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Abstract

Given a simplex S and a positive function 8 on S, we show that there is a simplicial subdivision of 5
such that the diameter of each subdividing simplex is smaller that 8 evaluated at some of its vertices.
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1. Introduction

The purpose of this note is to prove a theorem which we believe is fundamental to
the geometric theory of the conditionally convergent integral defined by Kurzweil
(1957) and Henstock (1968).

The very beginning of a geometric integration theory is, of course, a workable
higher dimensional integral. While the Henstock-Kurzweil definition extends
trivially to intervals of any dimension, the integration over intervals is not
adequate. It has been well established that the geometry of higher dimensional
spaces is related to simplexes and their simplicial subdivisions, rather than to
intervals and their usual subdivisions. The reason why intervals work in the real
line is that one-dimensional intervals are simplexes, and their usual subdivisions
are simplicial.
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[2 ] The existence of locally fine simplicial subdivisions 115

To define the Henstock-Kurzweil integral over simplexes, we must establish
first the existence of simplicial partitions compatible with an arbitrary a priori
given positive function. As we are concerned with simplicial partitions only, the
standard argument of Henstock (1968, Theorem 1) does not work. Instead a
completely different and surprisingly intricate technique has to be employed.

The geometric nature of our investigation brings in many notions which are
common in algebraic or piecewise linear topology but usually alien in analysis. In
order to keep the exposition reasonably self-contained, we shall include several
definitions which would have been superfluous if this paper were aimed at the
audience of topologists alone.

2. Preliminaries

By R and R+ we denote, respectively, the set of all real and all positive real
numbers. Throughout, m > 1 will be a fixed integer, and Rm will denote the
m-dimensional Euclidean space. For a point x — (£ , , . . . ,£m) in Rm, we let

/ m

1*1= 2«?
\ i=i

If A C Rm, then A~ and d(A) denote the closure and the diameter of A,
respectively. If B C A CR", then

intAB = A - (A - B)~

is the interior of B relative to A. Given a family 6E of subsets of Rm, we let

mesh<£= sup{d(A): A G &}.

F o r x 0 , . . .,xk in Rm, - 1 < k < m, set

k k

i=0 i=0

If the vectors xi — x0, i: = 1,... ,k, are linearly independent, we call (x 0 • • • xk) a
k-simplex. Each /-simplex (JC, • • • x,• ) where 0 < i0 < • • • < i, < k, -\ < K k,
is called an l-face of the ^-simplex (x0,... ,xk). The vertices of a A>simplex are its
0-faces.

A k-complex is a finite family & = {At,...,Ar} of A:-simplexes such that
Ai n Aj is a common face of At and Aj for each i, j = 1,. . . ,r. The ftot/v of £ is
the set | & | = U"=, A-t. The collection &', -1 < / < k, of all /-faces of ^ , , . . . ,Ar is
an /-complex called the l-skeleton of GL.
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A subdivision of a /c-complex & = {Au... ,Ar) is a fc-complex % — {Bx,... ,BS)
such that | & | = | <351 and each At is a union of some Bj's. A subdivision 65 of & is
called proper if for each £ , F £ f i ' , 0 < / ^ m , and each B £ 65 we have

Since the barycentric subdivision—see Spanier (1966, Chapter 3, Section 3, p.
123)—is proper, we see that each subdivision of & can be subdivided further to a
proper subdivision of &.

If A = (x0,... ,xk) is a /c-simplex and x E. A, denote by st(x, A) the family of
all A>simplexes among the sets (x0 • • • xi_xxxi+l • • • xk), i — 0 , . . . ,k. Clearly,
st(x, A) is a subdivision of {A} which is proper if and only if k = 1 and x is not a
vertex of A.

Throughout, the words "simplex" and "complex" will be used to denote an
w-simplex and an w-complex, respectively. A figure is a set A C Rm which is the
body of a complex.

The set

&- {Au...,Ar,xu...,xr}

is called a partition if {A\,...,Ar} is a complex, the simplexes AU...,AT are

distinct, and xt is a vertex of At, i = 1 , . . . , r . When no confusion is possible we

shall denote by 6E both the partition {Al,...,AI,xu...,xr} and the complex

{At,...,AT}. If A ia a figure containing | (£ | , we call & a partition in A. If

5: | & | -> R + , we say that ffi is 6-//ne whenever d(At) < S(x,), i - 1,.. . ,r.

D E F I N I T I O N 2.1. Let & be a complex. A partition

<3> = {Bl,...,Br;xl,...,x,}

is called a partition of & if $ subdivides 6E and

£ C m t w U {B,:x,EE}

for each £ E&k, k = 0,...,m.

Clearly, if 65 is a partition of <$,, then <$ is a proper subdivision of $ .
Let & be a complex, and let 8: \ & \ -> R+ be such that

6 ( x ) < m i n { | x - > ' | : yE\&°\- (x)}

for each x G | &° | , and

8(*)<inf{|;c-.H:.ye|ff*-1|}

for each x E\&k\ ~\&k~] \, k= \,...,m. Then it is easy to see that a 5-fine

partition % in 16E | is a partition of 6E if and only if | <$ | = 16E | .
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3 . Main result

We begin with some observations about a positive function on a compact set.
Let Q C Rm be a compact set; / : Q -> R+ U { + oo}, and let

r(x)= 1xmsap{f(y):yf=Q,\x-y\<e},

/ _ ( * ) = lim inf{/ (>>) : yEQ,\x-y\<e]
e->0 +

for each x E Q. Clearly /_« : /~ , and it is easy to see that f_ and f~ are,
respectively, lower and upper semicontinuous.

LEMMA 3.1. Let g - f~, and let A C Rm be closed. If g^{x) > 0 for each
x £ A fl Q, then there is an e > 0 and a dense subset D ofintQ(A n Q) such that
f{x) > e for each x £ D.

PROOF. Since A n Q is compact and g_ is lower semi-continuous, there is an
e > 0 such that

for all x £ A n £?. Thus to each x £ 4̂ fl g there is a sequence (xn) in 2 with
xn -» x and/(xn) > e, n = 1,2, As inte(^4 n g) is open in Q is suffices to let

D = {xn: xGQ,n= 1,2,...} n intQ(A n g ) .

LEMMA 3.2. Let g = f~ and Q* = {x £ g: g_(x) = 0}. 77ie« g* « compact
and nowhere dense in Q.

PROOF. Since Q is compact and g_> 0 is lower semi-continuous, Q* is
compact. Suppose there is an x £ intg Q*. Then

[/ = {y E Q:\x-y\<e) C Q*

for some e > 0. Using the Baire category theorem in the locally compact space U
—see Dugundji (1966, Chapter XI, Theorem 10.3, page 250)—we can find a
c > 0 such that

V=\ntv[{z £ U: f(z)3*c}~nu] = intj{z £ U: f(z) s= c}Tl u]

is nonempty. As g(y) > c for eachj £ {z £ U: f(z) > c}~, we have g(^) > c for
each y & V. This implies that g^.(^) ^ c for each y £ F; for V is open in Q.
Since 0 ^ F c Q*, we have obtained a contradiction.

THEOREM 3.3. Let & be a complex, and let 8: \ &\ -> R + . Then there is a S-fine

partition of &.
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118 W. F. Pfeffer [s]

PROOF. Let 0 < k < m, A =\&\ , and let ® be a complex with | $ | C 4 .
Denote by $*($) the collection of all subdivisions {CX,...,CS} of % such that
{C,, . . . ,Cq, y\,- • • ,yq), 1 < q < s, is a S-fine partition in | <S | with {>>,,. .*. ,yq) C
| ®* | , and

E C int,9| U [Cy. yj G £ }

for each E G <&', / - 0 , . . . ,k. We shall prove by induction that $<.(<$) ^ 0 . This
is true if k — 0; for 3>OC35) contains every proper subdivision & of % with

meshe<min{8( ;c ) : jcG<S 0 } .

Assume it is true for k — 1 with 1 < k < w. Clearly, it suffices to show that
= 0 .

CLAIM (i). Let % be a complex with \<$>\C A, and let <$>' be a subdivision of<$>.

Then <f>k_l(
($)') C <f>k_](%). In particular, given e > 0, <$>k_iC$>) contains a com-

plex Q with mesh Q< t.

PROOF. Choose a complex Q= { C , , . . . , C , } in <frk_,(©')> and let
(C[, . . . ,Cq, yx,... ,yq}, 1 < q < s, be the appropriate 8-fine partition in | <$>' | =
| <351 . After a suitable reordering we may assume that

{yu...,yp} = {yx,...,yq} n I®*"1 | ,

1 *sp < q. Considering the partition {Cx,...,Cp; yx,...,yp], it is easy to see that
6 E <Pk_i(<$>); f o r ® ' ' n ^ 'subdivides®' , / = 0 , . . . ,w. Now the rest of the claim
follows from Spanier (1966, Chapter 3, Section 3, Theorem 14, page 125).

CLAIM (ii). Let ® be a complex with B = \ % | C A, let Q C | <$* | , and let D be a

dense subset of Q — \ %k ' | . Suppose that 8(x) > e for some e > 0 and each

x G D. Then there is a proper subdivision {CU...,CS} of % such that

{ C , , . . . ,Cq, y\,- • • ,yq), 1 < q < s, is a S-finepartition in B with {>>,,... ,yq} C

for each E G <&', I = 0 , . . . ,k - 1,

7=1

PROOF. By Claim (i), there is a proper subdivision Q = {C,, . . . ,CJ of ® with
mesh 6 < e and such that {C,,. ..,Cp;y],...,yp), 1 < p < 5, is a S-fine partition
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iaBwith{yl,...,yp) C\9)k~l | , and

£Cintfl U {Cy.yjEE}

for each EE.%', I - 0,.. .,k - 1. In particular, C, n | $ * " ' | = 0 for j =
p + l,...,s. After a suitable reordering we may assume that Cj C\ Q =£ 0 for j =
p + \,...,q, and Cj n Q= 0 for; = 4 + l,. . . ,s;/> < ^ < 5. Thus

0 C intB U Cj.
7 = 1

If Cj, p <j < q, has no vertex in Q, find an x e C, n Q and replace each C,,
/> < j < q, containing x by st(x, C,). By repeating this process finitely many times,
we obtain a subdivision of {Cp+i,... ,Cq] such that each simplex of this subdivi-
sion has a vertex in Q. Thus with no loss of generality we may assume that each
Cj, j — p + \,...,q, already has a vertex in Q. Let (z , , . . . ,zn) be all vertices of
Cx,...,Cq. If z, G Q and z, is a vertex of Cj with p <j < q, choose a z,' G I>;
otherwise let z\ = z,; / = 1,. . . ,n. If C, = <z,o • • • z,m>, set CJ = {z'io • • • z'im),
j = 1,... ,q. Since each z, with z't ¥= z,, ! < / < « , lies in

7 = 1 /

and since D is dense in Q — \ iS>k~' | , we can choose z\ in | 9>k | — | ($>k~' | and so
close to z, that 6 ' = {C[,...,C'q, Cq+ x,..., Cs) is a proper subdivision of % with
mesh 6 ' < e. Moreover, each CJ, p <j < q, has a vertex yj G D. It follows that

{C[,...,C'q;yx,...,yp,y'p+x,...,y'q}

is the desired 8-fine partition in B, and the claim is proved.

Let 0O = | &k | , and suppose that a compact set Qa C | 6Lk \ has been defined
for each ordinal a < /}. If /? is a limit ordinal, set 0^ = n a < / 3 0 a . If /3 = a + 1,
let 5O be the restriction of 8 to 0 a , A" = 5~, and set

By Lemma 3.2, 2 o +i c Co whenever Qa ¥= 0. Thus there is the first ordinal K
with QK = 0. From our construction it is clear that K = y + 1. It follows from
Kuratowski (1966, Section 24, II, Theorem 2) that K is a countable ordinal but we
shall not need this.

Let T be the set of all ordinals a < y for which there is a proper subdivision
$ = {Bu...,Br} o f & s u c h t h a t {Bl,...,Bp; x x , . . . , x p ) , 1 ̂ p < r, i s a 8- f ine
partition in /I with {x,,...,xp} C\&k\ ,

ECint^ U {5,:x,G£}
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for each E G ©', / = 0, . . . ,k - 1, and

p

{*„...,*,} U e.cint^U Bt.
i=i

As the subdivision % is proper our induction will be completed by showing that

oer.

It follows immediately from Lemma 3.1 and Claim (ii) that y £ f .

CLAIM (iii). / / B G F is a limit ordinal, then there is an a G F with a < B.

P R O O F . If {Bx,...,Bp; xl,...,xp) is a 5-fine partition in A associated with

B G F, then
p

QpCG = int̂  U 5,-
; = i

Since (Qa — G: a < /?} is a chain of compact sets and

n(Qa-G) = Qfi-G=0,

we have Qa C G for some a < /?. It follows that a G F.

CLAIM (iv). If a + 1 G F, f/iew a G F.

PROOF. There is a proper subdivision % = {Bx,...,Br} of $ such that
{Bl,...,Bp\ xu.. -,xp}, 1 </> < r, is a 8-fine partition in >4 with {x , , . . . ^ ^ } C

E C int^ U {5,: x, G £ }

for each E G <&', / = 0 , . . . , k - 1, and
p

{*„...,*„} UQ.+ .Cint^ LJ5,,
/=i

Let ^ = {£p + 1 , . . . ,Br}. By Lemma 3.1 there is an e > 0 and a dense subset D of
1^1 n Qa ~ | ̂ * ~ ' | such that 8{x) > e for each x G Z>; for Al (x) > 0 for every
x G | <$ | n g a , and

Using Claim (ii), we can find a proper subdivision { C , , . . . , ^ } of D̂ such that
{C,, . . . ,C?; _y,,... ,yq), 1 < q < 5, is a 8-fine partition in | ̂ D | with {.yj,. • • . ^ j C

£ C int|fiD| U ( C / 77. G E)
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[8] The existence of locally fine simplicial subdivisions 121

for each £ E <$',/ = 0,.. , k - 1, and

{yx,...,yq} u (|<*D| n g a ) c in t f f l U q.
7 = 1

Since {*,,... ,xp) C int^ U f = 1 B , , there is a subdivision {Px,...,Pn} of

{5 , , . . . , f i p} such that each Pj, 1 = £ y < « , has a vertex zy in {x],...,xp} and

( P , , . . . ,Pn, C , , . . . , C J is a subdivision of %. After a suitable reordering we may

assume that

1 < / < ? . C o n s i d e r i n g t h e p a r t i t i o n { P 1 , . . . , P n , C l , . . . , C t ; z x , . . . , z n , > > , , . . . , y t ) i t
is easy to see that a G T; for <S' n &' subdivides &',l- 0 , . . . , m.

As every decreasing sequence of ordinals is finite—see Dugundji (1966, Chapter
II, Theorem 6.4 (5), page 43)— it follows from Claims (iii) and (iv) that 0 G T,
and the theorem is proved.

The next proposition is the main motivation for Definition 2.1. It shows that a
8-fine partition of a subcomplex can be always extended to a 8-fine partition of
the whole complex.

PROPOSITION 3.4. Let &be a complex, 8: | &\-> R + , and let <$ be a subcomplex
of&.If%'isa 8-fine partition of®, then there is a 8-fine partition <3' of G = & — %
such that %' U Q' is a 8-fine partition of '<$,.

PROOF. Without loss of generality, we may assume that Q consists of a single
w - s i m p l e x C . L e t %' — { B x , . . . , B p \ x x , . . . , x p ) , a n d f o r k = 0,...,m — 1, l e t
9k = {C|,...,Cq; yx,...,yq) be a 8-fine partition in C with the following proper-
ties:

(i) % U <$>' is a complex, and {>>„.• • ,yq) C {*„... ,xp};
(ii) E C intc U {Cy: y} G £} for each E G & n <$>', I = 0,... ,k;
(iii) ^ can be extended to a proper subdivision of (2;
(iv) the (/M — l)-dimensional face Ej of (^ opposite to yjt 1 <_/ < r̂, is per-

pendicular to each E G (3', 1 *£ / < m, for which E n Ej¥= 0.
It is easy to see that % exists. Assuming the existence of 9k, 0 < k < w — 2,

we shall prove that ^Pfc+1 exists.
Given E G 6k+1 n <$>k+l, choose a B 6 ® with £ C B. After a suitable re-

ordering, we may assume that Bl,...,B,,0 ^ t <p, are all elements from %' for
which the associated vertices xx,...,xt belong to E — \ $* | . Using (i) and (iv), we
can construct a 8-fine partition <3'E — {£>,,... ,Dn\ zx,... ,zn) in C such that

(a)^P£U % U %' is a complex, and {z, , . . . ,zn} = {*„. . . , * , } ;
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(b) E C intc[( U {Cj G %; Vj G E}) U (U" = , />,)];
(c) 9E can be extended into a proper subdivision of 6;
(d) the (m — l)-dimensional face /J of D, opposite to z,-, 1 < / < n, is per-

pendicular to each F G G', 1 < / < m, for which F C\ Ft¥^ 0.
Roughly speaking, 9E is obtained by an appropriate squashing and refining of the
partition {Bx,... ,B,; x , , . . . ,x,} flipped across E into C. Now it follows from (ii)
that

<dPm_, = {/*!,...,Pr; « „ . . . , w r } . By (iii), there is a complex ^ such that <$ U
l3'm_1 is a proper subdivision of 6. Applying Theorem 3.3, we can find a 5-fine
partition {5 , , . . . ,S , ; « , , . . . ,« ,} of 6D. Since

{« , , . . . , « ,} C i n t c U Pr,
i=\

there is a subdivision {Qi,---,Qi} of ^m_, such that each Qj, 1 <_/ < /, has a
vertex vw- in { « „ . . . , « , } , and { 2 i , . . . , 6 / , S,,...,.%} subdivides (2. The proof is
completed by letting

C ' = { G 1 , . . . , G , , S , , . . . , S J ; w 1 > . . . , * „ © „ . . . , » , } .

Let £ be a complex, and 5: | (£ | -» R + . It is natural to investigate whether there
is a 5-fine partition {Ax,...,An\ xx,...,xn) of 6E whose simplexes satisfy some
regularity condition—see Whitney (1957, Chapter IV, Section 4). In particular,
one would like to know whether the solid angle of At at x,, / = 1,...,«, is
bounded away from zero uniformly with respect to 8. The following example
shows that this cannot be achieved.

EXAMPLE 3.5. Set m = 2, and let A be a 2-simplex in R2 such that {x e R2:
\x\< 1} C A. Denote by 0 the origin in R2, and choose 0 < e < \. Forx G X, set

e | x | if x ¥= 0,

e ifx = 0,

and let {Av... ,An; xx,... ,xn] be a 6-fine partition of {,4}. By the choice of 5E,
n > 2 and after a suitable reordering, /I, = (Oxy), x, = 0, and A2 = (xyz) for
some x, y, z in A. With no loss of generality, we may assume that x2 = x or
x2 = z. If x2 = z, then | x — y \ < e \ z | and \z — x | < e | z | . A s | z | < | x | + | z —
x | , we have | z | < | x | + e | z | , and consequently

\x-y\<e\z\<j^-e\x\<2e\x\.

However, if x2 = x, then again

| x — y | < e| x | < 2e \ x \ .

https://doi.org/10.1017/S1446788700017675 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017675


[io] The existence of locally fine simplicial subdivisions 123

From | x | — | x — _y |<|_y )< | JC | +1 x — >> | we obtain

If a is the angle of Ax at 0, then

2 \ b l 1*1 |xp b l
It follows that a -> 0 as e -> 0.

4. An application

For x G Rm and a sequence {Bn} of simplexes, we write Bn -> x whenever x is a
common vertex of each Bn, n = \,2,..., and d(Bn) -> 0. If 4̂ is a simplex, denote
by aA the family of all simplexes contained in A. Finally, let X be the w-dimen-
sional Lebesgue measure in Rm.

Let A be a simplex, x G A, and let <J>: 04 -» R. The extended real number

where the infimum is taken over all sequences {Bn} from aA with Bn -> x, is called
the /OHW derivate of <> at x.

DEFINITION 4.1. Let A be a simplex. A function #: â  -» R is called superaddi-
tive if

for each complex % with | % \ — A.

We note that Definition 4.1 is substantially weaker than the usual definition of
superadditivity.

THEOREM 4.2. Let A be a simplex, and let </>: aA -> R fee a superadditive function.

If *<H*) > 0 M ^ac/i x G ^ , /ten </>(̂ ) > 0.

PROOF. Choose an e > 0, and let \p = $ + e\. Then \p: aA -» R is superadditive,
and
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for each x G A. Thus given x G A, there is a S(x) > 0 such that ^(B) > 0 for
each B G aA with a vertex x and ^f(B) < S(x). By Theorem 3.3, we can find a
8-fine partition {# , , . . . ,23^; * , , . . . ,xp} of {A}. Since

e\(A) = HA) ^ 2 4>(B.) > 0,

the theorem follows from the arbitrariness of e.

Theorem 4.2 is actually equivalent to the following weaker version of Theorem
3.3:

Given a simplex A and a 8: A -» R+ , there is a 8-fine partition 6E =
{y4,, . . . ,^n; * „ . . . , x n } inAwhh\&\=A.

To see this, suppose that there is a 8: A -> R+ such that no such 8-fine
partition & in A exists. For B G aA, let </>(fi) = 0 if B has a vertex x with
d{B) < S(x), and <j>(B) = -1 otherwise. Then <£: ô  -» R is superadditive, <J>(/1)
= - 1 , and t<p(x) = 0 for each x E A.

This paper was prepared while the author visited the University of South Africa
in Pretoria, the Royal Institute of Technology in Stockholm and the Monash
University in Melbourne.
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