? is a Nuij sequence if for any
hyperbolic polynomial p of degree d, the polynomial

d
(11) Pa(z,s) = p(z) + Y aps* p®)(2) e R[z],
k=1

is hyperbolic for any s € R. We denote by N; the set of all Nuij sequences in R.

Note that by Theorem 1.1, a = (1,0, ..., 0) is a Nuij sequence for any d e N, d > L.
On the other hand, repeated application of Theorem 1.1 also produces Nuij sequences;
for instance, we have

p+sp +s(p+sp’) =p+2sp’ +s*p”.
Hence, (2,1,0,...,0) isa Nuij sequence forany d € N, d > 2. In Section 3 we shall see,
however, that there is an essential difference between those two families, with respect
to their determinantal representations.
Surprisingly, the set N; has a nice explicit description.

Theorem A A sequence a = (ay,...,a;) € RY is a Nuij sequence if and only if the
polynomial
d d A
(1.2) ga(z) =29 + > ar(z) 0 = 27 4 > ax 24k
k=1 1 (d—k)!
is hyperbolic.
In other words, the theorem states that to check that a given a = (ay,...,a,4) € R?

is a Nuij sequence, it is enough to check hyperbolicity of p,(z,s) only for p(z) = 2.
The proof is given in Section 2; it is based on a deep result of Borcea and Brandén [1]
which gives a characterization of linear maps (on the space of polynomials) preserving
hyperbolic polynomials. A nice exposition of the results of Borcea and Brindén is
given in Wagner’s paper [12].

The second part, developed in Section 3, concerns universal determinantal repre-
sentation of some Nuij sequences.

Definition 1.3 Wesaythata = (ay,...,ay) € Ng c RY admits a universal determi-
nantal representation if there exists a symmetric matrix A, such that for any hyper-
bolic polynomial p of degree d, we have p,(z,s) = det(zI + D + sA,), where D is a
diagonal matrix whose characteristic polynomial is equal to p = p,(z,0). The matrix

A, will be referred to as a matrix associated with the sequence a = (ay,...,a4). We
denote by UNy the set of all Nuij sequences in R that admit universal determinantal
representations.

Recall that a square matrix is Toeplitz if all parallels to the principal diagonal are
constant. We say that a symmetric Toeplitz matrix is special if all entries outside the
principal diagonal are equal to some 8 € R, and of course, all entries on the principal
diagonal are equal to some « € R. In the sequel, we will denote such a d x d matrix by
T,5(d) and its determinant by t, 3(d) := det T 5(d) = (a — f)*(a + (d - 1)B).
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We obtain the following characterization of all Nuij sequences that admit universal
determinantal representations.

Theorem B A sequence a = (ay,...,a,) € R is a Nuij sequence with a universal
determinantal representation if and only if there exit o, § € R such that

1 N
a; = Eta,/;(z),z =1L...,d.

2 Hyperbolic Polynomials and Nuij Sequences

First, we recall some facts about the space ¢ of hyperbolic (monic) polynomials
of some fixed degree d. For x = (x;,...,%4) € R, we have the k-th elementary
symmetric polynomial
c(x) = D xiooxi,
i <-<iy

fork =1,...,d. We will identify any b = (by,..., bs) € R? with a monic polynomial
hy =27+ 39 bez? . Thus, we can write HY = ¢(R"), where ¢ = (cy, ..., cq):RY >
R? is the Viete map; hence, by the Tarski-Seidenberg theorem, it follows that H¢ is
semialgebraic. Moreover, the Viéte map ¢ = (cy,...,c4):RY — R? is generically a
submersion; hence, H¢ = ¢(R") has nonempty interior. In fact, ¢ is a basic semi-
algebraic set which can be described using generalized discriminants or Bezoutians
(see a nice exposition in [9] or a more detailed one in [10]). Recent developments on
hyperbolic univariate polynomials are given by Kostov in his survey [4].

For the proof of Theorem A we need to recall several definitions and results
from [1].

Definition 2.1 ([1, Definition 1] ) We say that a polynomial

flz1,...,2n) €Clz1, ..., 24]

is stable if f(z1,...,2,) # 0 for all n-tuples (zi,...,2,) € C" with im(z;) > 0, for
j=1,...,n Ifin addition f has real coefficients, it will be referred to as real stable.
The set of stable and real stable polynomials in # variables will be denoted by I, (C)
and H,(R), respectively. Note that for n = 1, a polynomial f is real stable, which
precisely means that f is hyperbolic.

Let T:C,4[z] — C,4[z] be a linear map, where C;[z] stands for the vector space
(over C) of complex polynomials of degree at most d. We extend it to a linear map
T:Cy[z,w] - Cg4[z,w], by setting T(z*w') := T(z*)w' forall k = 1,...,d and
I € N. We now state the result that is crucial for the proof of Theorem A.

Theorem 2.2 ([1, Theorem 4]) Let T:C4[z] - Cy[z] be a linear map. Then T
preserves stability if an only if either

(i) T has range of dimension at most one and is of the form T(f) = a(f)P, where
a:Cy4[z] = Cis a linear functional and P € 3(;(C); or
(1) T((z+w)%) e, (C).
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Proof of Theorem A Assume that a = (ay,...,a4) € R? is a Nuij sequence. Hence,
by Definition 1.2 applied to p(z) = z¢ with s = 1, we obtain that the polynomial p,
defined by (1.1) is hyperbolic.

To prove the converse, let us fix some a = (ay,...,ay) € R? and assume that the
polynomial g, defined by (1.2) is hyperbolic. We associate with the sequence a =
(a1,...,a4) alinear operator T,: C4[z] — C4[z] defined by

d
1) Ta(p)(2) = p(2) + Y axp™ (2) € R[z].
k=1

Lemma 2.3 T,((z+w)?%) = qa(z+w).

Proof We first expand the right-hand side of (2.1):

T.((z+ w)d) = T( zd: (‘j)ziwd_i) = i ((j)wd_iT(zi).

i=0 i=0
Note that
Ta(') = 2 [ = Y 0y - Zaj !
j=0 ])'
)
d 1d . d o4 .
d—i i 2z~
N4 T(Z ) = () >
;(1) ; i (Z ](1—])' )
hence
d! ol i
(22) Ta (Z+W)d = le_]wd_l a-%z’_] .
( ) i;,(d—t)!t! (J;) T(i-j)! )
On the other hand,
(2.3) Ga(z+w) = Z(d— ai(z+w)4 .
* The coefficient in (2.2) that comes with aj, j = 0,1,...,d is equal to
i d! il Z d! Sk ik
i (d—i)tit (i —])! _iTk=o (d =k = j)Ik!

* The coefficient in (2.3) that comes with a;, j = 0,1,...,d is equal to

d! d! d=j\ k djk_ d kyyd=ik
—(z+ )d e ( )z wi ™k = " ki
(d_])' (d ]) Z k i— ];c () d k ])'
Hence, these coefficients are equal, which proves the lemma. ]

By the assumption, g, has only real roots. Hence, g, (z + w) is a stable polynomial
in variables (z,w). Indeed, if im(z) > 0 and im(w) > 0, then im(z + w) > 0,
50 gq(z + w) # 0. By Lemma 2.3, we have T,((z + w)?) = q.(z + w). Applying
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Theorem 2.2 we conclude that the operator T, preserves stability, hence T, restricted
to R,[z] preserves hyperbolicity. Thus, we have proved that

d
pa(z1) = p(z) + kZ arp®(z)

is hyperbolic whenever p € R;[z] is hyperbolic. Let us take s € R* and denote a(s) :=

(say,...,s*ax,...,s%ay). Then the polynomial
d d al
a(s)(2) =2 + S skap(z)® =29+ 3 skay z4k
k=1 k=1 (n—k)!

is again hyperbolic, since q,(s)(z) = s™qa(sz). Thus, by applying the above argu-
ment to the sequence a(s), we conclude that

d
Pa(z,s) = p(z) + kZ ars*p™(2)

is hyperbolic for all s € R and any p € R,;[z] hyperbolic. This ends the proof of
Theorem A. u

Corollary 2.4 If (ay,az,...,a4) is a Nuij sequence for hyperbolic polynomials of
degree d, then (a1, az,...,a4-;) is also a Nuij sequence for hyperbolic polynomials of
degreed—i,i=1,...,d—1. Moreover (ai, as,...,a,) is a Nuij sequence for hyperbolic
polynomials of arbitrary degrees if and only if it is Viéte, the iteration of the standard
Nuij sequence.

Proof The first assertion is easily deduced by differentiation of (1.2).

The second affirmation is a consequence of the fact that (a;, az,...,a4,0,...,0)
is a Nuij sequence for hyperbolic polynomials of degree k = d + i,i = 1,2,... and
satisfies (1.2) forall k = d +i,i > 1.

Simplifying each obtained equation by the corresponding z’, we can obtain a se-
quence of hyperbolic polynomials of degree d convergent to z% + a;2% ™! + ayz972 +
-+ + a4, and this implies the claim. Namely, we have

(kay, k(k-1)as,....k(k-1)---(k-d+1)ag) = o(xi(k),...,xa(k)), Vk>d,

for some x(k) = (x1(k),...,xq(k)) € R%. Now we can see that ¢ (x(k)/k) tends to
(a1, az,...,a4) as k - oo. [ |

2.1 Iterations of Nuij’s Sequences

Leta=(ay,...,as) eRYand b = (by,...,by) € R? be two Nuij sequences, we define

their composition b o a := ¢ = (¢y, ..., ¢q) in the following way. For any polynomial
p(2) e R[z],
4 59" pa d (k)
pe(z:5) = (Pa)o(2:5) = pa(z,5) + ), bis 7k:P+ZCk5 P
k=1 0z k=1
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Note that with the convention agy = by = 1, we have

k
Ci = Z (Il,‘bk_i.
i=0
Let a',...,a" € R?. We define by induction the composition of r copies of se-
quences:
L(a)=ada', IL(a',...,a")=1,_.(a',...,a" Yoa.

Explicitly, if I,(a',...,a") = ¢ = (c1,...,cq), then

_ 1 r
Ck = Z ai1~--air.

i1 <<y, iy +otipy=k

Let us consider the original Nuij sequences of the form

al = (xi,0,...,0) e R4,

wherex; € R,i=1,...,d. ThenI(a',...,a%) = c = (cy, ..., cq) is the Nuij sequence
obtained by the iteration of a’ and

Ck: Z xil...xik’

i <-<ip
fork =1,...,d. Thus, ¢t = ck(x1,...,x4) is in fact the k-th elementary symmetric
polynomial of xi, ..., x4. Denote by ¢ = (c1,...,cq):R? - R¥ the Viete map and

recall that ¢ = c(R"). Thus, we obtain that H¢ c Ny. For d € N, let us denote by
ba:RY — R? the following linear map:
d!

Theorem A and the above discussion can be summarized as follows.

bd(al,...,ak,...,ad)::(dal,.. ...,d!ad).

Corollary 2.5 Forany d €N, we have H{! ¢ Ny = b7 (H{).
Example 2.6 For d =2, we have H? = {a? — 4a; > 0} c N, = {a? - 2a, > 0}.
3 Universal Determinantal Representations

We will consider 1-parameter families of hyperbolic polynomials. A polynomial
p(z,5) =28 +ay(s)z29 7+ -+ ay(s)
will be called a pencil of hyperbolic polynomials if and only if:

* for each s € R the polynomial z — p(s, z) is hyperbolic,
* each coefficient a;(s) € R[s] is of degree at most i.

For any d > 1, we shall denote by PJ{,; the space of such pencils of hyperbolic poly-
nomials.

We say that a polynomial p(z, s) admits a determinantal representation if there are
real symmetric matrices Ag, A; such that

p(z,s) = det(zl + Ag + sA;),

and clearly in this case p(z, s) is a pencil of hyperbolic polynomials.
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The following is an easy reformulation of a remarkable theorem of Helton and Vin-
nikov [3].

Theorem 3.1 Any polynomial p(z,s) € PH, admits a determinantal representation.

Indeed, let us set z = x ' and s = x ! y and finally

flxy)=x"p(zs) = x"p(x”hx71y).
Then f is a real zero polynomial in the sense of Helton-Vinnikov, so it has a deter-
minantal representation according to [3, Theorem 2.2]. In fact, as noticed by Lewis,
Parrilo, and Ramana [6], Theorem 3.1 is a positive answer to the nonhomogeneous
version of the Lax conjecture [5].

We want to characterize all Nuij sequences a = (ay,...,a4) € RY such that for
any p € R[z], hyperbolic polynomial of degree d, the associated pencil of hyperbolic
polynomials

d
Pa(z.s) = p+ > ags*p*) e R[z]
k=1

admits a universal determinantal representation; by this we mean that there exists a
symmetric matrix A, such that p,(z,s) = det(zI + D + sA,), where D is a diagonal
matrix. In other words, —D has on the diagonal all the roots of p written in an arbi-
trary order. The matrix A, will be referred as a matrix associated with the sequence
a = (ay,...,aq). We denote by UNy the set of all Nuij sequences in R? that admit
universal determinantal representations.

3.1 Special Toeplitz Matrices

Recall that a square matrix is called a Toeplitz matrix if all parallels to the principal
diagonal are constant. We say that a symmetric Toeplitz matrix is special if all entries
outside the principal diagonal are equal to some 8 € R, and of course all entries on
the principal diagonal are equal to some & € IR. We will denote such a matrix by T, g.

In the next proposition we will show that special Toeplitz matrices give all Nuij
sequences which admit universal determinantal representations.

Proposition 3.2 Leta = (aj,...,ag) € UN,. Then there exists a special Toeplitz
matrix Ty g that is associated with the sequence a. The constant « is unique. For d = 2,
we have two choices 3 or —f3. If d > 3, then f3 is uniquely determined.

Proof Let us fix a sequence a = (ay,...,a;) € UNy, and let A, be a symmetric
matrix associated to a. It means that for any hyperbolic polynomial p € R[z] we have
(3.1) Pa(z,s) =det(zl + D +5A,),

where D is a diagonal matrix with characteristic polynomial equal to p. We will find
a special Toeplitz matrix T, such that

Pa(z,s) =det(zI + D + 5T, ).

Following convention, we recall that a j x j minor of A, is principal if it is the
determinant of a matrix obtained from A, by deleting rows and columns containing
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d — j elements from the principal diagonal. With the assumption of Proposition 3.2,
we have the following lemma.

Lemma 3.3 Foranyj=1,...,d,all jx jprincipal minors of A, are equal.

Let —Ay,...,—A4 be the roots of p. Since p can be chosen arbitrarily, we can con-
sider both sides of the identity (3.1) as polynomials with real coefficients in variables
w;=z+A;,i=1,...,d. Since R is a field of characteristic 0, the coeficients corre-
sponding to the monomials in w;, ---w;;, where i; < --- < i}, on right and left-hand
sides are equal. It is enough to expand both sides to check the statement of the lemma.
In particular the 1 x 1 minors, which are actually the entries on the principal diagonal,
are all equal to some « € R.

Lemma 3.4 Let A, = (aij). Then there exists 3 € R such that for any distinct i, j we
have afj = B2

Indeed, with each entry a;;, i # j we can associate the 2 x 2 principal minor

o« ai
det ) =a’-al.
Clij (04 J

Hence, by Lemma 3.3 all afj are equal for i # j. We put g = afj. Clearly the
statement of Proposition 3.2 is trivial for = 0, so in the sequel we assume that § # 0.

Before analyzing the case of j x j principal minors, where j > 3, we need an explicit
formula for the determinant of a special Toeplitz matrix Ty, g.

Lemma 3.5 If Ty p is a special Toeplitz matrix of size d x d, then

ta,p(d) :=detTyp = (o~ ﬁ)d‘l( a+(d- l)[)’) .

Next we consider the 3 x 3 principal minors of the matrix A,. We know by
Lemma 3.4 that for any i # j we have a;; = €;|B|, where ¢;; € {-1,1}. We will show
that the sign of €;; can be uniformly chosen, which means that either ¢;; = 1 for all
i #j,ore;j=—1foralli# j. Letus write this minor in the form

a ejlfl el , , .
det| eijlBl  a  elBl]| =&’ +2€ijeinexf|Bl - 3.

eixlB| €jk|ﬁ| a

By Lemma 3.3 all these minors are equal, so there exists £ € {-1,1} such that for
all choices 1< i < j < k < d we have

(3.2) €ij€ik€jk = &.

This shows that we can chose ¢;; = & forall i # j.

Assume now that d > 4. We have to show that if we put ¢;; = £ for any i # j, then
actually all principal minors jx j, j > 4 are equal to the value of a principal minor jx j,
j > 4 for the original matrix A,, so in fact they are determined just by &. Note that it
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is enough to consider the case « = 0 and f3 = 1. First, we consider the case d = 4, so

0 e €3 €
A, = e 0 €3 €
€3 €3 0 €34

€4 €4 €33 0

For each i > 2, we multiply the i-th row of A, by €;; and use relation (3.2). Thus we
obtain the matrix

0 en €3 €u

1 0 ez &eu

1 e 0 el

1 &ep &z 0

For each j > 2, we multiply the j-th column of B, by €;; and use the fact that €], = 1.
So we obtain the matrix

B, =

0 1 1 1
oo & ¢
Ca=ly ¢ 0 ¢

1 EE o

Multiplying the first row and the first column of C, by &, we can see that
det Ca = £2 det TO,l = t0)1(4) =-3.

But on the other hand, detC, = (epp€13€14)> det A, = det A,. Accordingly, we can
assume that A, = Tj, ;. The same argument applies for any d > 4. Hence the existence
in Proposition 3.2 follows.

To proof the uniqueness, note that « and 2 are uniquely determined. Clearly the
equation a3 = 5; (a — $)*(& + 2f8) uniquely determines f3. [ |

As a consequence we obtain the following characterization of Nuij sequences that
admit universal determinantal representations.

Theorem B A sequence a = (ay,...,a,) € R is a Nuij sequence with a universal
determinantal representation if and only if there exits a, 3 € R such that

1
4= Stap(i)i=1...d.

Proof If T, g isa special Toeplitz matrix, then for any hyperbolic polynomial p(z) =
(z+MA1)...(z+ Ay), we have a pencil of polynomials

d
Pa(zs) = p+ Y ars* p®(2) = det(zl + D + 5Ty ),

k=1
where a; = %t,x,,;(i), and D is a diagonal matrix with entries A;,...,44. So the se-
quence a = (4ay,...,a,) is a Nuij sequence with a universal determinantal repre-
sentation. Conversely, if a = (ay,...,a4) € R? is a Nuij sequence with a universal
determinantal representation, then by Proposition 3.2 the associated matrix can be
chosen as a special Toeplitz matrix T, g. Hence, a; = +tq,g(i). [ |
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Example 3.6 Note that the original Nuij sequence a = (1,0,...,0) has a universal
determinantal representation. Indeed, Tj,;, which has all entries equal to 1, is the
matrix associated with this sequence. Note that this also proves Nuij’s Theorem 1.1.

Remark 3.7 A composition of the original Nuij sequence a = (1,0,...,0) with
itself gives a Nuij sequence b = (2,1,0,...,0) that has no universal determinantal
representation for d > 3. Indeed, if there exist a, f € R such that b; = Lt,4(i), i =

H
1,2,3,then & = 2and a?~ 82 = 2. Hence, 8 = +\/2. But, then 6b3 = a>+2>-3ap% £ 0,
s0 b3 # 0, which is a contradiction.
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