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We introduce novel multi-agent interaction models of entropic spatially inhomogeneous evolutionary
undisclosed games and their quasi-static limits. These evolutions vastly generalise first- and second-
order dynamics. Besides the well-posedness of these novel forms of multi-agent interactions, we are
concerned with the learnability of individual payoff functions from observation data. We formulate
the payoff learning as a variational problem, minimising the discrepancy between the observations
and the predictions by the payoff function. The inferred payoff function can then be used to simu-
late further evolutions, which are fully data-driven. We prove convergence of minimising solutions
obtained from a finite number of observations to a mean-field limit, and the minimal value provides
a quantitative error bound on the data-driven evolutions. The abstract framework is fully construc-
tive and numerically implementable. We illustrate this on computational examples where a ground
truth payoff function is known and on examples where this is not the case, including a model for
pedestrian movement.
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1 Introduction

1.1 Multi-agent interaction models in biological, social and economical dynamics

In the course of the past two decades, there has been an explosion of research on models of
multi-agent interactions [28, 29, 31, 36, 40, 42, 74], to describe phenomena beyond physics, for
example, in biology, such as cell aggregation and motility [11, 43, 45, 61], coordinated animal
motion [8, 16, 18, 21, 22, 24, 31, 54, 57, 58, 63, 71, 77], coordinated human [25, 30, 68], and
synthetic agent behaviour and interactions, such as cooperative robots [19, 49, 60, 70]. We refer
to [13, 15, 17, 75] for recent surveys.

Two main mechanisms are considered in such models to define the dynamics. The first takes
inspiration from physical laws of motion and is based on pairwise forces encoding observed ‘first
principles’ of biological, social, or economical interactions, for example, repulsion-attraction,
alignment, self-propulsion/friction et cetera. Typically, this leads to Newton-like first- or second-
order equations with ‘social interaction’ forces, see (1.1) below. In the second mechanism, the
dynamics are driven by an evolutive game where players simultaneously optimise their cost.
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Examples are game theoretic models of evolution [38] or mean-field games, introduced in [48]
and independently under the name Nash Certainty Equivalence (NCE) in [39], later greatly
popularised, for example, within consensus problems, for instance in [55, 56].

More recently, the notion of spatially inhomogeneous evolutionary games has been proposed
[5, 6, 53] where the transport field for the agent population is directed by an evolutionary game
on their available strategies. Unlike mean-field games, the optimal dynamics are not chosen via
an underlying non-local optimal control problem but by the agents’ local (in time and space)
decisions, see (1.3) below.

One fundamental goal of these studies is to reveal the relationship between the simple pairwise
forces or incentives acting at the individual level and the emergence of global patterns in the
behaviour of a given population.

Newtonian models. A common simple class of models for interacting multi-agent dynamics
with pairwise interactions is inspired by Newtonian mechanics. The evolution of N agents with
time-dependent locations x1(t), . . . , xN (t) in R

d is described by the ODE system

∂txi(t) = 1

N

N∑
j=1

f
(
xi(t), xj(t)

)
for i = 1, . . . , N , (1.1)

where f is a pre-determined pairwise interaction force between pairs of agents. The system is
well-defined for sufficiently regular f (e.g. for f Lipschitz continuous). In this article, we will
refer to such models as Newtonian models.

First-order models of the form (1.1) are ubiquitous in the literature and have, for instance,
been used to model multi-agent interactions in opinion formation [37, 46], vehicular traffic
flow [35], pedestrian motion [26], and synchronisation of chemical and biological oscillators
in neuroscience [47].

Often one is interested in studying the behaviour of a very large number of agents. We may
think of the agents at time t to be distributed according to a probability measure μ(t) over Rd .
The limit-dynamics of (1.1) as N → ∞ can under suitable conditions be expressed directly in
terms of the evolution of the distribution μ(t) according to a mean-field equation. The mean-field
limit of (1.1) is formally given by

∂tμ(t) + div
(
v(μ(t)) · μ(t)

)= 0 where v(μ(t))(x) :=
∫
Rd

f (x, x′) dμ(t)(x′). (1.2)

Here v(μ(t)) is a velocity field and intuitively v(μ(t))(x) gives the velocity of infinitesimal mass
particles of μ at time t and location x [12, 14].

While strikingly simple, such models only exhibit limited modelling capabilities. For instance,
the resulting velocity ∂txi(t) is simply a linear combination of the influences of all the other
agents. ‘Importance’ and ‘magnitude’ of these influences cannot be specified separately: agent
j cannot tell agent i to remain motionless, regardless of what other agents suggest. Generally,
agent i has no sophisticated mechanism of finding a ‘compromise’ between various potentially
conflicting influences and merely uses their linear average. The applicability of such models to
economics or sociology raises concerns as it is questionable whether a set of static interaction
forces can describe the behaviour of rational agents who are able to anticipate and counteract
undesirable situations.
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Spatially inhomogeneous evolutionary games. In a game dynamic, the vector field v(μ(t)) is
not induced by a rigid force law but by the optimisation of an individual payoff by each agent. In
mean-field games, this optimisation is global in time, each agent plans their whole trajectory in
advance, optimisation can be thought of as taking place over repetitions of the same game (e.g.
the daily commute). Alternatively, in spatially inhomogeneous evolutionary games [6] the agents
continuously update their mixed strategies in a process that is local in time, which may be more
realistic in some scenarios. This is implemented by the well-known replicator dynamics [38].

As above, agents may move in R
d . Let U be the set of pure strategies. The map e : Rd × U →

R
d describes the spatial velocity e(x, u) for an agent at position x ∈R

d with a pure strategy u ∈ U .
For example, one can pick U ⊂R

d to be a set of admissible velocity vectors and simply set
e(x, u) = u. e acts as dictionary between strategies and velocities and can therefore assumed to be
known. e(x, u) may be more complicated, for instance, when certain velocities are inadmissible
at certain locations due to obstacles. A function J : (Rd × U)2 →R describes the individual
benefit J (x, u, x′, u′) for an agent at x for choosing strategy u when another agent sits at x′

and intends to choose strategy u′. For example, J (x, u, x′, u′) may be high when e(x, u) points
in the direction that x wants to move, but could be lowered when the other agent’s velocity
e(x′, u′) suggests an impending collision. The state of each agent is given by their spatial position
x ∈R

d and a mixed strategy σ ∈M1(U) (where M1(U) denotes probability measures over U).
As hinted at, the evolution of σ is driven by a replicator dynamic involving the payoff function
J , averaged over the benefit obtained from all other agents, the spatial velocity ∂tx is obtained by
averaging

∫
U e(x, u) dσ (u). The equations of motion are given by

∂txi(t) =
∫

U
e(xi(t), u) dσi(t)(u), (1.3a)

∂tσi(t) = 1

N

N∑
j=1

f J
(
xi(t), σi(t), xj(t), σj(t)

)
(1.3b)

where for x, x′ ∈R
d and σ , σ ′ ∈M1(U)

f J
(
x, σ , x′, σ ′) :=

[∫
U

J (x, ·, x′, u′) dσ ′ (u′)− ∫
U

∫
U

J
(
x, v, x′, u′)dσ ′ (u′) dσ (v)

]
· σ . (1.4)

Intuitively, the strategy σi tends to concentrate on the strategies with the highest benefit for agent
i via (1.4), which will then determine their movement via (1.3a).

Equation (1.3a) describes the motion of agents in R
d and resembles (1.1). The main difference

is that the vector field is determined by the resulting solution of the replicator equation (1.3b),
which promotes strategies that perform best with respect to the individual payoff J with rate
(1.4). Despite the different nature of the variables (xi, σi) of the model, the system (1.3) can also
be re-interpreted as a Newtonian-like dynamics on the space R

d ×M1(U) where each agent
yi(t) = (xi(t), σi(t)) is characterised by its spatial location xi(t) ∈R

d and its mixed strategy σi(t) ∈
M1(U). Accordingly, equations (1.3) can be more concisely expressed as

∂tyi(t) = 1

N

N∑
j=1

f
(
yi(t), yj(t)

)
where f

(
(x, σ ),

(
x′, σ ′)) := (∫

U e(x, u) dσ (u), f J
(
x, σ , x′, σ ′)) .

(1.5)

https://doi.org/10.1017/S0956792522000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000043


Data-driven entropic spatially inhomogeneous evolutionary games 109

Similarly to mean-field limit results in [12, 14], the main contribution of [6] is to show that
the large particle limit for N → ∞ of solutions of (1.3) converges in the sense of probability
measures to �(t) ∈M1(Rd ×M1(U)), which is, in analogy to (1.2), solution of a nonlinear
transport equation of the type

∂t�(t) + Div
(
v(�(t)) · �(t)

)= 0 where v(�(t))(y) :=
∫

f
(
y, y′)d�(t)(y′). (1.6)

Note that (1.6) is a partial differential equation having as domain a (possibly infinite-
dimensional) Banach space containing R

d ×M1(U) and particular care must be applied to the
use of an appropriate calculus needed to define differentials, in particular for the divergence oper-
ator. In [6], Lagrangian and Eulerian notions of solutions to (1.6) are introduced. As the technical
details underlying the well-posedness of (1.6) do not play a central role in this article, we refer to
[6] for more insights. Nevertheless, we apply some of the general statements in [6] to establish
well-posedness of the models presented in this paper.

1.2 Learning or inference of multi-agent interaction models

An important challenge is to determine the precise form of the interaction force or payoff func-
tions. While physical laws can often be determined with high precision through experiments,
such experiments are often either not possible, or the models are not as precisely determined in
more complex systems from biology or social sciences. Therefore, very often the governing rules
are simply chosen ad hoc to reproduce at some major qualitative effects observed in reality.

Alternatively, one can employ model selection and parameter estimation methods to determine
the form of the governing functions. Data-driven estimations have been applied in continuum
mechanics [20, 44] computational sociology [10, 50, 51, 78] or economics [3, 23, 33]. However,
even the problem of determining whether time shots of a linear dynamical system do fulfil physi-
cally meaningful models, in particular have Markovian dynamics, is computationally intractable
[27]. For nonlinear models, the intractability of learning the system corresponds to the complex-
ity of determining the set of appropriate candidate functions to fit the data. In order to break the
curse of dimensionality, one requires prior knowledge on the system and the potential structure
of the governing equations. For instance, in the sequence of recent papers [64, 65, 72] the authors
assume that the governing equations are of first order and can be written as sparse polynomials,
that is, linear combinations of few monomial terms.

In this work, we present an approach for estimating the payoff function for spatially inhomo-
geneous evolutionary games from observed data. It is inspired by the papers [10, 50, 51, 78],
in particular by the groundbreaking paper [10] which is dedicated to data-driven evolutions of
Newtonian models. In these references, the curse of dimensionality is remedied by assuming that
the interaction function f in (1.1) is parametrised by a lower-dimensional function a, the identifi-
cation of which is more computationally tractable. A typical example for such a parametrisation
is given by functions f = f a of the type

f a
(
x, x′)= a

(|x − x′|) · (x′ − x
)

for some a : R→R.

The corresponding model (1.1) is used, for instance, in opinion dynamics [37, 46], vehicular
traffic [35], or pedestrian motion [26]. The learning or inference problem is then about the deter-
mination of a, hence of f = f a, from observations of real-life realisations of the model (1.1).
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Clearly, the problem can be formulated as an optimal control problem. However, as pointed out
in [10], in view of the nonlinear nature of the function mapping a in the corresponding solu-
tion x[a](t) of (1.1), the control cost would be nonconvex and the optimal control problem rather
difficult to solve. Instead, in [10] a convex formulation is obtained by considering an empiri-
cal risk minimisation in least squares form: given an observed realisation (xN

1 (t), . . . , xN
N (t)) of

the dynamics between N agents, generated by (1.1) governed by f a, we aim at identifying a by
minimising

EN (â) := 1

T

∫ T

0

⎡
⎢⎣ 1

N

N∑
i=1

∥∥∥∥∥∥∂tx
N
i (t) − 1

N

N∑
j=1

f â
(

xN
i (t), xN

j (t)
)∥∥∥∥∥∥

2
⎤
⎥⎦ dt. (1.7)

That is, along the observed trajectories we aim to minimise the discrepancy between observed
velocities and those predicted by the model. The functional EN plays the role of a loss function
in the learning or inference task. A time-discrete formulation in the framework of statistical
learning theory has been proposed also in [50, 51, 78]. Under the assumption that a belongs to a
suitable compact class X of smooth functions, the main results in [10, 50, 51, 78] establish that
minimisers

âN ∈ arg min
â∈VN

EN (â),

converge to a in suitable senses for N → ∞, where the ansatz spaces VN ⊂ X are suitable finite-
dimensional spaces of smooth functions (such as finite element spaces).

1.3 Contribution and outline

The main scope of this paper is to provide a theoretical and practical framework to perform
learning/inference of spatially inhomogeneous evolutionary games, so that these models could
be used in real-life data-driven applications. First, we discuss some potential issues with model
(1.3) and provide some adaptations. We further propose and study in Section 3 several learning
functionals for inferring the payoff function J from the observation of the dynamics, that is,
extending the approach of [10] to our modified version of [6]. Let us detail our contributions.

The proposed changes to the model (1.3) are as follows:

• In Section 2.1, we add entropic regularisation to the dynamics for the mixed strategies of
the agents. This avoids degeneracy of the strategies and allows faster reactions to changes
in the environment, see Figure 1. Entropic regularisation of games was also considered in
[34]. We show that the adapted model is well-posed and has a consistent mean-field limit
(Theorem 2.6).

• For interacting agents, the assumption that the mixed strategies of other agents are fully
known may often be unrealistic. Therefore, we will focus our analysis on the case where
J (x, u, x′, u′) does not explicitly depend on u′, the ‘other’ agent’s pure strategy. We refer to
this as the undisclosed setting. (The general case is still considered to some extent.)

For this undisclosed setting, we study the quasi-static fast-reaction limit of (1.3) where the
dynamics of mixed strategies (σi)N

i=1 run at much faster time scale than dynamics of locations
(xi)N

i=1, that is, agents quickly adjust their strategies to changes in the environment. This will also

https://doi.org/10.1017/S0956792522000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000043


Data-driven entropic spatially inhomogeneous evolutionary games 111

FIGURE 1. Comparison of original game dynamics and entropic regularisation (possibly with accelerated
time scale for the strategy dynamics). For details, see Examples 2.1 and 2.2.

be important for designing practical inference functionals (see below). The undisclosed fast-
reaction model is introduced in Section 2.2. Well-posedness and consistent mean-field limit are
proved by Theorem 2.13, convergence to the fast-reaction limit or quasi-static evolution as the
strategy time scale becomes faster is given by Theorem 2.14.

We claim that the resulting undisclosed fast-reaction entropic model is a useful alternative of
the Newtonian model (1.1) and we support these considerations with theoretical and numerical
examples. In particular, we show that any Newtonian model can be described (approximately)
as an undisclosed fast-reaction entropic model, whereas the converse it not true (Examples 2.7
and 2.8).

We then discuss several inference functionals for the modified game model in Section 3. We
start with a rather direct analogue of (1.7) (Section 3.2), which would require not only the
observation of the spatial locations (xi)N

i=1 and velocities (∂txi)N
i=1 but also of the mixed strate-

gies (σi)N
i=1, and their temporal derivatives (∂tσi)N

i=1. Whether the latter two can be observed in
practice is doubtful, in particular with sufficient accuracy. Therefore, as an alternative, we pro-
pose two inference functionals for the undisclosed fast-reaction setting. A functional based on
observed spatial velocities is given in Section 3.3.1. A functional based on mixed strategies (but
not their derivatives) is proposed in Section 3.3.2, and we discuss some options how the required
data could be obtained in practice. In Section 3.3.3, some properties of these functionals are
established, such as existence of minimisers and consistency of their mean-field versions.

Numerical examples are given in Section 4. These include the inference on examples where
observations were generated with a true underlying undisclosed fast-reaction entropic model,
as well as inference of Newtonian models and of a model for pedestrian motion adapted from
[7, 32]. We close with a brief discussion in Section 5. Some longer technical proofs have been
moved to Appendix A. Before presenting the new model, we collect some notation in the next
subsection.

1.4 Setting and notation

General setting. Let (Y , dY ) be a complete and separable metric space. We denote by M(Y ) the
space of signed Borel measures with finite total variation and by M1(Y ) the set of probability
measures with bounded first moment, that is,

M1(Y ) =
{
μ ∈M(Y ) | μ ≥ 0, μ(Y ) = 1,

∫
Y

dY (y, ȳ)dμ(y) < ∞ for some ȳ ∈ Y

}
.
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For a continuous function ϕ ∈ C(Y ), we denote by

Lip(ϕ) := sup
x,y∈Y
x	=y

|ϕ(x) − ϕ(y)|
dY (x, y)

its Lipschitz constant. The set of bounded Lipschitz functions is then denoted by Lipb(Y ) = {ϕ ∈
C(Y ) | ‖ϕ‖∞ + Lip(ϕ) < ∞}, with ‖ · ‖∞ the classical sup-norm.

For μ1, μ2 ∈M1(Y ), the 1-Wasserstein distance W1(μ1, μ2) is defined by

W1(μ1, μ2) := inf

{∫
Y×Y

dY (y1, y2)dγ (y1, y2) | γ ∈ �(μ1, μ2)

}
, (1.8)

where �(μ1, μ2) is the set of admissible coupling between μ1 and μ2, that is, �(μ1, μ2) = {γ ∈
M1(Y × Y ) | γ (A × Y ) = μ1(A) and γ (Y × B) = μ2(B)}. Due to Kantorovitch duality, one can
also consider the equivalent definition

W1(μ1, μ2) := sup

{∫
Y

ϕ d(μ1 − μ2) | ϕ ∈ Lipb(Y ), Lip(ϕ) ≤ 1

}
. (1.9)

The metric space (M1(Y ), W1) is complete because (Y , dY ) is complete, and a sequence
(μn)n∈N ⊂M1(Y ) converges to μ ∈M1(Y ) with respect to the distance W1 if and only if μn

converges to μ in duality with bounded Lipschitz functions and the first moments converge, that
is,
∫

Y dY (·, ȳ) dμn → ∫
Y dY (·, ȳ) dμ for all ȳ ∈ Y .

Interaction setting. We fix the space of pure strategies U to be a compact metric space with
distance dU . Each agent’s mixed strategy is then described by σ ∈M1(U). Agents move in R

d ,
and we denote with ‖ · ‖ the usual Euclidean norm. For R > 0, Bd(R) is the open ball of radius
R and centre the origin in R

d . For N ∈N and x = (x1, . . . , xN ) ∈ [Rd]N , we introduce the scaled
norm ‖ · ‖N defined as

‖x‖N = 1

N

N∑
i=1

‖xi‖.

For σ1, σ2 ∈M1(U), we set the Kullback–Leibler divergence to be

KL(σ1|σ2) :=
⎧⎨
⎩
∫

U log
(

dσ1
dσ2

)
dσ1 if σ1 � σ2,

+∞ else,

where dσ1/dσ2 is the Radon–Nikodym derivative of σ1 with respect to σ2.
Throughout the paper, we assume e ∈ Lipb(Rd × U ; Rd) to be fixed and known. Such a func-

tion maps each pure strategy u ∈ U into a given velocity e(·, u) ∈R
d . We may think of e as a

label or dictionary for strategies. The sets of admissible interaction rules J are described by

X = Lipb

(
R

d × U ×R
d × U

)
and X = Lipb

(
R

d × U ×R
d
)

.

Here, X consists of all possible payoff functions, modelling the case where each agent has a
complete knowledge of both positions and mixed strategies of the other agents. On the other
hand, in what we call the undisclosed setting, each agent only knows the physical locations of
the others, and thus in this context, the payoff function J will no longer depend on the other’s
strategy, making it possible to restrict the analysis to X .
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2 From spatially inhomogeneous evolutionary games to undisclosed fast-reaction
dynamics

We describe in this section how we adapt the spatially inhomogeneous evolutionary games model
(1.3) of [6] to make it more suitable in practice for the task of modelling and inferring interaction
rules between rational agents. In Section 2.1, we add entropic regularisation to avoid degeneracy
of the agents’ mixed strategies. In Section 2.2, we focus on the more realistic undisclosed setting,
where agents are not aware of other agents’ strategy choices and derive a fast-reaction limit,
describing the regime where choice of the strategies happens at a much faster time scale than
physical movement of the agents.

2.1 Entropic regularisation for spatially inhomogeneous evolutionary games

In the model (1.3), mixed strategies σi are prone to converging exponentially to very singular
distributions so that agents cannot react quickly to changes in the environment and exhibit strong
inertia, contradicting the notion of rational agents. This behaviour can be illustrated with a simple
example.

Example 2.1 (Slow reaction in spatially inhomogeneous evolutionary games). Let d = 1, U =
{−1, +1}, e(x, u) = u, so pure strategies correspond to moving left or right with unit speed. Let
now J

(
x, u, x′, u′)= −x · u, that is, agents prefer moving towards the origin, independently of

the other agents’ locations and actions. For simplicity, we can set N = 1 and choose x(0) = 2,
σ (0) = (0.5, 0.5), where we identify measures on U = {−1, +1} with vectors of the simplex in
R

2. At t = 0, the agent perceives strategy −1 as more attractive. The mixed strategy σ starts piv-
oting towards this pure strategy and the agent starts moving towards the origin. The numerically
simulated trajectory for the original model () is shown in Figure 1 (corresponding to line ε = 0,
λ = 1). We can see how σ rapidly converges to the state (0,1). Thus when the agent reaches the
origin, it cannot react quickly and there is considerable overshoot.

As a remedy, we propose an adaptation of the model (1.3) by adding an entropic term to the
dynamics of the mixed strategies σi. The update rule (1.3b) modifies σi towards maximising the
average benefit

1

N

N∑
j=1

∫
U×U

J (xi, u, xj, u′) dσi(u) dσj

(
u′) .

To this objective, we will now add the entropy ε · ∫U log
(

dσi
dη

)
dσi where η ∈M1(U) is a suitable

‘uniform’ reference measure and ε > 0 is a weighting parameter. This will pull σi towards η and
thus prevent exponential degeneration.

Entropic regularisation. The entropic regularisation implies that mixed strategies are no longer
general probability measures over U , but they become densities with respect to a reference mea-
sure η ∈M1(U), which we can assume without loss of generality to have full support, that is,
spt(η) = U . Thus, for a fixed ε > 0, set

Sa,b :=
{
σ : U →R+, σ measurable, σ (u) ∈ [a, b] η-a.e.,

∫
U

σ dη = 1

}
, (2.1)
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where 0 < a < 1 < b < ∞ (the bounds a and b are required for technical reasons, see below).
For λ > 0, the modified entropic dynamics is then given by

∂txi(t) =
∫

U
e(xi(t), u) σi(t)(u) dη(u), (2.2a)

∂tσi(t) = λ ·
⎡
⎣ 1

N

N∑
j=1

f J
(
xi(t), σi(t), xj(t), σj(t)

)+ f ε
(
σi(t)

)⎤⎦ , (2.2b)

where the function f J now formally needs to be given in terms of densities, instead of
measures:

f J
(
x, σ , x′, σ ′) :=[∫

U
J (x, ·, x′, u′) σ ′ (u′)dη

(
u′)− ∫

U

∫
U

J (x, v, x′, u′) σ ′ (u′) σ (v) dη
(
u′)dη(v)

]
· σ . (2.3)

The additional term f ε, corresponding to entropy regularisation, is given by:

f ε(σ ) := ε ·
[
− log(σ (·)) +

∫
U

log(σ (v)) σ (v) dη(v)

]
· σ . (2.4)

In (2.2b), we have explicitly added the factor λ ∈ (0, ∞) to control the relative time scale of the
dynamics for mixed strategies and locations.

Example 2.2 (Faster reactions with entropic regularisation). We repeat here Example 2.1 with
added entropy. We set η = (0.5, 0.5), keeping the symmetry between strategies +1 and −1 in the
regularised system. Numerically simulated trajectories for this setup with different choices of λ

and ε are shown in Figure 1. For (λ = 1, ε = 0.5), the strategy does not get as close to (0,1) as
for (λ = 1, ε = 0). Therefore, upon crossing the origin the agent can react quicker, there is less
overshoot and the trajectory eventually converges to 0. Finally, for (λ = 10, ε = 0.5) the agent
moves quickly and without overshoot to the origin, quickly adapting the mixed strategy.

Remark 2.3 (Entropic gradient flow). Formally, the contribution of f ε to the dynamics (2.2b)
corresponds to a gradient flow in the Hellinger–Kakutani metric over Sa,b of the (negative)
entropy

H(σ ) :=
∫

U
log(σ ) σ dη (2.5)

of the density σ with respect to the reference measure η.

Remark 2.4 (Multiple agent species). In the interaction models mentioned so far ((1.1), (1.3),
(2.2)), all agents are of the same species (i.e. their movement is specified by the same functions).
Often one wishes to model the interaction between agents of multiple species (e.g. predators
and prey). The latter case can formally be subsumed into the former by expanding the physical
space from R

d to R
1+d and using the first spatial dimension as ‘species label’, that is, an agent

x̂i = (ni, xi) ∈R
1+d describes an agent of species ni ∈Z at position xi ∈R

d. The interaction force
f̂ : R1+d ×R

1+d →R
1+d in the expanded version of (1.1) is then given by f̂

(
(n, x), (n′, x′)) :=
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(0, fn,n′ (x, x′)) where fn,n′ : Rd ×R
d →R

d is the interaction function for species (n,n′) and we set
the first component of f̂ to zero, such that the species of each agent remains unchanged. In an
entirely analogous fashion, functions J and e in models (1.3) and (2.2) can be extended.

Well-posedness and mean-field limit of the regularised system. Following [6] (see (1.5)), we
analyse (2.2) as an interaction system in the Banach space Y =R

d × Lp
η(U), 1 ≤ p < ∞. For

y = (x, σ ) ∈ Y we set ‖y‖Y = ‖x‖ + ‖σ‖L
p
η(U). Define

Ca,b := R
d × Sa,b, (2.6)

and for y, y′ ∈ Ca,b let us set

f : Ca,b × Ca,b → Y , f
(
y, y′)= [f e(x, σ ), λf J ,ε

(
x, σ , x′, σ ′)] , (2.7)

where

f e(x, σ ) =
∫

U
e(x, u) σ (u) dη(u) and f J ,ε

(
x, σ , x′, σ ′)= f J

(
x, σ , x′, σ ′)+ f ε(σ ), (2.8)

so that (2.2) takes the equivalent form

∂tyi(t) = 1

N

N∑
j=1

f (yi(t), yj(t)) for i = 1, . . . , N . (2.9)

Similar to [6], well-posedness of (2.9) relies on the Lipschitz continuity of f and on the follow-
ing compatibility condition (for the corresponding proofs see Appendix A, Lemmas A.1, A.2
and A.4).

Lemma 2.5 (Compatibility condition). For J ∈X and ε > 0, let f J and f ε be defined as in (2.3)
and (2.4). Then, there exist a,b with 0 < a < 1 < b < ∞ such that for any (x, σ ), (x′, σ ′) ∈R

d ×
Sa,b there exists some θ > 0 such that

σ + θλ
[
f J
(
x, σ , x′, σ ′)+ f ε(σ )

] ∈ Sa,b. (2.10)

Intuitively, for specific choices of the bounds a and b, (2.10) states that moving from σ ∈ Sa,b

into the direction generated by f J and f ε, we will always remain within Sa,b for some finite time.
Eventually, similar to (1.6), a mean-field limit description of (2.9) is formally given by

∂t�(t) + Div
(
b(�(t)) · �(t)

)= 0 with b(�(t))(y) :=
∫
Ca,b

f
(
y, y′)d�(t)(y′). (2.11)

Like (1.6), this is a PDE whose domain is a Banach space and we refer to [6] for the technical
details. We can then summarise the main result in the following theorem.

Theorem 2.6 (Well-posedness and mean-field limit of entropic model). Let J ∈X , λ, ε > 0, T <

+∞. Let 0 < a < 1 < b < ∞ in accordance with Lemma 2.5. Then:

1. Given ȳN = (ȳN
1 , . . . , ȳN

N

) ∈ CN
a,b there exists a unique trajectory yN = (yN

1 , . . . , yN
N ) : [0, T]

→ CN
a,b of class C1 solving (2.9) with yN (0) = ȳN . In particular, �N (t) := 1

N

∑N
i=1 δyN

i (t)

provides a solution of (2.11) for initial condition �̄N := 1
N

∑N
i=1 δȳN

i
.
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2. Given �̄ ∈M1(Ca,b), there exists a unique � ∈ C([0, T]; (M1(Ca,b), W1)) satisfying in the
weak sense the continuity equation (2.11) with initial condition �(0) = �̄.

3. For initial conditions �̄1, �̄2 ∈M1(Ca,b) and the respective solutions �1 and �2 of (2.11)
one has the stability estimate

W1(�1(t), �2(t)) ≤ exp
(
2Lip(f ) (t − s)

) · W1(�1(s), �2(s)) (2.12)

for every 0 ≤ s ≤ t ≤ T.

Proof. The theorem follows by invoking Theorem 4.1 from [6]. On a more technical level,
Theorem 5.3 of [6] provides the uniqueness of the solution to (2.11) in a Eulerian sense. We
now show that the respective requirements are met.

First, the set Ca,b, (2.6), is a closed convex subset of Y with respect to ‖ · ‖Y for any 0 < a <

b < +∞. Likewise, for any 0 < a < b < +∞ the map f driving the evolution (2.9) is Lipschitz
continuous: indeed, one can prove that f J and f ε are Lipschitz continuous (see Lemmas A.1
and A.2 in Appendix A) and Lipschitz continuity of f e follows from the fact that e is Lipschitz
continuous and bounded. Furthermore, as a consequence of Lemma 2.5, one can choose a and b
so that the extended compatibility condition

∀ R > 0 ∃ θ > 0 : y, y′ ∈ Ca,b ∩ BR(0) ⇒ y + θ f
(
y, y′) ∈ Ca,b

holds, cf. [6, Theorem B.1]. Therefore, we may invoke [6, Theorem 4.1]. Combining this with
[6, Theorem 5.3], which is applicable since Lp

η(U) is separable and thus so is Y , the result
follows. �

2.2 Undisclosed setting and fast reactions

In the model (2.2), the decision process of each agent potentially involves knowledge of the
mixed strategies of the other agents. Often it is reasonable to assume that there is no such knowl-
edge, which can be reflected in the model by assuming that the payoff J (x, u, x′, u′) does not
actually depend on u′, the other agent’s strategy. Note that J (x, u, x′, u′) may still depend on x′,
the other agent’s location. We call this the undisclosed setting.

Additionally, often it is plausible to assume that the (regularised) dynamic that governs the
mixed strategies (σi(t))N

i=1 of the agents runs at a much faster time scale compared to the physical
motion of the spatial locations (xi(t))N

i=1. This corresponds to a large value of λ in (2.2). Therefore,
for the undisclosed setting we study the fast-reaction limit λ → ∞.

The main results of this section are Theorems 2.13 and 2.14 which establish that the undis-
closed fast-reaction limit is in itself a well-defined model (with a consistent mean-field limit as
N → ∞) and that the undisclosed model converges to this limit as λ → ∞.

Undisclosed setting. In the undisclosed setting, the general formulas (2.2) for the dynamics can
be simplified as follows:

∂txi(t) =
∫

U
e(xi(t), u) σi(t)(u) dη(u), (2.13a)

∂tσi(t) = λ ·
⎡
⎣ 1

N

N∑
j=1

f J
(
xi(t), σi(t), xj(t)

)+ f ε
(
σi(t)

)⎤⎦ (2.13b)
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where f ε is as given in (2.4) and f J simplifies to

f J
(
x, σ , x′) :=

[
J (x, ·, x′) −

∫
U

J (x, v, x′) σ (v) dη(v)

]
· σ . (2.14)

For finite λ < +∞, the dynamics of this model are still covered by Theorem 2.6.

Fast reactions of the agents. Intuitively, as λ → ∞ in (2.13), at any given time t the mixed
strategies (σi(t))N

i=1 will be in the unique steady state of the dynamics (2.13b) for fixed spatial
locations (xi(t))N

i=1. For given locations x = (x1, . . . , xN ) ∈ [Rd]N this steady state is given by

σ J
i (x) ≡ σ J

i (x1, . . . , xN ) :=
exp

(
1

εN

∑N
j=1 J

(
xi, ·, xj

))
∫

U exp

(
1

εN

∑N
j=1 J

(
xi, v, xj

))
dη(v)

. (2.15a)

(This computation is explicitly shown in the proof of Theorem 2.14.) The spatial agent velocities
associated with this steady state are given by

vJ
i (x) ≡ vJ

i (x1, . . . , xN ) :=
∫

U
e(xi, u) σ J

i (x1, . . . , xN )(u) dη(u) (2.15b)

and system (2.13) turns into a purely spatial ODE in the form

∂txi(t) = vJ
i (x1(t), . . . , xN (t)) for i = 1, . . . , N . (2.15c)

Unlike in Newtonian models over Rd , (1.1), here the driving velocity field vJ
i (x1(t), . . . , xN (t))

is not a linear superposition of the contributions by each xj(t). This nonlinearity is a consequence
of the fast-reaction limit and allows for additional descriptive power of the model that cannot be
captured by the Newton-type model (1.1). This is illustrated in the two subsequent Examples 2.7
and 2.8.

Example 2.7 (Describing Newtonian models as undisclosed fast-reaction models). Newtonian
models can be approximated by undisclosed fast-reaction entropic game models. We give a
sketch for this approximation procedure. For a model as in (1.1), choose U ⊂R

d such that
it contains the range of f (for simplicity we assume that it is compact), let e(x, u) := u and
then set

J
(
x, u, x′) := −‖u − f

(
x, x′)‖2.

Accordingly, the stationary mixed strategy of agent i is given by

σ J
i (x)(u) =N

⎛
⎝exp

⎛
⎝− 1

εN

N∑
j=1

‖u − f
(
xi, xj

)‖2

⎞
⎠
⎞
⎠ ,

where N (·) denotes the normalisation operator for a density with respect to η. Observe now that

1

N

N∑
j=1

‖u − f
(
xi, xj

)‖2 = ‖u‖2 − 2

N

N∑
j=1

u · f
(
xi, xj

)+ 1

N

N∑
j=1

‖ f
(
xi, xj

)‖2
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FIGURE 2. Approximation of a Newtonian model by an undisclosed fast-reaction entropic game model.
Solid lines: original model, dashed lines: approximation. The Newtonian model is driven by (2.16), the
approximation procedure is described in Example 2.7. The approximation becomes more accurate as ε

decreases.

while ∥∥∥∥∥∥u − 1

N

N∑
j=1

f
(
xi, xj

)∥∥∥∥∥∥
2

= ‖u‖2 − 2

N

N∑
j=1

u · f
(
xi, xj

)+ 1

N2

∥∥∥∥∥∥
N∑

j=1

f
(
xi, xj

)∥∥∥∥∥∥
2

.

Hence, since the terms not depending on u are cancelled by the normalisation, we also have

σ J
i (x)(u) =N

⎛
⎜⎝exp

⎛
⎜⎝−1

ε

∥∥∥∥∥∥u − 1

N

N∑
j=1

f (xi, xj)

∥∥∥∥∥∥
2
⎞
⎟⎠
⎞
⎟⎠ .

So the maximum of the density σ J
i (x) is at 1

N

∑N
j=1 f (xi, xj), which is the velocity imposed by

the Newtonian model. For small ε, σ J
i (x) will be increasingly concentrated around this point,

and hence, the game model will impose a similar dynamic. Numerically, this is demonstrated in
Figure 2 for a 1-dimensional Newtonian model as in (1.1) driven by

f (x, x′) = −x − tanh
(
5
(
x′ − x

))
(1 + ‖x′ − x‖)2

. (2.16)

Example 2.8 (Undisclosed fast-reaction models are strictly richer than Newtonian models). In
the previous example, each agent j tried to persuade agent i to move with velocity f (xi, xj).
Deviations from this velocity were penalised in the payoff function with a quadratic function. By
minimising the sum of these functions, the compromise of the linear average of all f (xi, xj) then
yields the best payoff. By picking different penalties we may obtain other interesting behaviour
that cannot be described by Newtonian systems.

As above, let U be a (sufficiently large) compact subset of Rd , e(x, u) := u. Let g : Rd →R

be a Lipschitz non-negative ‘bump function’ with compact support, that is, g is maximal at 0
with g(0) = 1, and g(u) = 0 for ‖u‖ ≥ δ for some small δ > 0. Then we set

J
(
x, u, x′) := (

C − ‖x − x′‖) · g

(
u − x′ − x

‖x′ − x‖
)

− C · g(u),
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where C > 0 is a suitable, sufficiently large constant. Then approximately, the function u �→
1
N

∑
j J (xi, u, xj) is maximal at u = xj−xi

‖xj−xi‖ where j is the agent that is closest to i (if it is closer
than C and not closer than δ, in particular the last term in J is added to avoid that u = 0 is
the maximiser). Therefore, approximately, we have created a model, where agents are attracted
with unit speed by their nearest neighbours, but not by other agents. Such a nonlinear trade-off
between the influences of the other agents is not obtainable by a Newtonian model.

Remark 2.9 (Fast-reaction limit in the fully general case). For the fully general setting (i.e. J
being also a function of u′), the study of the fast-reaction regime is a much harder problem as the
stationary state of mixed strategies (for fixed spatial locations) often depends on the initial mixed
strategies (σi)N

i=1, and thus, the fast-reaction limit is a ‘genuine’ quasi-static evolution problem.
We refer to [2, 66, 67] for derivation and well-posedness results of quasi-static evolutions of
critical points of nonconvex energies on the Euclidean space by means of vanishing-viscosity
methods. A similar analysis is in the course of development for nonconvex energies on Hilbert
spaces [1]. Data-driven evolutions of critical points have been considered in [4].

Well-posedness and mean-field limit of the undisclosed fast-reaction system. Similar to the
full model (2.2), we are also interested in a mean-field limit of the undisclosed fast-reaction
limit as the number of agents tends to infinity, N → ∞. A formal limiting procedure leads to the
equation

∂tμ(t) + div
(
vJ (μ(t)) · μ(t)

)= 0 (2.17)

where for x ∈R
d and ν ∈M1(Rd) we set

vJ (ν)(x) :=
∫

U
e(x, u)σ J (ν)(x, u) dη(u) (2.18)

σ J (ν)(x, ·) :=
exp

(
1

ε

∫
Rd J (x, ·, x′) dν(x′)

)
∫

U exp

(
1

ε

∫
Rd J (x, v, x′) dν(x′)

)
dη(v)

. (2.19)

Given x = (x1, . . . , xN ) ∈ [Rd]N and setting μN = 1
N

∑N
j=1 δxj , (2.15), (2.18) and (2.19) are

related through

σ J
i (x) = σ J

i (x1, . . . , xN ) = σ J
(
μN
)

(xi, ·) and vJ
i (x) = vJ

i (x1, . . . , xN ) = vJ
(
μN
)

(xi).

The key ingredient for the study of (2.15) and its limiting behaviour is to establish Lipschitz con-
tinuity of the fast-reaction equilibrium strategies and velocities with respect to payoff function
and particle locations.

Lemma 2.10. Let J , J ′ ∈ X and consider M > 0 such that M ≥ ‖J‖∞ + Lip(J ) and M ≥ ‖J ′‖∞ +
Lip(J ′). Let μ, μ′ ∈M1(Rd) and x, x′ ∈R

d. Then:

1. There exists C = C(M , ε) such that, for every u ∈ U,∣∣∣σ J (μ)(x, u) − σ J ′
(μ′)(x′, u)

∣∣∣≤ C
(
W1(μ, μ′) + ‖J − J ′‖∞ + ‖x − x′‖) (2.20)

and 1/C < σ J (μ)(x, u) < C.
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2. There exists C = C(M , e, ε) such that∥∥∥vJ (μ)(x) − vJ ′
(μ′)(x′)

∥∥∥≤ C
(
W1(μ, μ′) + ‖J − J ′‖∞ + ‖x − x′‖) . (2.21)

Proof. Let us define two continuous functions g, g′ : U →R as

g(u) =
∫
Rd

J (x, u, y) dμ(y) and g′(u) =
∫
Rd

J ′(x′, u, y) dμ′(y)

For every u ∈ U , using M ≥ ‖J‖∞ and M ≥ ‖J ′‖∞, we immediately obtain the global bounds
−M ≤ g(x) ≤ M and −M ≤ g′(x) ≤ M . Using the triangle inequality and the dual definition for
W1 in (1.9), we also estimate

|g(u) − g′(u)| ≤ C
(
W1(μ, μ′) + ‖J − J ′‖∞ + ‖x − x′‖) (2.22)

for C = C(M). Recall now that

σ J (μ)(x, u) = exp(g(u)/ε)∫
U exp (g(v)/ε) dη(v)

and σ J ′
(μ′)(x′, u) = exp(g′(u)/ε)∫

U exp (g′(v)/ε) dη(v)
.

Thus, (2.20) follows combining global boundedness of g, g′ with (2.22), the uniform bounds
1/C < σ J (μ)(x, u) < C are obtained in the same way, while (2.21) follows from (2.20) combined
with e ∈ Lipb(Rd × U ; Rd). �

For the discrete fast-reaction system, the following Lemma adapts the estimate (2.21) as one
in terms of discrete particle locations and their velocities.

Lemma 2.11 (Map to undisclosed fast-reaction agent velocity is Lipschitz continuous). For any
N > 0, consider the map

vJ :
[
R

d
]N → [

R
d
]N

, (x1, . . . , xN ) �→ (
vJ

1 (x1, . . . , xN ) , . . . , vJ
N (x1, . . . , xN )

)
associated with the fast-reaction ODE (2.15). Then, vJ is Lipschitz continuous under the distance
induced by ‖ · ‖N , with Lipschitz constant L = L(J , e, ε).

Proof. Fix any x, x′ ∈ [Rd
]N

and define μ = 1
N

∑N
j=1 δxi and μ′ = 1

N

∑N
j=1 δx′

i
. Then, by

Lemma 2.10, with J ′ = J , x = xi and x′ = x′
i, we have

∥∥vJ (μ)(xi) − vJ (μ′)
(
x′

i

)∥∥≤ C
(
W1(μ, μ′) + ‖xi − x′

i‖
)

for every i = 1, . . . , N , with C = C(J , e, ε). Using the definition of W1 in (1.8), we observe

W1(μ, μ′) ≤ 1

N

N∑
j=1

‖xi − x′
i‖ = ‖x − x′‖N
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so that

‖vJ (x) − vJ
(
x′)‖N = 1

N

N∑
i=1

‖vJ
i (x1, . . . , xN ) − vJ

i

(
x′

1, . . . , x′
N

) ‖
= 1

N

N∑
i=1

∥∥vJ (μ)(xi) − vJ (μ′)
(
x′

i

)∥∥≤ C

N

N∑
i=1

(‖x − x′‖N + ‖xi − x′
i‖
)= 2C‖x − x′‖N

which is the sought-after estimate. �

After clarifying what we mean by a solution of (2.17), we summarise the mean-field result
in Theorem 2.13, whose proof then builds on Lipschitz continuity of the velocity field in the
discrete system and follows by fairly standard arguments (see, e.g. [12, 14]).

Definition 2.12. We say a curve μ ∈ C([0, T]; (M1(Rd), W1)) solves (2.17) if μ(t) has uniformly
compact support for t ∈ [0, T] and

d

dt

∫
Rd

φ(x)dμ(t)(x) =
∫
Rd

∇φ(x) · vJ (μ(t))(x) dμ(t)(x) for every φ ∈ C∞
c (Rd).

Theorem 2.13 (Well-posedness and mean-field limit of undisclosed fast-reaction model). Let
J ∈ X , ε > 0, 0 < R̄ < +∞, and 0 < T < +∞. Define R = R̄ + T · ‖e‖∞. Then:

1. Given x̄N = (x̄N
1 , . . . , x̄N

N

) ∈ [Bd(R̄)]N there exists a unique trajectory xN =(
xN

1 , . . . , xN
N

)
: [0, T] → [Bd(R)]N of class C1 solving (2.15c) with xN (0) = x̄N . In

particular, μN (t) := 1
N

∑N
i=1 δxN

i (t) provides a solution of (2.17) for initial condition

μ̄N := 1
N

∑N
i=1 δx̄N

i
.

2. Given μ̄ ∈M1(Bd(R̄)) there exists a unique μ ∈ C([0, T]; (M1(Bd(R)), W1)) satisfying in the
weak sense the continuity equation (2.17) with initial condition μ(0) = μ̄.

3. For initial conditions μ̄1, μ̄2 ∈M1(Bd(R̄)) and the respective solutions μ1 and μ2 of (2.17)
one has the stability estimate

W1(μ1(t), μ2(t)) ≤ exp(C (t − s)) · W1(μ1(s), μ2(s)) (2.23)

for every 0 ≤ s ≤ t ≤ T, with C = C(J , e, ε, R̄, T).

Proof outline. The proof is rather standard and builds on the Lipschitz continuity of the
finite agents system (2.15). We highlight the main steps without in-depth details and refer to
Proposition 2.1 and Theorem 2.4 of [10], and references therein, for further information.

Part 1: finite agents setting. For given x̄N = (x̄N
1 , . . . , x̄N

N ) ∈ [Bd(R̄)]N , using the Lipschitz con-
tinuity provided in Lemma 2.11, there exists a unique curve xN : [0, T] → [Rd]N of class C1

solving (2.15) with xN (0) = x̄N . A direct estimate provides ‖∂xN
i (t)‖ ≤ ‖e‖∞, so that ‖xN

i (t)‖ ≤
R̄ + T · ‖e‖∞ for every t ∈ [0, T], i = 1, . . . , N . Furthermore, setting μN (t) := 1

N

∑N
i=1 δxN

i (t)

one can explicitly verify that μN solves (2.17) with initial condition μ̄N := 1
N

∑N
i=1 δx̄N

i
. This

establishes point 1.
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FIGURE 3. Convergence of the undisclosed model to the fast-reaction limit as λ → ∞. The payoff function
encourages agents to move to the origin, but penalises small pairwise distances (see Example 4.1 for a
detailed description). With λ small, agents cannot adjust their strategies fast enough. They overshoot the
origin and completely fail to avoid each other. The situation improves as λ increases. For λ = 100, the
model closely resembles the fast-reaction limit, in accordance with (2.24).

Part 2: mean-field solution as limit of finite agents solutions. Fix μ̄ ∈M1(Bd(R̄)). For N > 0,
let (μ̄N )N ⊂M1(Bd(R̄)) be a sequence of empirical measures such that W1(μ̄N , μ̄) → 0 as
N → ∞ and let (μN )N be the respective sequence of solutions of (2.17) with initial condi-
tions μ̄N . This sequence of curves (μN )N∈N ⊂ C([0, T]; (M1(Bd(R)), W1)) is equicontinuous and
equibounded. Therefore, an application of the Ascoli–Arzelà theorem provides a cluster point
μ ∈ C([0, T]; (M1(Bd(R)), W1)) such that, up to a subsequence, we have

lim
N→∞ W1

(
μN (t), μ(t)

)= 0 uniformly for t ∈ [0, T].

Invoking Lemma 2.10 for x = x′ and J = J ′ this implies ‖vJ
(
μN (t)

)
(x) − vJ (μ(t))(x)‖ → 0 uni-

formly in t ∈ [0, T], x ∈ Bd(R) as N → ∞. Consequently, the cluster point μ is a solution to (2.17)
with μ̄ as initial condition. This establishes the existence part of point 2.

Part 3: stability estimates. For fixed N , a stability estimate of the form ‖xN
1 (t) − xN

2 (t)‖N ≤
exp(C (t − s)) · ‖xN

1 (s) − xN
2 (s)‖N for solutions to the discrete system (2.15) follows quickly from

Grönwall’s lemma. Since the ‖ · ‖N -norm between two point clouds provides an upper bound
for the W1 distance between the respective empirical measures, this would provide point 3 for
empirical measures. The extension to arbitrary measures can be done as in the proof of Theorem
2.4 in [10]. This then provides uniqueness of the solution μ to (2.17) for initial condition μ̄ ∈
M1(Bd(R̄)), completing point 2.

Finally, we establish convergence of (2.13) to (2.15) (and their respective mean-field versions)
as λ → ∞. The proof is given in Section A.2 of the Appendix, a simple numerical example is
shown in Figure 3.

Theorem 2.14 (Convergence to fast-reaction limit in undisclosed setting as λ → ∞).

1. Discrete setting: For initial positions x(0) = (x1(0), . . . , xN (0)) ∈ [Bd(R̄)]N and initial
mixed strategies σ (0) = (σ1(0), . . . , σN (0)) ∈ SN

a,b let x(t) = (x1(t), . . . , xN (t)) and σ (t) =
(σ1(t), . . . , σN (t)) be the solution to the undisclosed model (2.13). For the same initial posi-
tions, let x∗∗(t) = (x∗∗

1 (t), . . . , x∗∗
N (t)) be the solution to the undisclosed fast-reaction model

(2.15) and let σ ∗∗(t) = (σ ∗∗
1 (t), . . . , σ ∗∗

N (t)) with σ ∗∗
i (t) = σ J

i (x∗∗(t)) be the corresponding
fast-reaction strategies.

Then, there exists C = C(a, b, R̄, J , e) (independent of N and i) such that for all t ∈ [0, ∞),
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‖x(t) − x∗∗(t)‖N ≤ C√
λ

· exp(t · C) (2.24)

and

‖σi(t) − σ ∗∗
i (t)‖L2

η(U) ≤ C√
λ

· exp(t · C) +
[

C

[
1

λ
+ exp

(
−λ t

C

)]]1/2

. (2.25)

So on any compact time horizon [0, T], we find that ‖x(t) − x∗∗(t)‖N → 0 uniformly in time
as λ → ∞. σ converges to σ ∗∗ uniformly in time on the interval [τ , T] for any τ > 0. Near
t = 0 we cannot expect uniform convergence of σ , since by initialisation it can start at a
finite distance from σ ∗∗(0), and thus, it takes a brief moment to relax to the vicinity of the
fast-reaction state.

2. Mean-field setting: For an initial configuration �̄ ∈M1(Ca,b), let � be the solution to the
entropic mean-field model (2.11) for a undisclosed J with λ ∈ (0, ∞). Let P : Ca,b →R

d,
(x, σ ) �→ x be the projection from Ca,b to the spatial component. Set μ̄ := P��̄ and let μ be
the solution to the fast-reaction mean-field model (2.17) with initial condition μ(0) = μ̄.

Then for the same C as in (2.24), one has

W1(μ(t), P��(t)) ≤ C√
λ

· exp(t · C). (2.26)

Remark 2.15. The statement about the mean-field equations can be expanded further: From the
fast-reaction solution μ on M1(Rd), one can construct a ‘lifted trajectory’ �̂ on M1(Ca,b), intu-
itively by attaching to each mass particle in μ at x its corresponding fast-reaction mixed strategy
σ J (μ)(x, ·), (2.19). Using the bounds (2.24) and (2.25), the continuity properties of σ J (μ)(x, ·)
(see Lemma 2.10) and arguing as in the proof of (2.26) one can then establish a W1-bound
between � and �̂.

3 Inference for entropic evolutionary games

After having introduced a new class of models for interacting agents, we now turn to the question
of how the payoff function J , that parametrises a model, can be inferred from data. Some remarks
are in order before we proceed.

3.1 Discussion

Our motivation is as follows: we observe a set of rational agents, for example, pedestrians in a
confined space, and want to learn about their interaction rules. As argued above (e.g. in Examples
2.7 and 2.8), undisclosed fast-reaction entropic games can be used to parametrise a rich class of
interaction behaviours, in particular subsuming Newtonian models. We may therefore hope that,
when feeding our observations into an inference functional for J , that by analysing and interpret-
ing the resulting payoff function we can learn something about the interaction rules of the agents.
We focus on the inference of J and assume that U , e and ε are known. We will demonstrate dur-
ing the numerical examples (Section 4) that it is usually possible to make plausible choices for U ,
e and that qualitatively equivalent choices yield qualitatively equivalent results for the inferred
J . One may also assume that ε = 1, since re-scaling ε can be compensated by re-scaling J in the
same way, see (2.15).
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In Section 3.2, we discuss a differential inference functional, proposed in analogy to (1.7), for
the full entropic game model, that is, without the undisclosed assumption and not in the fast-
reaction limit. For this we assume that we are able to observe the full dynamics, that is, physical
locations and velocities of the agents, as well as their mixed strategies and temporal derivatives,
(xi, ∂txi, σi, ∂tσi)N

i=1 and propose a functional that seeks to infer J by comparing its predictions
with the observed ∂tσi.

In many cases, it may not be possible to observe the mixed strategies σi, let alone their temporal
derivatives ∂tσi, since these may correspond to internal states of the agents that we, as external
observers, cannot perceive. In Section 3.3, we turn to the undisclosed fast-reaction setting, where
physical velocities and mixed strategies are functions of current physical locations, and show that
there one can still perform inference with limited observations. In Section 3.3.1, we propose an
inference functional, again in analogy to (1.7), that only requires the observation of the physical
locations xi and velocities ∂txi. Although it is nonconvex, we observe in our numerical examples
that it provides plausible payoff functions J , indicating that nonconvexity does not seem to be a
practical issue.

In Section 3.3.2, we propose a convex inference functional that requires knowledge of the
mixed strategies σi, but not of their temporal derivatives. This may be practical in two cases:
In Section 4.1, we propose a scheme to provide such data from observed physical velocities,
intuitively by ‘inverting’ the approximation scheme of Example 2.7. Also, mixed strategies could
represent a stochastic movement of agents and the ‘smooth’ physical velocity ∂txi is merely
the result of an averaging over a smaller time scale. Should we indeed be able to observe the
fluctuating agent dynamics at small time scales, this could be used to approximate the mixed
strategies. This was one of our motivations for providing Example 4.3.

For both functionals, there are natural candidates for the mean-field limit. We analyse these
two functionals in more detail in Section 3.3.3, providing an estimate of the approximation qual-
ity (Theorem 3.3), as well as existence of minimisers and consistency in the mean-field limit
(Theorem 3.6).

Now, we formalise our notion of admissible observations for inference and a notion of
consistency of observations in the mean-field limit.

Assumption 3.1 (Admissible observations).

1. Discrete observation: For a fixed number of agents N, a time horizon T ∈ (0, ∞), and
some radius R ∈ (0, ∞) we observe the agents’ physical paths xN := (

xN
1 , . . . , xN

N

) ∈
C1([0, T], Bd(R))N with velocities vN := (

vN
1 , . . . , vN

N

)
, vN

i = ∂txN
i .

Optionally, in addition we may also observe the agents’ mixed strategies σ N :=(
σ N

1 , . . . , σ N
N

) ∈ C([0, T], Sa,b)N for some bounds 0 < a ≤ b < ∞ in the definition of Sa,b,
see (2.1). The mixed strategies are consistent with the observed velocities, that is,

vN
i (t) =

∫
U

e
(
xN

i (t), u
)
σ N

i (t)(u) dη(u). (3.1)

Note: The assumption that the agent’s velocity is exactly consistent with their mixed strategy
may seem unrealistic, as the velocity may be subject to other external influences and noise.
However, we will subsequently often assume that the mixed strategies are not observed

https://doi.org/10.1017/S0956792522000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000043


Data-driven entropic spatially inhomogeneous evolutionary games 125

directly, but are only inferred from the velocities. In this case, satisfying assumption (3.1)
is quite natural. In other cases, assumption (3.1) will be used in Theorem 3.3 to bound the
error on trajectories based on the error on strategies. If (3.1) only holds approximately, an
additional corresponding error term will appear there.

2. Consistent mean-field behaviour: For fixed T, R, for an increasing sequence of N we make
observations as specified in part 1, and there is a limit observation t �→ μ∞(t) ∈M1(Bd(R))
with a velocity field t �→ v∞(t) such that

W1
(
μN (t), μ∞(t)

)→ 0 uniformly in t ∈ [0, T] where μN (t) := 1

N

N∑
i=1

δxN
i (t), (3.2)

∫ T

0

1

N

N∑
i=1

〈
φ
(
t, xN

i (t)
)

, vN
i (t)
〉

dt →
∫ T

0

∫
Rd

〈
φ(t, x), v∞(t)(x)

〉
dμ∞(t)(x) dt (3.3)

for all φ ∈ [C([0, T] ×R
d
)]d

, and∫ T

0

1

N

N∑
i=1

‖vN
i (t)‖2 dt →

∫ T

0

∫
Rd

‖v∞(t)(x)‖2 dμ∞(t)(x) dt < ∞. (3.4)

(3.2) implies that physical locations are consistent, (3.3) implies that observed velocities
converge in a weak sense, and (3.4) implies that they are consistent. Intuitively, for (3.4) to
hold, mass particles that converge to the same limit location x as N → ∞ need to converge
to the same velocity, otherwise Jensen’s strict inequality contradicts (3.4).

If we also observe mixed strategies in part 1, then the bounds 0 < a ≤ b < ∞ are uniform
in N and there also is a mixed strategy mean-field (t, x) �→ σ∞(t)(x) ∈ Sa,b such that

∫ T

0

1

N

N∑
i=1

∫
U

φ
(
t, xN

i (t), u
) · σ N

i (t)(u) dη(u) dt

→
∫ T

0

∫
Rd

∫
U

φ(t, x, u) · σ∞(t)(x)(u)dη(u) dμ∞(t)(x) dt (3.5)

for all φ ∈ [C([0, T] ×R
d × U

)]d
and

∫ T

0

1

N

N∑
i=1

∫
U

σ N
i (t)(u) log

(
σ N

i (t)(u)
)

dη(u) dt

→
∫ T

0

∫
Rd

∫
U

σ∞(t)(x)(u) log(σ∞(t)(x)(u))dη(u) dμ∞(t)(x) dt. (3.6)

These are direct equivalents of (3.3) and (3.4).

In particular, observations are admissible when they were generated by an entropic game
model with some ground truth payoff J .
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Lemma 3.2. Let J ∈ X , T > 0, R̄ > 0, N ∈N.

1. For initial locations x̄N = (x̄N
1 , . . . , x̄N

N

) ∈ [Bd(R̄)]N the induced solution to (2.15) with cor-
responding velocities and mixed strategies provides an admissible discrete observation in
the sense of Assumption 3.1, part 1, for R = R̄ + ‖e‖∞ · T.

2. Let μ̄ ∈M1(Bd(R̄)) and consider a sequence of empirical measures (μ̄N )N in M1(Bd(R̄)) of
the form

μ̄N = 1

N

N∑
i=1

δx̄N
i

, x̄N
i ∈ Bd(R̄), such that lim

N→∞ W1
(
μ̄N , μ̄

)= 0.

Then, the solutions to (2.15) with initial positions
(
x̄N

1 , . . . , x̄N
N

)
are a suitable sequence

of discrete observations in the sense of Assumption 3.1, part 2, and the solution to (2.17)
provides a corresponding limit observation.

The proof is quite straightforward and provided in Section A.3.
In the following, we assume that observations are admissible in the sense of Assumption 3.1.

3.2 Differential inference functional

In this section, we discuss an inference functional for payoff function J , in close analogy to
(1.7). For now, we assume that in addition to

(
xN , vN , σ N

)
we can even observe ∂tσ

N
i for all

i ∈ {1, . . . , N}. Our differential inference functional is therefore aimed at recovering J , by com-
paring the observed ∂tσ

N
i with the predictions by the model (2.2b). In (1.7), the discrepancy

between observed vN
i and predicted velocities is penalised by the squared Euclidean distance.

As metric to compare the observed ∂tσ
N
i and the prediction by (2.2b), we choose the (weak)

Riemannian tensor of the Hellinger–Kakutani and Fisher–Rao metrics. That is, we set for a base
point σ ∈ Sa,b, and two tangent directions δμ, δν ∈ Lp

η(U) attached to it,

dσ (δμ, δν)2 := 1

4

∫
U

(δμ − δν)2

σ
dη. (3.7)

A potential inference functional for J could then be:

EN
σ̇ (J ) :=

1

T

∫ T

0

⎡
⎢⎣ 1

N

N∑
i=1

dσN
i (t)

⎛
⎝∂tσ

N
i (t),

1

N

N∑
j=1

f J
(

xN
i (t), σ N

i (t), xN
j (t), σ N

j (t)
)

+ f ε
(
σ N

i (t)
)⎞⎠2

⎤
⎥⎦ dt.

(3.8)

Minimisation should be restricted to a sufficiently regular and compact class of J . Since dσ (·, ·)2

is quadratic in its arguments and f J is linear in J , the mismatch term is again quadratic in J and
thus restricted to a suitable class, this is a convex optimisation problem.

In Section 4.3, we provide a simple example where we simulate trajectories (xN , σ N ) accord-
ing to the dynamics (2.2), based on a given J , and then obtain a corresponding minimiser Ĵ
of (3.8). We then show that trajectories simulated with J and Ĵ are close even when the initial
configurations are not drawn from training data used to infer Ĵ . Indeed, upon selecting a suitable
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functional framework, one can in principle extend the analysis in [10] (and the analysis presented
here below) to prove existence of minimisers, limiting behaviour as N → ∞ and ability of the
inferred model to generalise.

However, application to real data seems challenging, as one usually only observes
(
xN , vN

)
but not σ N , let alone variations ∂tσ

N
i . To address this, we propose in the next section two new

inference functionals for the undisclosed fast-reaction setting.

3.3 Undisclosed fast-reaction inference functionals

3.3.1 Penalty on velocities

The inference situation is simplified in the undisclosed fast-reaction setting since now, for fixed
payoff function J , mixed strategies and physical velocities are a direct function of physical
locations. We can therefore attempt to minimise the discrepancy between observed physical
velocities and those predicted by J .

For a discrete admissible observation
(
xN , vN

)
, as in Assumption 3.1, we define the inference

functional on hypothetical payoff functions J ∈ X

EN
v (J ) := 1

T

∫ T

0

[
1

N

N∑
i=1

∥∥vN
i (t) − vJ

i

(
xN

1 (t), . . . , xN
N (t)
)∥∥2

]
dt. (3.9a)

The natural candidate for the limit functional is

Ev(J ) := 1

T

∫ T

0

∫
Rd

∥∥v∞(t)(x) − vJ
(
μ∞(t)

)
(x)
∥∥2

dμ∞(t)(x)dt, (3.9b)

where the couple (μ∞, v∞) is the corresponding limit of
(
xN , vN

)
N

as introduced in
Assumption 3.1, point 2.

This functional is intuitive and requires only the observations of
(
xN , vN

)
and no observations

about the mixed strategies. However, it is not convex. This could potentially lead to poor local
minima, but we did not observe such problems in our numerical examples.

The motivation for studying mean-field inference functionals is twofold. First, it establishes
asymptotic consistency of inference in the limit of many agents. Second, the mean-field equa-
tion yields an approximation for the expected behaviour of the finite-agent system under many
repetitions with random initial conditions. While we do not prove this approximation property,
the existence of a consistent mean-field inference functional is still an encouraging indicator that
inference over the collection of many finite-agent samples will yield a reasonable result.

3.3.2 Penalty on mixed strategies

In the case where information about the mixed strategies of the agents is available (see
Section 3.1 for a discussion), the discrepancy between observed mixed strategies and those
predicted by J can be used for inference. We choose to measure this discrepancy with the
Kullback–Leibler (KL) divergence.
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Similar to above, for a discrete admissible observation
(
xN , vN , σ N

)
, we define the inference

functional for hypothetical payoff functions J ∈ X

EN
σ (J ) := 1

T

∫ T

0

[
1

N

N∑
i=1

KL
(
σ N

i (t)|σ J
i

(
xN

1 (t), . . . , xN
N (t)
))]

dt. (3.10a)

The natural candidate for the limit functional is

Eσ (J ) := 1

T

∫ T

0

∫
Rd

KL
(
σ∞(t)(x, ·)|σ J (μ∞(t))(x, ·))dμ∞(t)(x) dt

= 1

T

∫ T

0

∫
Rd

∫
U

log

(
σ∞(t)(x, u)

σ J (μ∞(t))(x, u)

)
σ∞(t)(x, u)dη(u)dμ∞(t)(x) dt, (3.10b)

where (μ∞, σ∞) are as introduced in Assumption 3.1, point 2. Due to the particular structure of
stationary mixed strategies, (2.15), and the KL divergence, functionals (3.10) are convex on X
(Proposition A.5), which is a potential advantage over (3.9).

3.3.3 Analysis of the inference functionals

We now provide some theoretical results about the inference functionals of Sections 3.3.1 and
3.3.2. The first result establishes that the obtained minimal inference functional value provides
an upper bound on the accuracy of the trajectories that are simulated with the inferred Ĵ (the
proof builds upon the proof of [10, Proposition 1.1] and is given in Section A.3).

Theorem 3.3. Let Ĵ ∈ X and
(
xN , vN , σ N

)
be an admissible discrete observation for N agents (cf.

Assumption 3.1, point 2). Let x̂N be the solution of (2.15) induced by Ĵ for the initial condition
x̂N (0) = xN (0) = (x̄N

1 , . . . , x̄N
N

) ∈ [Rd]N . Then,

‖xN (t) − x̂N (t)‖N ≤ C
√
EN

v (Ĵ ) and ‖xN (t) − x̂N (t)‖N ≤ C
√
EN

σ (Ĵ )

for all t ∈ [0, T], with C = C(T , Ĵ , e, ε). Analogously, let (μ∞, σ∞) as introduced in
Assumption 3.1, point 1 and let μ̂ be the solution of (2.17) induced by Ĵ for the initial condition
μ̄ = μ∞(0). Then,

W1(μ∞(t), μ̂(t)) ≤ C
√
Ev(Ĵ ) and W1(μ∞(t), μ̂(t)) ≤ C

√
Eσ (Ĵ )

for all t ∈ [0, T] and the same constant C as above.

Next, we address the existence of minimising payoff functions, both in theory and numerical
approximation. At the theoretical level, we need to ensure compactness of minimising sequences,
which we obtain here by restriction to a suitable compact space. At the numerical level, we are
interested in finite-dimensional approximations of this space that asymptotically are dense as the
discretisation is refined.

Remark 3.4 (Compactness and finite-dimensional approximation). In order to obtain compact-
ness, we restrict the variational problems to suitable subspaces of X. In particular, for R, M > 0,
let us define
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XR,M = {J ∈ Lipb

(
Bd(R) × U × Bd(R)

) | ‖J‖∞ + Lip(J ) ≤ M
}

.

The parameter R bounds the learning domain in space: inference where we have no data avail-
able is simply meaningless. The parameter M will ensure compactness with respect to uniform
convergence.

For each R, M > 0, we consider a family of closed convex subsets
(
X N

R,M

)
N∈N ⊂ XR,M satis-

fying the uniform approximation property: for every J ∈ XR,M there exists a sequence (JN )N∈N
uniformly converging to J with JN ∈ X N

R,M for each N ∈N. These approximating spaces can be
selected to be finite dimensional.

An alternative way to obtain compactness would be via the introduction of additional regu-
larising functionals. This is discussed in Section 4.1. Conceptually, both approaches serve the
same purpose and we find that the former is more convenient for analysis while the latter is more
attractive numerically.

The following key lemma ensures convergence of the error functionals under uniform
convergence of the payoff functions and/or W1 convergence of measures.

Lemma 3.5. Let
(
xN , vN , σ N

)
N

be a family of admissible observations and EN
v , Ev , EN

σ and Eσ

be the corresponding discrete and continuous inference functionals (3.9) and (3.10). For M > 0,
let
(
JN
)

N
be a sequence of payoff functions in XR,M , converging uniformly to some J ∈ XR,M as

N → ∞. Then,

lim
N→∞ EN

v

(
JN
)= Ev(J ) and lim

N→∞ EN
σ

(
JN
)= Eσ (J ). (3.11)

Proof. Thanks to Assumption 3.1, point 2, we have W1
(
μN (t), μ∞(t)

)→ 0 uniformly in t ∈
[0, T] as N → ∞. Lemma 2.10 provides

∥∥∥vJN (
μN (t)

)
(x) − vJ (μ∞(t))(x)

∥∥∥≤ C ·
(

W1
(
μN (t), μ∞(t)

)+ ‖Ĵ
N − Ĵ‖

)

uniformly in x ∈ Bd(R), t ∈ [0, T] and N . Hence, vJN (
μN (t)

)
(x) converges uniformly to

vJ (μ∞(t))(x) in C([0, T] × Bd(R); Rd). Since ‖vJ (μ∞(t))(x)‖ ≤ ‖e‖∞ for every x ∈ Bd(R) and
t ∈ [0, T], we also have ‖vJN (

μN (t)
)

(x)‖2 → ‖vJ (μ∞(t))(x)‖2 uniformly in C([0, T] × Bd(R)).

Recalling that vJN

i

(
xN

1 (t), . . . , xN
N (t)
)

(x) = vJN (
μN (t)

) (
xN

i (t)
)

by definition and using the con-
vergence of velocities provided by Assumption 3.1, point 2, the result follows by passing to the
limit in the definition:

lim
N→∞ EN

v

(
JN
)= lim

N→∞
1

T

∫ T

0

[
1

N

N∑
i=1

∥∥∥vN
i (t) − vJN

i

(
xN

1 (t), . . . , xN
N (t)
)∥∥∥2
]

dt

= 1

T

∫ T

0

∫
Rd

∥∥v∞ (μ∞(t)
)

(x) − vJ
(
μ∞(t)

)
(x)
∥∥2

dμ∞(t)(x)dt = Ev(J ).

An analogous derivation applies to the σ -energies (3.10) where we use the Lipschitz estimate
(2.20) and the σ -part of Assumption 3.1, point 2. �
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We are now ready to state the main result concerning the inference functionals and conver-
gence of minimisers for EN

v and EN
σ .

Theorem 3.6. Let
(
xN , vN , σ N

)
N

be a family of admissible observations and fix M > 0. Then:

1. The functionals (3.9a) and (3.10a) have minimisers over X N
R,M and (3.9b) and (3.10b) have

minimisers over XR,M .

2. For N > 0, let

JN
v ∈ argminJ∈X N

R,M
EN

v (J ) and JN
σ ∈ argminJ∈X N

R,M
EN

σ (J ).

The sequence
(
JN
v

)
N

, resp.
(
JN
σ

)
N

, has a subsequence converging uniformly to some
continuous function Jv ∈ XR,M , resp. Jσ ∈ XR,M , such that

lim
N→∞ EN

v

(
JN
v

)= Ev(Jv) and lim
N→∞ EN

σ

(
JN
σ

)= Eσ (Jσ ). (3.12)

In particular, Jv (resp. Jσ ) is a minimiser of EJ
v (resp. EJ

σ ) over XR,M .

Proof.
Part 1: existence of minimisers. All functionals (3.9) and (3.10) are continuous in J with respect
to uniform convergence which follows from Lemma 3.5 setting the initial measure μ̄ to be the
empirical one (i.e. just looking at converging J for fixed trajectories). The sets XR,M and X N

R,M are
compact with respect to uniform convergence. Therefore, minimisers exist.
Part 2: convergence of minimisers. The proof is inspired by [10, Section 4.2]. Since X N

R,M ⊂
XR,M and the latter is compact, the sequence of minimisers

(
JN
v

)
N

with JN
v ∈ X N

R,M must have a
cluster point Jv in XR,M . For simplicity, denote the converging subsequence again by

(
JN
v

)
N

. Let

J̃ ∈ XM ,R. By the uniform approximation property of X N
R,M let

(
J̃N
)

N
be a sequence converging

uniformly to J̃ and J̃N ∈ X N
R,M . By Lemma 3.5 and optimality of each JN

v ,

Ev(Jv) = lim
N→∞ EN

v

(
JN
v

)≤ lim
N→∞ EN

v

(
J̃N
)= Ev(J̃ ).

Therefore, Jv minimises Ev and the optimal values converge. The same argument covers the
σ -functionals (3.10) and the corresponding sequence of minimisers

(
JN
σ

)
N

. �

We conclude this section with a couple of comments and remarks on the interpretation of
results in Theorem 3.6.

Remark 3.7 (Realisability of data). In general, observed data may or may not be realisable by
the model. This distinguishes two regimes.

• Assume there is a true regular J that generated the observed data (as for example in
Lemma 3.2). If we pick M large enough in Theorem 3.6, so that J ∈ XR,M , one has Ev(Jv) ≤
Ev(J ) = 0 and analogously Ev(Jσ ) ≤ Eσ (J ) = 0. Hence, minimisers of Ev and Eσ over XR,M

reproduce exactly the trajectories of the system thanks to Theorem 3.3.

• Assume there is no true regular J that generated the observed data. This means that, no
matter how large M is taken in Theorem 3.6, the minimal limit energies Eσ (Jσ ) and Ev(Jv)
may not be equal to 0. However, the bound on the trajectories generated by the inferred
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model, Theorem 3.3, still holds and so the remaining residual values Eσ (Jσ ) and Ev(Jv) are
then an indication for how well our parametrised family of interaction models was able to
capture the structure in the observed data.

Remark 3.8 (Non-uniqueness of minimisers). We point out that the parametrisation of an
entropic game model by a payoff function J is not unique. Replacing J by Ĵ

(
x, u, x′, u′) :=

J
(
x, u, x′, u′)+ g

(
x, x′, u′) yields the same agent trajectories for arbitrary g : � × � × U. This

can be seen from the fact that f J+g = f J for f J and f J+g as given in (2.3). Intuitively, given some
x, x′ and u′, which strategy u is most attractive does not change, if we add a constant benefit
for all potential choices. The analogous observation holds for the undisclosed case. This implies
that minimisers of (3.8), (3.9) and (3.10) are not unique. This has to be taken into account when
we try to interpret an inferred J. In our numerical examples with the undisclosed fast-reaction
model, we usually made additional structural assumptions on J (see Section 4.1) and as a conse-
quence did not observe issues with non-unique minimisers. The phenomenon is encountered in a
proof-of-concept example on the differential inference functional, Section 4.3.

4 Numerical experiments

In this section, we present some numerical examples for the entropic game models of Section 2
and their inference with the functionals of Section 3 to provide a basic proof-of-concept and
some intuition about their behaviour.

4.1 Numerical setup

Preliminaries and discretisation. We assume for simplicity that the strategy space U is finite,
that is, U = {u1, . . . , uK} for some K > 0 and fix the reference measure η =∑K

k=1
1
K δuk as the

normalised uniform measure over U .
For a system of N agents starting at positions x1(0), . . . , xN (0), we observe S snapshots of the

evolution at times ts = s · T
S for s = 1, . . . , S, so that we are given locations {xi(ts)}s,i, velocities

{∂txi(ts)}s,i and (sometimes) mixed strategies {σi(ts)}s,i where indices s and i run from 1 to S and
1 to N respectively. Here, σi(ts) = (σi,1(ts), . . . , σi,K(ts)) is a discrete probability density with
respect to η.

Let � =∏d
i=1[�i, ri], �i, ri ∈R, be the smallest hypercube containing all observed locations.

We discretise � by a regular Cartesian grid and describe the unknown payoff J by its val-
ues J (·, uk , ·) at grid points for uk ∈ U (or J (·, uk , ·, uk′ ) in the fully general setting). Between
grid points, J is extended by coordinate-wise linear interpolation, that is, we consider piecewise
d-linear finite elements over hypercubes.

Within this setting, the inference functional (3.10) reduces to the discrete error functional

EN
σ (J ) = 1

SNK

S∑
s=0

N∑
i=1

K∑
k=1

log

(
σi,k(ts)

σ J
i,k(ts)

)
σi,k(ts), (4.1)

where for s ∈ {0, . . . , S}, i ∈ {1, . . . , N} and k ∈ {1, . . . , K}, the optimal mixed strategy at time
ts is given by (2.15) as
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σ J
i,k(ts) = σ J

i (x1(ts), . . . , xN (ts))(uk) =
exp

(
1

εN

∑N
j=1 J (xi(ts), uk , xj(ts))

)
1
K

∑K
k′=1 exp

(
1

εN

∑N
j=1 J (xi(ts), uk′ , xj(ts))

) .

Similarly, the inference functional (3.9) reduces to the discrete functional

EN
v (J ) = 1

SN

S∑
s=0

N∑
i=1

∥∥vJ
i (ts) − ∂txi(ts)

∥∥2
, (4.2)

where

vJ
i (ts) = vJ

i (x1(ts), . . . , xN (ts)) = 1

K

K∑
k=1

e (xi(ts), uk) σ J
i,k(ts).

Reducing dimensionality. When d ≥ 2, describing a general function J : � × U × � →R

where � ⊂R
d (or even � × U × � × U →R in the fully general setting) requires many degrees

of freedom (one value for each node on the grid) and inferring them from data in a reliable way
would require a large set of observations. After inference, interpreting such a general function
to understand the interactions between agents can be a daunting task. For these two reasons,
we may wish to incorporate some prior knowledge on the structure of J via a suitable ansatz.
A prototypical example is

J
(
x, u, x′)= J1(x, u) + J2(x′ − x, u), (4.3)

where the first term models how a single agent prefers to move by itself depending on its abso-
lute location, and the second term models a translation invariant pairwise interaction with other
agents. This reduces the dimensionality from one function over Rd × U ×R

d to two functions
over Rd × U . Further simplifications can be made, for instance, by assuming that the interac-
tion is also rotation invariant. Such parametrisations are very common in Newtonian models,
see for instance [10], where radially symmetric interaction functions are assumed. Unless noted
otherwise, we will in the following use the ansatz (4.3) in our experiments.

Regularisation and dropping the Lipschitz constraints. Even after the reduction (4.3), infer-
ring the coefficients of J is a high-dimensional nonlinear inverse problem. We may observe no
(or very few) agents near some grid points and thus have no reliable data to set the corresponding
coefficients of J directly. A common approach to avoiding ill-posedness is to add regularisation
to the minimisation problem. Intuitively, this will diffuse information about observations over
the grid to some extent. For regularisation in �, we use the squared L2-norm of the gradient of J ,
which boils down to weighted sums of the finite differences between grid points. For the strategy
space U , one can in principle do the same, although this was not necessary in our examples.
When J is split as in (4.3), a regulariser can be applied separately to each term. The regularised
version of (4.1) then becomes

EN
σ (J ) + λ1 ·R1(J1) + λ2 ·R2(J2). (4.4)

Of course, over-regularisation will lead to loss of contrast and high-frequency features of J . The
effect of under-regularisation is illustrated in Example 4.5.
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While in Theorem 3.6 we consider increasingly finer discretisations X N
R,M , N → ∞, of the

payoff function space XR,M , in our numerical examples a fixed resolution is entirely sufficient
(approximately 30 grid points along any spatial dimension). On a fixed grid, the Lipschitz and L2-
gradient semi-norms are equivalent. Consequently, for simplicity, in our numerical experiments
we may drop the explicit constraint on the Lipschitz constant of J and only use the regularisation
term to impose regularity. This has the advantage that our finite-dimensional discrete problem is
then unconstrained, and we may approach it with quasi-Newton methods such as L-BFGS, for
which we use the Julia package Optim [52].

Inferring σi(ts) from observations. In many situations, we are not able to observe the mixed
strategies of agents, but merely their locations and velocities. We can then decide to use the
nonconvex velocity-based error functional (4.2). Alternatively, in case we want to optimise the
convex inference functional EN

σ (4.1) instead, we can try to infer some meaningful σi(ts) from the
observed velocities. In both cases, we need to make suitable choices for U and e. Unless stated
otherwise, we pick U as a discrete subset of Rd such that observed velocities lie in the (interior
of the) convex hull of U and pick e(x, u) := u. This means that every observed velocity can be
reproduced by some mixed strategy. As a heuristic method for inferring a viable mixed strategy
σ from a velocity v, we propose to solve the following minimisation problem:

arg min

{∫
U

[
ε · log(σ (u)) + ‖u − v‖2

]
σ (u) dη(u)

∣∣∣∣σ ∈ Sa,b,
∫

U
u · σ (u) dη(u) = v

}
(4.5)

The constraint enforces that σ reproduces the observed velocity v. The term ‖u − v‖2 σ (u)
encourages σ to be concentrated in the vicinity of v in U , whereas the entropic term ε ·
log(σ (u)) σ (u) keeps σ from collapsing onto a single point. It is easy to see that minimis-
ers of (4.5) are of the form σ (u) = A · exp(−‖u − ṽ‖2/ε) where A is a normalisation factor
and ṽ is a velocity close to v, potentially slightly shifted to make sure that the constraint∫

U u · σ (u) dη(u) = v is satisfied. (4.5) is readily solved by standard methods. We consider this
approach a heuristic ‘inverse’ of the approximation of Newtonian models by game models, as
outlined in Example 2.7.

Observations from forward models: Subsampling and multiple realisations. In all the exam-
ples here below, observations are obtained by means of simulating a forward model with explicit
Euler-stepping with time-step size �t = 0.02. Since the numerical complexity of our inference
functionals grows linearly with the number of observations, we usually choose to sub-sample the
trajectories in time, keeping only every δ-th step, since intuitively the information contained in
subsequent steps is largely redundant as agents are confronted with a very similar configuration.
Unless noted otherwise, we set δ = 2.

The quality of the reconstructed model is highly related to the data quality: more observations
in a given region imply a better reconstruction of the payoff function in that specific region.
Generally, if we consider as inputs only data coming from a single realisation of the system
we have highly correlated observations, which tend to concentrate only on a small subset of the
reconstruction domain. Vaster regions of the domain are then explored taking N → ∞. However,
another option to enhance the quality of the reconstructed model is to combine data from multiple
realisations with different initial conditions, that is, we fix the number of agents N and simulate
the system for multiple different initial conditions. This provides a good coverage of the domain.
Extending the functionals in Section 3 to multiple observations is straightforward.
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4.2 Learning from undisclosed fast-reaction game models

We now begin with relatively simple numerical examples: an explicit game model is fixed
(including U , e, J ), simulations according to this model are performed and subsequently the
payoff function is inferred from the observations. By possibly re-scaling J , we may w.l.o.g.
set ε = 1 for all numerical experiments, see (2.15). In this section we focus on the undisclosed
fast-reaction setting. A proof of concept of inference for the full entropic game models via the
differential functional of Section 3.2 is discussed in Section 4.3.

Example 4.1 (Game model, d = 1). Let d = 1, U = {−1, +1} and e(x, u) = u. We set

J
(
x, u, x′) := J1(x, u) + J2(x′ − x, u), J1(x, u) := −u · x,

J2(�x, u) := −u · tanh(5�x) · (max
{
1 − |�x|2, 0

})2
. (4.6)

J1 encourages agents to move towards the origin x = 0; for example, for x > 0 one has
J1(x, −1) > J1(x, +1), thus preferring strategy (and velocity) u = −1 over u = +1. J2 implements
repulsion between nearby agents: when �x ∈ (0, 1), that is, the ‘other agent’ is to the right of ‘me’
and relatively close, then J2(�x, −1) > J2(�x, +1), and I am encouraged to move left.

We set N = 8, simulated 100 instances over a time span of 0.2, collecting 5 data points per
instance, that is, a total of 500 observed configurations (consisting of locations and mixed strate-
gies). In each instance, initial locations are sampled uniformly from [−1, 1]. Observed relative
locations between two agents are thus distributed over [−2, 2]. Describing the discrete J required
178 coefficients. Since observed mixed strategies are available in this example, we use the energy
(4.1) for inference augmented with a regulariser as discussed in Section 4.1, with λ1 = λ2 = 10−6,
see (4.4). The results are illustrated in Figure 4. We find that, as intended, the model describes
agents moving towards the origin while avoiding getting too close to each other. The functions
J1 and J2 are accurately recovered from the data. For newly generated initial conditions, that
is, not taken from the training data, the trajectories simulated with the inferred J are in excel-
lent agreement with the underlying true model, demonstrating that the inferred model is able to
generalise.

Example 4.2 (Towards the mean-field regime). We can also explore the mean-field regime
numerically. Figure 5 shows trajectories for the same model as in the previous example for
an increasing number of particles where the initial locations are sampled from some underlying
distribution. As anticipated, the behaviour approaches a consistent limit.

Inference can also be performed for larger numbers of particles. We applied the same approach
as in the previous example with N = 100 agents. Since we are dealing with a large number of
agents, already a small number of configurations carries enough information for the inference.
Thus, we simulate 10 instances over a time span of 0.02 with time-step size �t = 0.002, collect-
ing 2 data points per instance; that is, a total of 20 observed configurations (for locations and
mixed strategies). In each instance, initial locations are sampled uniformly from [−1, 1]. The
inferred payoff function is essentially identical to the one obtained in Figure 4.

Example 4.3 (Game model, d = 1, noisy data). We repeat the previous example with some added
noise. We consider the same set of observations, but the observed mixed strategies are corrupted
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FIGURE 4. Inference from 1d observations of an undisclosed fast-reaction system. (a,b): reconstruction of
the payoff function. (c): distribution of the data in the training set. (d): comparison between true trajectories
(solid lines) and trajectories generated by the inferred model (dashed lines) for two new realisations (not
part of the training data).

FIGURE 5. Numerical approximation of the mean-field limit. The forward model of Example 4.1 is simu-
lated for an increasing number of agents. Each panel shows a discrete histogram of the particle distribution
over time. As N increases, the histograms approach a consistent limit.

by re-sampling: For a given ‘true’ simulated σ , we draw 20 times from U, according to σ and now
use the resulting empirical distribution for inference. These new corrupted σ provide corrupted
velocities predictions: in our example, the overall standard deviation between exact and corrupted
velocities is ≈ 0.2 (with the range of admissible velocities being [−1, 1]). This could model
the situation where observation of the mixed strategies is imperfect or by observing very noisy
(stochastic) agent movement and using empirical distributions of agent velocities over short time
intervals as substitute for mixed strategies. The results are shown in Figure 6, for parameters
λ1 = λ2 = 10−5 to enforce more regularity due to noisy inputs. The inferred payoff functions are
similar to the previous example with just a few spurious fluctuations. The trajectories simulated
with the inferred J are close to the (unperturbed) true trajectories, the error is consistently smaller
than the one caused by the re-sampling noise, indicating that inference also works well in noisy
settings.
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(a) (b)

FIGURE 6. Inference from noisy 1d observations of an undisclosed fast-reaction system. (a): reconstruction
of the payoff function for u = −1. (b): comparison between true trajectories (solid lines) and trajectories
generated by the inferred model (dashed lines) for multiple new realisations (not part of the training data).

Example 4.4 (Game model, d = 2). Let d = 2, U = {(1, 1), (−1, 1), (−1, −1), (1, −1)} ⊂R
2 and

e(x, u) = u. We use the same J defined in (4.6), thus combining a driving force towards the origin
x = (0, 0) and repulsion between nearby agents (we assume tanh to be applied componentwise to
vectors).

Data collection follows the same approach as in Example 4.1: for N = 8 agents we sim-
ulate 100 instances over a time span of 0.2, collecting 5 data points per instance, for a
total of 500 observed configurations. In each instance, initial locations are sampled uniformly
from [−0.75, 0.75]2. Observed relative locations between two agents are thus distributed over
[−1.5, 1.5]2, as displayed in Figure 7(b). Describing the discrete J required 10,656 coefficients,
resulting from a 30 × 30 spatial grid for J1 and a 42 × 42 spatial grid for J2. We use again the
energy (4.1) for inference with a regulariser on derivatives, with λ1 = λ2 = 10−5. The results are
illustrated in Figure 7. The recovered functions J1 and J2 reproduce the same structural features
of the exact ones and the trajectories simulated with the inferred J follow closely the underlying
true model (also in this case newly generated initial conditions are considered).

Example 4.5 (Under-regularisation). As is common in inverse problems, if the regularisation
parameters λ1, λ2 in (4.4) are chosen too high, one obtains an over-regularised result, where
the large penalty for spatial variation leads to a loss of contrast and high-frequency features of
J. Conversely, we may experience under-regularisation when the parameters are small and the
observed data does not cover the learning domain sufficiently, for example when we only observe
few realisations of the system. Such a case is illustrated in Figure 8(c) where the observations are
concentrated on a few one-dimensional trajectories. For weak regularisation, the reconstructed J
then tends to be concentrated on these trajectories as well, see Figure 8(a). And while the inferred
J may predict the agent behaviour with high accuracy on these trajectories, it will generalise very
poorly to different data. With stronger regularisation, J is extended beyond the trajectories in a
meaningful way, see Figure 8(b).

4.3 An example for differential inference

The ‘differential inference’ functional EJ ,N
σ̇ introduced in Section 3.2 was constructed in close

analogy to (1.7). We have argued that it may be challenging to apply to real data, as it would
require the observation of mixed strategies {σi(ts)}s,i and their temporal derivatives {∂tσi(ts)}s,i.
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(a)

(b) (c)

FIGURE 7. Inference from 2d observations of an undisclosed fast-reaction system. (a): inferred payoff func-
tion and ground truth for pure strategies (1,1) and (−1, 1). (b): distribution of the data in the training set
(agents locations and relative locations), dark blue : low, yellow: high. (c): comparison between exact trajec-
tories (solid lines) and trajectories generated by the inferred model (dashed lines) for two new realisations
(not part of the training data).

As a proof of concept, we now demonstrate that if these observations are indeed available,
the numerical setup described up to now can be easily adapted to EJ ,N

σ̇ . After discretisation,
EJ ,N

σ̇ reduces to a finite-dimensional quadratic objective. For a quadratic regulariser, such as the
squared L2-norm of the gradient of J , minimisation then corresponds to solving a linear system.
Alternatively, we can implement the Lipschitz constraint on J which amounts to adding lin-
ear constraints to the quadratic problem. We solve the resulting finite-dimensional optimisation
problem using the operator splitting approach provided by the OSQP solver [69].

As an example, we simulate the entropic regularised model in (2.2) for U = {−1, 1} and
J : R× {−1, 1} ×R× {−1, 1} defined by

J
(
x, u, x′, u′)= −1

2

(
u + u′) ((u + 1)x5 + (u − 1)(x + x′)3

)
Our choice of J is not motivated by providing a meaningful model for anything, but simply
to illustrate that inference works in principle. We collect data using the same sub-sampling
approach presented above: 8 agents, 100 realisations for a time span of 0.2, initial conditions
uniformly sampled from [−1, 1], only every other observation is kept for a total of 500 input
configurations. Observed positions (x, x′) with x 	= x′ are displayed in Figure 9(a). No particular
structure is assumed for J .

https://doi.org/10.1017/S0956792522000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000043


138 Mauro Bonafini et al.

(a)

(b)

(c)

FIGURE 8. Influence of the regularisation parameter. Analogous to Figure 7 but with fewer observations, as
displayed in (c). (a): reconstruction for low regularisation parameters, λ1 = λ2 = 10−15. (a): reconstruction
for higher regularisation parameters, λ1 = λ2 = 10−5. See Example 4.5 for more details.

(a) (b)

FIGURE 9. Inference from 1d observations generated with (2.2). (a): distribution of observed pairs (x, x′),
x 	= x′. (b): comparison between exact trajectories (solid lines) and inferred model (dashed lines) on new
realisations (not part of the training data).

As discussed in Remark 3.8, the optimal inferred J is not unique. As a remedy, we normalise
the reconstructed Jr such that Jr(x, 1, x′, −1) = Jr(x, −1, x′, 1) = 0. Comparisons for trajectories
are reported in Figure 9(b) for new randomly selected initial conditions with T = 8: trajectories
with the reconstructed Jr follow closely the trajectories generated with the true J .
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(a)

(b) (c)

FIGURE 10. Inference from 2d observations of a Newtonian system. Top rows: inferred payoff function for
pure strategies (1,1) and (−1, 1), bottom line: distribution of the data in the training set (agents locations
and pairwise distances) and comparison between exact Newtonian trajectories (solid lines) and trajectories
generated by the inferred game model (dashed lines).

4.4 Learning for Newtonian models

In Example 2.7, we have shown that entropic game models with fast reaction can also capture
Newtonian interaction models. In this section, we perform inference with an entropic game model
ansatz on data generated by a Newtonian model. As an example, we pick

∂txi(t) = 1

N

N∑
j=1

f
(
xi(t), xj(t)

)
with f (x, x′) = −x − tanh

(
5
(
x′ − x

))
(1 + ‖x′ − x‖)2

, (4.7)

where the function tanh is assumed to be applied componentwise. The first term in f encour-
ages agents to move towards the origin, the second term implements a pairwise repulsion at
close range. Trajectory data are collected for a two dimensional system: for N = 8 agents, we
simulate 100 instances of (4.7) over a time span of 0.2, collecting 5 data points per instance
to total 500 observed configurations. In each instance, initial locations are sampled uniformly
from [−0.75, 0.75]2. Observed relative locations between two agents are thus distributed over
[−1.5, 1.5]2, as displayed in Figure 10(b).

We use the parametrisation (4.3) for the payoff function. Unlike in the previous examples, the
original model does not involve a strategy set U or a map e. Thus, prior to inference, we have
to make informed choices for these. As in earlier examples, we choose U ⊂R

2 and e(x, u) = u
(i.e. pure strategies correspond directly to velocities) and in particular we pick U = {u1, . . . , uK}
such that the convex hull of U in R

2 contains (almost) all observed velocities, meaning that
they can be reproduced by suitable mixed strategies. So for (almost) every i and s, we can write
∂txi(ts) =∑k ukσk for some mixed strategy σ over U .
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FIGURE 11. Inferred payoff function via EN
v -based energy for pure strategies (1,0) and (0,1) (same

Newtonian input data as in Figure 10(c)).

FIGURE 12. Inferred payoff function via EN
σ -based energy for pure strategies (1,1) and (−1, 1) (same

Newtonian input data as in Figure 10(c)). To compare with EN
v -based reconstruction in Figure 10(a).

Example 4.6. We pick U = {(1, 1), (−1, 1), (−1, −1), (1, −1)} ⊂R
2, optimise the velocity-

based energy (4.2) because no mixed strategies are provided by observations and consider a
regulariser on derivatives as described in Section 4.1, with λ1 = λ2 = 10−5. Using the same
setup as Example 4.4 we describe the discrete J using 10656 coefficients (30 × 30 grid for J1

and 42 × 42 grid for J2). The results are illustrated in Figure 10. The recovered functions J1 and
J2 have the same structure as the ones in Example 4.4: the qualitative behaviour of the two sys-
tems is indeed the same. In Figure 10(c), we simulate a couple of dynamics with newly generated
initial conditions and observe again how Newtonian trajectories and game trajectories computed
through the reconstructed J are essentially the same.

Example 4.7. In most cases, there will not be a unique preferred choice for U and various
options could be reasonable. We now demonstrate robustness of the inference results between
different choices that are essentially equivalent. Thus, we repeat Example 4.6 changing U into
U = {(1, 0), (0, 1), (−1, 0), (0, −1)}. The results are illustrated in Figure 11. Essentially, a rota-
tion of U caused a corresponding rotation in the reconstructed functions, without changing the
underlying behaviour that is being described.

Example 4.8. In the previous two examples, we used the velocity-based functional EN
v (4.2) for

inference. As discussed in Section 4.1, we can also optimise the error functional EN
σ (4.1) upon

providing some suitable mixed strategies via (4.5). We repeat Example 4.6 with this approach.
The results are illustrated in Figure 12: the reconstructed functions closely resemble the previous
reconstruction provided in Figure 10(a).
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4.5 Pedestrian dynamics

The examples presented in Sections 4.2 and 4.3 were based on observations generated with the
underlying entropic game model with known U and e. The examples in Section 4.4 were based on
observations generated by Newtonian models, which by virtue of Example 2.7 are known to be
covered by the entropic game models, if suitable U and e are chosen. Here we consider a more
challenging scenario, trying to learn interaction rules between pedestrians in a model adapted
from [7, 32]. This model attempts to describe ‘rational’ agents (pedestrians) that avoid collisions
with other agents not merely via a repulsion term involving the other agents’ current locations,
but by explicit anticipation of their trajectories. Related datasets and models in the computer
vision community can be found, for instance, in [59, 62, 76]. It will be interesting future work
to see if our model can be trained on such data. Note that this differs from the setting where
pedestrians in high-density and high-stress situations are modelled as a non-sentient fluid that is
solely driven by external gradients and internal pressure, see for instance [9, 41] for reviews on
the literature of micro- and macroscopic crowd motion models.

Forward model. We now describe the model for pedestrian movement that we use to generate
observations. It is slightly adapted from [7, 32], to which we refer for more details and motivation
of the quantities we re-introduce here. We consider N pedestrians in R

2, each of which with
desired target velocity v̄i ∈R

2, i = 1, . . . , N . The dynamic is described by the coupled system of
second-order equations⎧⎪⎪⎨

⎪⎪⎩
∂txi(t) = vi(t),

∂tvi(t) = −∇vi�i(x1(t), . . . , xN (t), v1(t), . . . , vN (t)),

‖vi(t)‖ = 1,

(4.8)

where the third line means that we confine the gradient movement of the velocities in the sec-
ond line to the unit sphere. This reduces the dimension of the strategy space and thus simplifies
inference (see below). The potential �i is designed to steer the velocity towards the target veloc-
ity v̄i while at the same time trying to avoid as much as possible close encounters with other
pedestrians. The potential is computed from pairwise interaction terms that involve anticipated
(near-)collision events. A key assumption is that agents are able to evaluate at each time the cur-
rent locations and velocities of the other agents in their cone of vision; that is, they fully know
the relevant status of the system. Thus, for locations x1, . . . , xN and velocities v1, . . . , vN , each
agent i assumes the others’ velocities to be fixed and can evaluate ‘optimality’ of a new velocity
v through the following quantities:

Di,j(v) = −
(
xj − xi

) · (vj − v
)

‖vj − v‖2
‖v‖ (4.9)

Ci,j(v) =
(

‖xj − xi‖2 − (
(
xj − xi

) · (vj − v
)
)2

‖vj − v‖2

)1/2

(4.10)

Si,j(v) =

⎧⎪⎪⎨
⎪⎪⎩

1 if

(
xj − xi

) · v
‖xj − xi‖‖v‖ > cos

(
7

12
π

)
and Di,j(v) > 0

0 else.

(4.11)
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FIGURE 13. Adapted from [7].

These are illustrated in Figure 13. Di,j is the travelling distance of i to the closest encounter with
j, based on velocities v and vj. It is negative if the closest encounter would have happened in
the past. Ci,j is their distance realised at that closest encounter and Si,j counts whether agent j is
visible to i and getting closer. Note that Di,j, Ci,j and Sj are functions of the other agent’s location
and velocity. From the perspective of agent i, these are considered parameters, and thus, we drop
them in the explicit notation of arguments. For a parameter a > 0 define the quadratic penalty

φa(x) =
⎧⎨
⎩
( x

a
− 1
)2

if x ≤ a,

0 else,

and then set the i-th potential to be

�i(v) = k1‖v − v̄i‖2 + k2∑
j 	=i Si,j(v)

∑
j 	=i

Si,j(v) · φR

(
Ci,j(v)

) · φL

(
Di,j(v)

)
(4.12)

for some parameters k1, k2, L, R > 0. Agent i will then evolve its velocity based on the gradient
of �i, which balances the desire to stay close to the target velocity v̄i and the avoidance of close
encounters with other agents. The second term penalises anticipated minimal distances Ci,j below
R, that happen on a distance horizon of L, with a stronger penalty if the anticipated encounter is
closer.

State space and strategy space. System (4.8) is simulated with potentials �i defined as in
(4.12). By the third line of (4.8) we can write vi(t) = (cos(θi(t)), sin(θi(t))) at each t for a suit-
able time depended angle θi. Observations consist of locations {xi(ts)}s,i and velocities {vi(ts)}s,i

for s ∈ {0, . . . , S} and i ∈ {1, . . . , N}. In particular, observations on velocities can be recast into
observations of the angles {θi(ts)}s,i, θi(ts) ∈ S1, so that vi(ts) = (cos(θi(ts)), sin(θi(ts))). Likewise,
the desired velocity v̄i can be encoded by an orientation θ̄i ∈ S1.

We want to model the system as an undisclosed fast-reaction entropic game. Consequently,
we must choose a suitable ‘location’ space, strategy space and map e for the agents. In the
undisclosed setting, the choice of strategy of an agent does not depend on the choices of strategies
of the other agents. However, for pedestrians, the movement choices of one agent clearly depend
on the current velocities of other agents. This is explicit in the above model, and of course also
true in reality, where we can learn about other persons’ current movement by their orientation
(people walk forward). Consequently, the orientations θi cannot be interpreted as strategies and
should be considered as part of the agents’ locations. Instead, the second line of (4.8) suggests
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that strategies describe the agents’ choice to change their orientations. Finally, different agents
may have different desired orientations θ̄i; that is, we may have different ‘species’ of agents.
As discussed in Remark 2.4, this can be formally incorporated into our model by enriching the
physical space.

Consequently, as physical space we use R
2 × S1 × S1 where the first component describes

the physical location of the agent, the second component their current orientation and the third
component their desired orientation.

As strategy space, we pick U ⊂ {−C, +C} for some C > 0, where a pure strategy u ∈ U cor-
responds to the desire to change the orientation with rate u. C should be picked sufficiently large
to capture the maximally observed changes of orientation of the agents.

In summary, in this particular instance of (2.15) we choose

e
(
(x, θ , θ̄ ), u

)= (cos(θ ), sin(θ ), u, 0
)

,

and consequently obtain the full system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂txi(t) = (cos(θi(t)), sin(θi(t)))

∂tθi(t) = ϑJ
i

(
(x1(t), θ1(t), θ̄1(t)), . . . , (xN (t), θN (t), θ̄N (t))

)
:= 1

K

K∑
k=1

uk · σ J
i

(
(x1(t), θ1(t), θ̄1(t)), . . . , (xN (t), θN (t), θ̄N (t))

)
(uk)

∂tθ̄i(t) = 0

(4.13)

Ansatz for payoff function. For the payoff function, in analogy to (4.3), we make the following
ansatz:

J
((

x, θ , θ̄
)
, u,
(
x′, θ ′, θ̄ ′))= J1

(
θ , u, θ̄

)+ J2
(
R−θ · (x′ − x

)
, θ ′ − θ , u

)
, (4.14)

where R−θ denotes the rotation matrix by angle −θ . J1 is intended to recover the drive towards
the desired orientation θ̄i and J2 the pairwise interaction between agents. We have added the
natural assumption that J2 is invariant under translations and rotations. For each agent, we may
choose a coordinate system such that they are currently in the origin (x = 0), heading right (θ =
0), whereas the other agent is located at y = R−θ

(
x′ − x

)
with orientation �θ = θ ′ − θ . Further

dimensionality reduction can be obtained by setting J2 to zero, when the other agent is not within
the agent’s field of vision. Alternatively, we can attempt to infer the field of vision from the
observations during learning.

Discrete inference functional. We approximate the missing velocities {∂tθi(ts)}s,i by finite
differences,

∂tθi(ts) ≈ θi(ts) − θi(ts−1)

ts − ts−1
for all s = 1, . . . , S, and i = 1, . . . , N ,

and the corresponding velocity-based inference functional (3.9) is given by

EN
v (J ) = 1

SN

S∑
s=1

N∑
i=1

∣∣ϑJ
i (ts) − ∂tθi(ts)

∣∣2 , (4.15)

where ϑJ
i is introduced in (4.13).
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(a)

(b)

(d)
(c)

FIGURE 14. Inference from 2d observations of a pedestrian model. (a): distribution of the data in the train-
ing set. (b,c): reconstruction of the payoff function (section for J2 at �θ = π ). (d): comparison between
exact trajectories (solid lines) and trajectories generated by the inferred model (dashed lines) for four new
realisations (not part of the training data).

Example 4.9. Analogously to previous examples, we simulate multiple realisation of (4.8): for
each instance, we consider 6 agents, 3 starting at random locations inside [0, 0.5] × [0, 0.5] with
desired direction θ̄ = 0, while the other 3 start somewhere within [1.0, 1.5] × [0, 0.5] with target
direction θ̄ = π . We simulate 400 instances of (4.8), assuming for 300 of them a slight perturba-
tion of the target direction as initial direction, and sampling randomly in (−π , π ) for the initial
directions of the remaining 100 runs (to observe the behaviour at different directions). Each run
we perform 500 steps of an explicit Euler-stepping with �t = 0.005. Observations are then sub-
sampled every 20-th step. The final distribution of directions within the training data is reported
in Figure 14(a).

In the reconstruction, we consider U = {−2, 2}. Energy (4.15) is then optimised coupled with
regularisers in the same fashion as in (4.4), using a 30 nodes regular grid over [−π , π ] for J1

and a 20 × 20 × 20 grid over [−0.15, 1.5] × [−0.6, 0.6] × [−π , π ] for J2 (we assume a priori
that agents outside my cone of vision go unseen). Results are reported in Figure 14. The self-
interaction function J1, Figure 14(b), correctly dictates the steering of the direction towards the
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desired direction. Observe how the self-driving force to go back to the desired direction is max-
imal around ±π/2, as expected when looking at potential (4.12). The interaction function J2,
Figure 14(c), encodes the expected deviation for avoiding a close interaction: when approaching
an agent to my left I favour deviations to the right and vice versa. Eventually, we compare in
Figure 14(d) simulated trajectories obtained with the ground truth model and the inferred one,
starting at locations outside the training set. The two models reproduce the same behaviour.

5 Conclusion and outlook

In this article, we proposed several modifications to the model of spatially inhomogeneous evo-
lutionary games as introduced by [6]. We added entropic regularisation to obtain more robust
trajectories, considered the undisclosed setting and then derived the quasi-static fast-reaction
limit. Relying on results from [6], we established well-posedness and a mean-field limit for all
considered model variants. The resulting new family of multi-agent interaction models vastly
generalises first- and second-order Newtonian models.

We then posed the inverse problem of inferring the agent payoff function from observed inter-
actions. We gave several variational formulations that seek to minimise the discrepancy between
the observed particle velocities and those predicted by the payoff function. The mismatch func-
tionals provide quantitative control on the ability of the reconstructed payoff function to replicate
the observed trajectories, and the functionals are (under suitable assumptions) consistent in the
limit of increasing observed data.

Finally, we demonstrated that the inference scheme is not merely limited to abstract analysis
but can be implemented numerically. Our computational examples included the inference from
models for which a true payoff function was available (and known), examples where this was
not the case (e.g. data generated by a Newtonian model or a simple ‘rational’ model for pedes-
trian movement), and examples with simulated noise. These showed that our scheme can infer
meaningful payoff functions from a broad variety of input data.

A logical next step would be the numerical application to real data. Here one will need to be
particularly careful about choosing the family of models to match (i.e. the complexity of the space
of pure strategies and the generality of the form of the payoff function). On one hand, a relatively
simple class of models will be numerically robust and inexpensive but involve considerable
modelling bias due to a potential lack of flexibility. On the other hand, a rather general class
of models provides more descriptive power but will require many observations for meaningful
inference and be numerically more challenging. On top of that, real data will be corrupted by
noise, and thus, a more detailed analysis of learning from noisy data will become crucial (in the
spirit of Example 4.3).
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A. Mathematical analysis

A.1 Well-posedness for entropic games

In this Section, we prove the key technical ingredients involved in the proof of Theorem 2.6 in
Section 2.1, which establishes the well-posedness of the modified entropic dynamics given by
(2.2). The two subsequent Lemmas establish that f J ,ε = f J + f ε, (2.8), is Lipschitz continuous in
the chosen setting for strategies in Sa,b.

Lemma A.1 (f ε is Lp
η-Lipschitz continuous on Sa,b). For σ1, σ2 ∈ Sa,b and f ε defined in (2.4), we

have ‖ f ε(σ1) − f ε(σ2)‖L
p
η(U) ≤ L · ‖σ1 − σ2‖L

p
η(U) (A1)

with L = L(a, b).

Proof. Define G(x) := x log x, let La,b be its Lipschitz constant and Ma,b its maximal absolute
value over the interval [a, b]. For any σ1, σ2 ∈ Sa,b, Lp

η-Lipschitz continuity can be proved via
direct computations:

‖ f ε(σ2) − f ε(σ1)‖L
p
η(U)

=
∥∥∥∥−G(σ2(·)) + G(σ1(·)) + σ2(·)

∫
U

G(σ2(v)) dη(v) − σ1(·)
∫

U
G(σ1(v)) dη(v)

∥∥∥∥
L

p
η(U)

≤ ‖G(σ2(·)) − G(σ1(·))‖L
p
η(U) +

∥∥∥∥σ1(·)
∫

U
|G(σ2(v)) − G(σ1(v))| dη(v)

∥∥∥∥
L

p
η(U)

+
∥∥∥∥|σ2(·) − σ1(·)| ·

∫
U

G(σ2(v)) dη(v)

∥∥∥∥
L

p
η(U)

≤ (La,b + b · La,b + Ma,b) · ‖σ2 − σ1‖L
p
η(U)

where we used σ1(·) ≤ b and Jensen’s inequality in the second term. �
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Lemma A.2 (f J is Lipschitz continuous). For J ∈X , let f J be defined as in (2.3). Then, f J is
Lipschitz continuous in all four arguments, that is, given xi, x′

i ∈R
d and σi, σ ′

i ∈ Sa,b, i = 1, 2, we
have

‖ f J
(
x2, σ2, x′

2, σ ′
2

)− f J
(
x1, σ1, x′

1, σ ′
1

)‖L
p
η(U) ≤ L ·

[
‖x2 − x1‖ + ‖σ2 − σ1‖L

p
η(U)

+ ‖x′
2 − x′

1‖ + ‖σ ′
2 − σ ′

1‖L
p
η(U)

]

with L = L(J , b).

Proof. Define the payoff for the single interaction j : Rd ×R
d × Sa,b × U →R as

j
(
x, x′, σ ′, u

)
:=
∫

U
J
(
x, u, x′, u′) σ ′(u′)dη

(
u′)

and observe that, for any x, x′ ∈R
d , u ∈ U and σ ′

1, σ ′
2 ∈ Sa,b, we have

|j(x, x′, σ ′
2, u) − j(x, x′, σ ′

1, u)| =
∣∣∣∣
∫

U
J
(
x, u, x′, u′) (σ ′

2

(
u′)− σ ′

1

(
u′)) dη

(
u′)∣∣∣∣

≤ ‖J‖∞ · ‖σ ′
2 − σ ′

1‖L
p
η(U).

(A2)

The function f J introduced in (2.3) can then be written as

f J
(
x, σ , x′, σ ′)=(j

(
x, x′, σ ′, ·)− ∫

U
j
(
x, x′, σ ′, v

)
σ (v) dη(v)

)
σ .

The Lipschitz continuity in x and x′ is clear: it follows by Lipschitz continuity of j in x, x′,
descending directly from Lipschitz continuity of J . It remains to investigate the dependence on
σ , σ ′. For σ1, σ2, σ ′ ∈ Sa,b, direct estimates provide

‖ f J
(
x, σ2, x′, σ ′)− f J

(
x, σ1, x′, σ ′)‖L

p
η(U) =

∥∥∥∥∥ j
(
x, x′, σ ′, ·) (σ2(·) − σ1(·))

− σ2(·)
∫

U
j
(
x, x′, σ ′, v

)
σ2(v) dη(v) + σ1(·)

∫
U

j
(
x, x′, σ ′, v

)
σ1(v) dη(v)

∥∥∥∥∥
L

p
η(U)

≤ ∥∥| j(x, x′, σ ′, ·) |·|σ2(·) − σ1(·)|∥∥
L

p
η(U)

+
∥∥∥∥σ1(·) ·

∫
U

|j(x, x′, σ ′, v
) | · |σ2(v) − σ1(v)| dη(v)

∥∥∥∥
L

p
η(U)

+
∥∥∥∥|σ2(·) − σ1(·)| ·

∫
U

|j(x, x′, σ ′, v
) | · σ2(v) dη(v)

∥∥∥∥
L

p
η(U)

≤ (‖J‖∞ + b · ‖J‖∞ + ‖J‖∞) · ‖σ2 − σ1‖L
p
η(U),

where we used j(·, ·, ·, ·) ≤ ‖J‖∞, σ (·) ≤ b and Jensen’s inequality. Similarly, for σ , σ ′
1, σ ′

2 ∈ Sa,b,
taking into account (A2), we have
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‖ f J
(
x, σ , x′, σ ′

2

)− f J
(
x, σ , x′, σ ′

1

)‖L
p
η(U)

=
∥∥∥∥
[[

j
(
x, x′, σ ′

2, ·)− j
(
x, x′, σ ′

1, ·)]− ∫
U

[
j
(
x, x′, σ ′

2, v
)− j

(
x, x′, σ ′

1, v
)]

σ (v) dη(v)

]
σ (·)

∥∥∥∥
L

p
η(U)

≤ (
b · ‖J‖∞ + b2 · ‖J‖∞

) · ‖σ ′
2 − σ ′

1‖L
p
η(U)

which concludes the proof. �

Remark A.3 (Entropic f ε is not BL-Lipschitz continuous). In [6], for the study of the original
un-regularised system (1.3), the authors work in the space Y =R

d × F(U), where

F(U) := span(M1(U))
‖·‖BL

with the bounded Lipschitz norm defined as

‖σ‖BL := sup

{∫
U

ϕ(u)dσ (u) | ϕ ∈ C(U), ‖ϕ‖∞ + Lip(ϕ) ≤ 1

}
. (A3)

Large parts of the analysis in [6] are based on this bounded Lipschitz norm. However, the
function f ε is not Lipschitz continuous with respect to this norm. For 0 < a � 1 � b, let U =
[0, 1] and η the uniform Lebesgue measure over U. For n ≥ 2 we split [0,1] into 2n intervals and
define the nodes xn

i = i/2n, for 0 ≤ i ≤ 2n. Define sn : (0, 1) → (0, 2) as

sn(x) =
⎧⎨
⎩2 − a if x ∈ (xn

i , xn
i+1

)
, i even

a if x ∈ (xn
i , xn

i+1

)
, i odd.

This function alternates between 2 − a and a over each sub-interval. Set now

σ n
1 (x) =

⎧⎨
⎩1 if x ∈ (0, 1/2)

sn(x) if x ∈ (1/2, 1)
and σ n

2 (x) =
⎧⎨
⎩sn(x) if x ∈ (0, 1/2)

1 if x ∈ (1/2, 1)

On the one hand, we find that ‖σ n
2 − σ n

1 ‖BL ≤ W1(σ n
2 , σ n

1 ) → 0 as n → ∞. On the other hand,
observe that∫ 1

0
σ n

1 (x) log
(
σ n

1 (x)
)
dx =

∫ 1

0
σ n

2 (x) log
(
σ n

2 (x)
)
dx = 1

4
(a log(a) + (2 − a) log(2 − a)) =: M

so that, for ϕ(x) = x/2 (which is admissible in (A3)), one has

1

ε
‖ f ε
(
σ n

2

)− f ε
(
σ n

1

)‖BL ≥ −
∫ 1/2

0

x

2
· sn(x) log(sn(x))dx +

∫ 1

1/2

x

2
· sn(x) log (sn(x))dx

+ M

∫ 1

0

x

2
· (σ n

2 (x) − σ n
1 (x)

)
dx︸ ︷︷ ︸

→0 as n→∞

= 1

4

∫ 1/2

0
sn(x) log (sn(x))dx + o(1) = M

4
+ o(1).

Hence, f ε is not Lipschitz continuous with respect to the bounded Lipschitz norm.
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We are left with the proof of the compatibility Lemma 2.5, which we briefly restate for the
reader’s convenience.

Lemma A.4 (Compatibility condition). For J ∈X and ε > 0, let f J and f ε be defined as in
(2.3) and (2.4). Then, there exist a,b with 0 < a < 1 < b < ∞ such that for any (x, σ ), (x′, σ ′) ∈
R

d × Sa,b there exists some θ > 0 such that

σ + θλ
[
f J
(
x, σ , x′, σ ′)+ f ε(σ )

] ∈ Sa,b. (A4)

Proof. Fix any (x, σ ), (x′, σ ′) ∈ (Rd × Sa,b)2. Taking into account that ‖σ‖L1
η(U) = 1, one

obtains ∫
U

[
σ + θλ

(
f J
(
x, σ , x′, σ ′)+ f ε(σ )

)]
dη = 1

for any θ > 0. We are left with proving that, for suitable 0 < a � 1 � b, there exists θ > 0 such
that a ≤ σ + θλ(f J

(
x, σ , x′, σ ′)+ f ε(σ )) ≤ b. On the one hand, thanks to global boundedness of

J , one has

−2‖J‖∞ ≤ f J
(
x, u, x′, σ ′)≤ 2‖J‖∞.

On the other hand, writing any σ ∈ Sa,b as σ (u) = ξ (u)a + (1 − ξ (u))b, with 0 ≤ ξ ≤ 1, and using
convexity of x �→ x log x, one has∫

U
σ (v) log(σ (v)) dη(v) ≤

∫
U

ξ (u)a log a dη(u) +
∫

U
(1 − ξ (u))b log b dη(u).

The integral of ξ can be explicitly computed (recall ‖σ‖L1
η(U) = 1), so that

0 ≤
∫

U
σ (v) log(σ (v)) dη(v) ≤ a(b − 1)

b − a
log(a) + b(1 − a)

b − a
log(b) =: Ka,b, (A5)

where non-negativity follows by Jensen’s inequality. The proof boils then down to find suitable
a, b such that for any given σ ∈ Sa,b there exists θ > 0 such that

a ≤ σ (u)(1 − θλ [2‖J‖∞ + ε log(σ (u))]) (L)

σ (u)
(
1 + θλ

[
2‖J‖∞ + ε(Ka,b − log(σ (u))

]) ≤ b (U)

for every u ∈ U . Select a, b in the following way:

0 < a < exp

(
−2‖J‖∞

ε

)
= L�

ε < Lu
ε = exp

(
2‖J‖∞

ε
+ Ka,b

)
< b. (A6)

The existence of b satisfying this requirement follows by a direct one-dimensional asymptotic
analysis. We distinguish three regions:

• a ≤ σ (u) < L�
ε: the lower bound (L) is satisfied for any θ > 0 because [2‖J‖∞+

ε log(σ (u))] < 0 in the given region, while the upper bound (U) follows taking

θ ≤ b − L�
ε

λL�
ε(2‖J‖∞ + ε log(b/a))
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• L�
ε ≤ σ (u) ≤ Lu

ε : a direct estimate on (L) and (U) leads to

θ ≤ min

(
L�

ε − a

λL�
ε(2‖J‖∞ + ε log b)

,
b − Lu

ε

λLu
ε(2‖J‖∞ + ε log(b/a))

)

• Lu
ε < σ (u) ≤ b: the lower bound (L) is satisfied for

θ ≤ Lu
ε − a

λLu
ε(2‖J‖∞ + ε log b)

while upper bound (U) is satisfied for any θ > 0 because
[
2‖J‖∞ + ε(Ka,b − log(σ (u))

]
< 0

in the given region. �

The sought-after θ can then be selected to be the smallest between the previous upper bounds.

A.2 Convergence to fast-reaction limit in undisclosed setting

In this Section, we prove Theorem 2.14, which is concerned with the convergence to the
undisclosed fast-reaction limit as λ → ∞.

Proof of Theorem 2.14.
Part 1: σi(t) close to σ J

i (x(t)). For i ∈ {1, . . . , N} the dynamics of σi are described by

∂tσi(t)(u) = λ ·
(

− g′
i,u(t, σi(t)(u)) +

∫
U

g′
i,u(σi(t)(u)) σi(t)(u) dη(u)︸ ︷︷ ︸

:= mi(t)

)
· σi(t)(u) (A7)

where gi,u(t, s) := − 1

N

N∑
j=1

J (xi(t), u, xj(t)) s + ε [s log(s) − s + 1] (A8)

and g′
i,u denotes the first derivative with respect to s. This is formally the gradient flow (scaled

by λ) of the (explicitly time-dependent) energy

Gi(t, σ ) :=
∫

U
gi,u(t, σ (u)) dη(u) (A9)

with respect to the (spherical) Hellinger–Kakutani distance over Sa,b. (This relation only serves
as intuition for our proof and is never used in a mathematical argument.)

Let a, b such that 0 < a < b < ∞. Then, there exists a c ∈ (0, ∞) such that g′′
i,u(t, s) ≥ c for

t ∈ [0, ∞), s ∈ [a, b], u ∈ U and i ∈ {1, . . . , N} (where analogous to above g′′
i,i(t, s) refers to the

second derivative with respect to s). This implies that Gi(t, ·) is strongly convex on Sa,b.
Consider now the fast-reaction mixed strategies σ ∗ = (σ ∗

i )N
i=1 associated with locations x =

(xi)N
i=1, (2.15), (i.e. σ ∗

i (t) := σ J
i (x(t))) where we introduce a normalisation constant Ai:

σ ∗
i (t)(u) =Ai(t) · exp

⎛
⎝ 1

N ε

N∑
j=1

J (xi(t), u, xj(t))

⎞
⎠ , (A10)
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Ai(t)
−1 =

∫
U

exp

⎛
⎝ 1

N ε

N∑
j=1

J (xi(t), u, xj(t))

⎞
⎠ dη(u). (A11)

For these we find

g′
i,u(t, σ ∗

i (t)(u)) = − 1

N

N∑
j=1

J (xi(t), u, xj(t)) + ε log(σ ∗
i (t)(u)) = ε log(Ai(t)). (A12)

Using convexity of the functions gi,u(t, ·) we find for arbitrary σ ∈ Sa,b:

Gi(t, σ ) ≥
∫

U

[
gi,u(t, σ ∗

i (t)(u)) + g′
i,u(t, σ ∗

i (t)(u))︸ ︷︷ ︸
=ε log(Ai(t))

·(σ (u) − σ ∗
i (t)(u))

]
dη(u) = Gi(t, σ

∗
i (t)), (A13)

where the second term integrates to zero, since ε log(Ai(t)) is constant with respect to u ∈ U and
both σ and σ ∗

i (t) are normalised. Therefore, σ ∗
i (t) is a minimiser of Gi(t, ·) over Sa,b, and since

Gi(t, ·) is strongly convex, it is the unique minimiser.
Using the bound c ≤ g′′

i,u(t, s) for s ∈ [a, b], we find for s∗ ∈ [a, b]

g′
i,u(t, s∗) · (s − s∗) + c

2
(s − s∗)2 ≤ gi,u(t, s) − gi,u(t, s∗) (A14)

and applying this bound to Gi(t, ·), using σ ∗
i (t) ∈ Sa,b due to (A6), analogous to (A13) one obtains

for any σ ∈ Sa,b that

c

2
‖σ − σ ∗

i (t)‖2
L2
η(U)

≤ Gi(t, σ ) − Gi(t, σ
∗
i (t)). (A15)

Strong convexity of Gi(t, ·) provides another useful estimate (where mi is defined in (A7)):

‖g′
i,u(t, σi(t)) − mi(t)‖L2

η(U) · ‖σi(t) − σ ∗
i (t)‖L2

η(U)

≥
∫

U

[
g′

i,u(t, σi(t)(u)) − mi(t)
] · [σi(t)(u) − σ ∗

i (t)(u)
]

dη(u)

=
∫

U
g′

i,u(t, σi(t)(u)) · [σi(t)(u) − σ ∗
i (t)(u)

]
dη(u) ≥ Gi(t, σi(t)) − Gi(t, σ

∗
i (t)),

where we used the Cauchy-Schwarz inequality. With (A15), this implies

‖g′
i,u(t, σi(t)) − mi(t)‖2

L2
η(U)

≥ c

2
[Gi(t, σi(t)) − Gi(t, σ

∗
i (t))]. (A16)

We need two additional estimates to control the explicit time-dependency of Gi. Note that
‖∂txi(t)‖ ≤ ‖e‖∞ and thus |∂tgi,u(t, s)| ≤ 2 · Lip(J ) · ‖e‖∞. (J may not be differentiable, but since
t �→ xi(t) and J are Lipschitz, so is gi,u, and thus, this derivative exists for almost all t.) This
implies |∂tGi(t, σ )| ≤ 2 · Lip(J ) · ‖e‖∞. Next, an explicit computation yields

Gi(t, σ
∗
i (t)) = ε · log Ai(t) = −ε log

⎛
⎝∫

U
exp

⎛
⎝ 1

N ε

N∑
j=1

J (xi(t), u, xj(t))

⎞
⎠ dη(u)

⎞
⎠

from which we deduce that

∣∣∣∣ d

dt
Gi(t, σ ∗

i (t))

∣∣∣∣≤ 2 · Lip(J ) · ‖e‖∞.
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Summarising now, we find for almost every t ∈ [0, ∞):

d

dt

[
Gi(t, σi(t)) − Gi(t, σ

∗
i (t))

]= ∫
U

g′
i,u(t, σi(t)(u)) · ∂tσi(t)(u) dη(u)

+ (∂tGi)(t, σi(t)) − d

dt
Gi(t, σ

∗
i (t))

=
∫

U
[g′

i,u(t, σi(t)(u)) − mi(t)] · ∂tσi(t)(u) dη(u)

+ (∂tGi)(t, σi(t)) − d

dt
Gi(t, σ

∗
i (t))

= −λ

∫
U

[g′
i,u(t, σi(t)(u)) − mi(t)]

2 · σi(t)(u)︸ ︷︷ ︸
≥a

dη(u)

+ (∂tGi)(t, σi(t)) − d

dt
Gi(t, σ

∗
i (t))

≤ −λ a c

2

[
Gi(t, σi(t)) − Gi(t, σ

∗
i (t))

]+ 4 · Lip(J ) · ‖e‖∞. (A17)

Applying Grönwall’s lemma to h(t) := Gi(t, σi(t)) − Gi(t, σ ∗
i (t)) − 8 Lip(J ) ‖e‖∞

λ a c yields

Gi(t, σi(t)) − Gi(t, σ
∗
i (t)) ≤ 8 Lip(J ) ‖e‖∞

λ a c

+
[(

Gi(0, σi(0)) − Gi(0, σ ∗
i (0))

)− 8 Lip(J ) ‖e‖∞
λ a c

]
· exp

(
−λ a c

2
t

)
. (A18)

Using σi(0) ∈ Sa,b and xi(0) ∈ Bd(R) for all i ∈ {1, . . . , N}, there exists some C = C(a, b, R,
Lip(J ), ‖e‖∞) < ∞ (not depending on N or i) such that

Gi(t, σi(t)) − Gi(t, σ
∗
i (t)) ≤ C

[
1

λ
+ exp

(
−λ t

C

)]
. (A19)

By virtue of (A15), an analogous bound with a different C (with the same dependency structure)
holds for ‖σi(t) − σ ∗

i (t)‖L2
η(U):

‖σi(t) − σ ∗
i (t)‖L2

η(U) ≤ C

[
1

λ
+ exp

(
−λ t

C

)]
(A20)

Part 2: xi and σi close to x∗∗
i and σ ∗∗

i . Recall now that the fast-reaction dynamics (2.15) for
x∗∗ are given by

∂tx
∗∗
i (t) =

∫
U

e(x∗∗
i (t), u) σ ∗∗

i (t)(u) dη(u) = vJ
i (x∗∗

1 (t), . . . , x∗∗
N (t))

where σ ∗∗
i (t) = σ J

i (x∗∗(t)), (2.15a). The dynamics for x(t) follow

∂txi(t) =
∫

U
e(xi(t), u) σi(t)(u) dη(u) = vJ

i (x1(t), . . . , xN (t))

+
∫

U
e(xi(t), u) [σi(t)(u) − σ ∗

i (t)(u)] dη(u).
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Introduce now the deviation measure δ(t) := ‖x(t) − x∗∗(t)‖N and obtain (t-almost everywhere,
due to δ being Lipschitz)

∂tδ(t) ≤ ‖∂tx(t) − ∂tx
∗∗(t)‖N

≤ ‖vJ (x(t)) − vJ (x∗∗(t))‖N +
N∑

i=1

1

N

∥∥∥∥
∫

U
e(xi(t), u) [σi(t)(u) − σ ∗

i (t)(u)] dη(u)

∥∥∥∥
≤ Lip

(
vJ
) · ‖x(t) − x∗∗(t)‖N︸ ︷︷ ︸

=δ(t)

+‖e‖∞ ·
N∑

i=1

1

N
‖σi(t) − σ ∗

i (t)‖︸ ︷︷ ︸
≤Ct,λ :=

⎡
⎣C

⎡
⎣1

λ
+exp

⎛
⎝−

λ t

C

⎞
⎠
⎤
⎦
⎤
⎦1/2

(A21)

For every τ > 0, we get δ(t) ≤ 2 τ ‖e‖∞ on t ∈ [0, τ ] (due to ‖∂txi‖, ‖∂tx∗∗
i ‖ ≤ ‖e‖∞) and for

t ∈ [τ , ∞) from (A21) via Grönwall’s lemma (with a change of variables as above)

δ(t) ≤
(

2 τ ‖e‖∞ + Cτ ,λ

Lip
(
vJ
)
)

· exp(Lip
(
vJ
) · (t − τ )) − Cτ ,λ

Lip
(
vJ
) . (A22)

Setting now τ = √
λ

−1
, there is a suitable C (depending on a, b, R, J , e, but not on N or i) such

that

δ(t) ≤ C√
λ

· exp(t · C). (A23)

From Lemma 2.10, it follows that (cf. Lemma 2.11)

‖σ ∗
i (t) − σ ∗∗

i (t)‖L2
η(U) = ‖σ J

i (x(t)) − σ J
i (x∗∗(t))‖L2

η(U) ≤ L · ‖x(t)) − x∗∗(t)‖N (A24)

for some L < ∞ depending on J and ε. Combining (A20), (A23) and (A24), one obtains that (for
different C with same dependency structure)

‖σi(t) − σ ∗∗
i (t)‖L2

η(U) ≤ C√
λ

· exp(t · C) +
[

C

[
1

λ
+ exp

(
−λ t

C

)]]1/2

. (A25)

Part 3: Mean-field setting. For �1, �2 ∈M1(Ca,b) one has

W1(P��1, P��2) ≤ W1(�1, �2) (A26)

due to

‖x1 − x2‖ = ‖P(x1, σ1) − P(x2, σ2)‖ ≤ ‖x1 − x2‖ + ‖σ1 − σ2‖L
p
η(U) = ‖(x1, σ1) − (x2, σ2)‖Y .

Let (�̄N )N be a sequence of initial empirical measures with W1(�̄N , �̄) → 0 as N → ∞ and
let �N be the corresponding solution of (2.11), as discussed in Theorem 2.6, point 1. Set μ̄N :=
P��̄

N , which consequently satisfies W1(μ̄N , μ̄) → 0 as N → ∞ and let μN be the corresponding
solution of (2.17). By Theorem 2.6, point 3 and Theorem 2.13, point 3 (both for s = 0), for any
α > 0 there is some N such that

W1(�N (t), �(t)) ≤ α, W1
(
μN (t), μ(t)

)≤ α (A27)

for t ∈ [0, T].
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The points in �N evolve according to the full discrete model, the points in μN evolve according
to the fast-reaction limit. Therefore, by virtue of (A23) one has

W1
(
P��

N (t), μN (t)
)≤ C√

λ
· exp(t · C) (A28)

with the same C as in (A23). Combining (A28), (A27) and (A26) one obtains

W1
(
P��(t), μ(t)

)≤ W1
(
P��(t), P��

N (t)
)+ W1

(
P��

N (t), μN (t)
)+ W1

(
μN (t), μ(t)

)
≤ 2α + C√

λ
· exp(t · C).

The fact that α > 0 is arbitrary, means the inequality also holds in the limit α → 0 and thus
establishes (2.26).

A.3 Undisclosed fast-reaction inference functionals

We report in this section some technical proofs for statements in Section 3.3. We start with
proving that observations generated through explicit simulations of the undisclosed fast-reaction
system are indeed admissible in the sense of Assumption 3.1.

Proof of Lemma 3.2.
The first statement is just point 1 in Theorem 2.13. The proof of the second statement is a direct
by-product of Theorem 2.13 combined with Lemma 2.10. Let μN and μ be the unique solutions
of (2.17) for initial conditions μ̄N and μ̄, as provided by Theorem 2.13, point 1. By the stability
estimate in Theorem 2.13, point 3, one has for any t ∈ [0, T]

W1
(
μN (t), μ(t)

)≤ C W1
(
μ̄N , μ̄

)→ 0 as N → ∞. (A29)

Hence, we claim μ∞ = μ and in particular v∞ = vJ (μ) and σ∞ = σ J (μ) (as defined in (2.18)
and (2.19)). Regarding convergence of velocities, observe that by definition

vN
i (t) = vJ

i

(
xN

1 (t), . . . , xN
N (t)
)= vJ

(
μN (t)

) (
xN

i (t)
)

while (2.21) in Lemma 2.10 provides the uniform bound∥∥vJ
(
μN (t)

)
(x) − vJ (μ(t))(x)

∥∥≤ C W1
(
μN (t), μ(t)

)
.

This yields directly (3.3) while (3.4) follows thanks to the uniform bound ‖vJ (μ(t))(x)‖ ≤ ‖e‖∞.
An analogous argument applies to prove (3.5) and (3.6): first recall that

σ N
i (t) = σ J

i

(
xN

1 (t), . . . , xN
N (t)
)= σ J

(
μN (t)

)
(xN

i (t), ·)

and thanks to (2.20) in Lemma 2.10 one has the uniform bounds∣∣σ J
(
μN (t)

)
(x, u) − σ J (μ(t))(x, u)

∣∣≤ C W1
(
μN (t), μ(t)

)
and 1/C < σ J (μN )(x, u) < C, which immediately provides the conclusions when combined with
uniform continuity of s �→ s log(s) over [1/C, C].
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Next, following the pipeline provided by [10, Proposition 1.1], we show that the obtained
minimal inference functional value provides an upper bound on the accuracy of the trajectories
that are simulated with the inferred Ĵ .

Proof of Theorem 3.3.
Part 1: discrete velocity-error functional (3.9a). Let μN (t) = 1

N

∑N
i=1 δxN

i (t). For every t ∈ [0, T],
we estimate

‖xN (t) − x̂N (t)‖N =
∥∥∥∥
∫ t

0
(∂tx

N (s) − ∂tx̂
N (s)) ds

∥∥∥∥
N

≤
∫ t

0

∥∥∂tx
N (s) − ∂tx̂

N (s)
∥∥

N
ds

=
∫ t

0

1

N

N∑
i=1

∥∥∥vN
i (s) − vĴ

i (x̂N (s))
∥∥∥ ds

≤
∫ t

0

[
1

N

N∑
i=1

∥∥∥vN
i (s) − vĴ

i (xN (s))
∥∥∥+ 1

N

N∑
i=1

∥∥∥vĴ
i (xN (s)) − vĴ

i (x̂N (s))
∥∥∥
]

ds

≤ T

(
1

TN

∫ T

0

N∑
i=1

∥∥∥vN
i (s) − vĴ

i (xN (s))
∥∥∥2

ds

)1/2

+ L

∫ t

0
‖xN (s) − x̂N (s)‖N ds

≤ T
√
EN

v (Ĵ ) + L

∫ t

0
‖xN (s) − x̂N (s)‖N ds

where we used Jensen’s inequality (or Cauchy-Schwarz) from the third to the fourth line and with
L = L(Ĵ , e, ε) denoting the Lipschitz constant of the velocities (cf. Lemma 2.11). An application
of Grönwall’s inequality yields

‖xN (t) − x̂N (t)‖N ≤ TeLT ·
√
EN

v (Ĵ ). (A30)

Part 2: discrete σ -error functional (3.10a). To obtain the same estimate for the discrete
σ -error functional (3.10a) we first recall Pinsker’s inequality (cf. [73, Lemma 2.5]): for σ1, σ2 ∈
Sa,b one has

‖σ1 − σ2‖L1
η(U) ≤√2KL(σ1 | σ2).

Thus, for any t ∈ [0, T], we estimate

∥∥∥vN
i (t) − vĴ

i

(
xN (t)

)∥∥∥2 =
∥∥∥∥
∫

U
e(xN

i (t), u)
(
σ N

i (t)(u) − σ Ĵ
i (xN (t))(u)

)
dη(u)

∥∥∥∥2

≤
(∫

U
‖e
(
xN

i (t), u
)‖ ∣∣∣σ N

i (t)(u) − σ Ĵ
i (xN (t))(u)

∣∣∣ dη(u)

)2

≤ ‖e‖2
∞‖σ N

i (t) − σ Ĵ
i

(
xN (t)

) ‖2
L1
η(U)

≤ 2‖e‖2
∞KL

(
σ N

i (t) | σ Ĵ
i

(
xN (t)

))
This provides EN

v (Ĵ ) ≤ 2‖e‖2∞EN
σ (Ĵ ), and the conclusion follows from (A90).

Part 3: extension to continuous functionals. Let
(

x̂N
)

N
be the sequence of discrete solutions

with initial conditions
(
xN (0)

)
N

induced by Ĵ and (μ̂N )N the corresponding sequence of empirical
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measures. By Assumption 3.1, point 2, we have W1
(
μN (t), μ∞(t)

)→ 0 uniformly for t ∈ [0, T],
in particular W1

(
μN (0), μ∞(0)

)→ 0. Hence, by Theorem 2.13, point 3, W1(μ̂N (t), μ̂(t)) ≤
CW1

(
μN (0), μ∞(0)

)→ 0 as N → ∞ uniformly for t ∈ [0, T]. Then

W1(μ∞(t), μ̂(t)) = lim
N→∞ W1(μN (t), μ̂N (t)) ≤ lim inf

N→∞ ‖xN (t) − x̂N (t)‖N

≤ lim inf
N→∞ C

√
EN

v (Ĵ ) = C
√
Ev(Ĵ )

where we applied the discrete result in the third step and used Lemma 3.5, for the constant
sequence (Ĵ )N , in the fourth step. The same argument covers the σ -functionals (3.10). �

We close this section by proving convexity of the σ -based inference functionals EN
σ and Eσ .

Proposition A.5. (Convexity). EN
σ and Eσ , (3.10), are convex on X.

Proof. We fix a time t ∈ [0, T] and ignore the t-dependency for notational simplicity. Also recall
that all mixed strategy densities in Sa,b are strictly bounded away from zero, making quotients and
logarithms in the following well-defined. For x = (x1, . . . , xN ) ∈ [Rd]N and any i ∈ {1, . . . , N},
we compute

KL
(
σi|σ Ĵ

i (x1, . . . , xN )
)= ∫

U
log

(
σi(u)

σ Ĵ
i (x1, . . . , xN )(u)

)
σi(u)dη(u)

=
∫

U

[
σi(u) log σi(u) − σi(u) log

(
σ Ĵ

i (x1, . . . , xN )(u)
)]

dη(u)

=
∫

U

⎡
⎢⎢⎣σi(u) log σi(u) − σi(u) log

⎛
⎜⎜⎝

exp

(
1

εN

∑N
j=1 Ĵ (xi, u, xj)

)
∫

U exp

(
1

εN

∑N
j=1 Ĵ (xi, v, xj)

)
dη(v)

⎞
⎟⎟⎠
⎤
⎥⎥⎦ dη(u)

= log

⎛
⎝∫

U
exp

⎛
⎝ 1

εN

N∑
j=1

Ĵ (xi, v, xj)

⎞
⎠dη(v)

⎞
⎠+
∫

U
σi(u)

⎛
⎝log σi(u) − 1

εN

N∑
j=1

Ĵ (xi, u, xj)

⎞
⎠dη(u).

Convexity of the first term follows by Hölder’s inequality: let Ĵ1, Ĵ2 ∈ X and set S1(v) :=
1

εN

∑N
j=1 Ĵ1(xi, v, xj) and S2(v) := 1

εN

∑N
j=1 Ĵ2(xi, v, xj), for α ∈ (0, 1) we have

log

(∫
U

exp (αS1(v) + (1 − α)S2(v))dη(v)

)
= log

(∫
U

exp(αS1(v)) · exp((1 − α)S2(v)) dη(v)

)

≤ log

((∫
U

exp(αS1(v))1/α dη(v)

)α

·
(∫

U
exp((1 − α)S2(v))1/(1−α) dη(v)

)1−α
)

= α log

(∫
U

exp(S1(v)) dη(v)

)
+ (1 − α) log

(∫
U

exp(S2(v)) dη(v)

)
.

The second term is constant, and the last term is linear in Ĵ , and so KL
(
σi|σ Ĵ

i (x1, . . . , xN )
)

is convex in Ĵ . Summing over i (for (3.10a)) or integrating over μ∞(t) (for (3.10b)) and then
integrating in time preserves convexity and concludes the proof. �
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