
Can. J. Math., Vol. XXXIII, No. 5, 1981, pp. 1055-1059 

ON AN IRREDUCIBILITY THEOREM OF A. COHN 

JOHN BRILLHART, MICHAEL FILASETA AND ANDREW ODLYZKO 

1. Introduction. In [1, b.2, VIII, 128] Pôlya and Szegô give the 
following interesting result of A. Cohn: 

THEOREM 1. If a prime p is expressed in the decimal system as 

n 

p='E o*10*, 0 £ ak g 9, 

then the polynomial X^=o a^%k i$ irreducible in Z[x]. 

The proof of this result rests on the following theorem of Pôlya and 
Szegô [1, b.2, VIII, 127] which essentially states that a polynomial/(x) 
is irreducible if it takes on a prime value at an integer which is sufficiently 
far from the zeros of / (x) . 

THEOREM 2. Letf(x) G Z[x] be a polynomial with the zeros «i, a2? . . ., an. 
If there is an integer b for which f(b) is a prime, f(b — 1) ^ 0, and 
Re (ai) < b — | for 1 S i è n, then fix) is irreducible in Z{x]. 

Proof. Assume that/(x) = g(x)h(x), where g (x), h(x) f Z[x], and deg g, 
deg h ^ 1. If a.j are the zeros of g(x), then Re (af) < b — -J. If g(x) is 
factored over the complex field, it follows readily that g(x + b — §) has 
no missing terms and all the terms have the same sign. Also, the coeffi
cients of g( —x + b — J) are strictly alternating. Thus, 

\g(b - \ - 01 < \g(b - I + 01 for any t > 0. 

For/ = J, \g(b - 1)| < |g(6)|, and since g(6 - 1) G Zandg(6 - 1) ^ 0, 
it follows that \g(b — 1)| ^ 1 and |g(6)| è 2. By the same agrument, it 
also follows that \h(b)\ è 2, which contradicts the assumption that / (6) 
is a prime. 

In this paper we obtain an irreducibility result (Theorem 3), which is 
derived from Theorem 2, for polynomials whose first three coefficients 
are non-negative. The new feature in this result is the lower bound for 
the integer b in Theorem 2 which is computed from the coefficient of/(x). 
This theorem is then used to prove the generalization of Theorem 1 in 
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which the base 10 is replaced by any integral base b ^ 2. We also discuss 
how these theorems can be used to test a given polynomial for irreducibility. 

2. Generalizations and applications. In the next theorem a poly
nomial is given and conditions are derived for its irreducibility. In the 
corollaries that follow, a prime is given from which a polynomial is 
derived that is then shown to be irreducible. 

THEOREM 3. Let 

n 

f(x) = ]Ca*** £ ^w 
Jfc=0 

be a polynomial with an > 0, an_i ^ 0, andan-2 ^ 0. Let m = max {|aA| /aw} 
for 0 g k g n - 2, 

(1 + y/4m + l ) / 2 , and 

r2 = [(5 + \ A 2 - 4)/54]1 / 3 + [(s - \/s2 - 4)/54]1 / 3 + i 

where s = 27m + 2. If there is an integer 

b > max {ri/y/2, r2\ + | 

for which f(b) is a prime and fib — 1) ^ 0 , then fix) is irreducible in Z[x]. 

Proof. We observe first that rx ^ 1 and r2 ^ 1. Let 

A = {z e C: Re (z) ^ max {fi/y/2, r2\). 

We will show that all the zeros of/ l ie in A by proving that \f(z)\ > 0 for 
z £ Ac, the complement of ^4. 

Let Ac be partitioned into the two sets Ac C\ B and Ac C\ Bc, where 

B = {z £ C: Re (z) < 0 or \z\ ^ rx). 

If z £ Ac r\Bc, then Re (l/z) > 0 and 

fM 
n 

Z 
> 

> a- — 

Z j&2 Z \ Z / j K Z 

flnQgl m) > 0, 

since \z\ > riy the positive zero of x2 — x — m. 
If z Ç Acr\B, then |arg (z)| < TT/4, SO Re (l/z) and Re (l/z2) are ^ 0. 

Thus, 

m 
n 

Z 

> Re \an 

_ an{\z\z 

i Cln-1 i 

z z2 / 
, Wf l . 

Ski* ? > wa„ 
z - z 

m) 
> 0 , 
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since |z| > r2, the positive zero of x3 — x2 — m. Thus, the hypotheses of 
Theorem 2 are satisfied for the integer ft, which proves the theorem. 

Remarks. 1. It should be noted that the size of an-\ does not enter into 
Theorem 3. 

2. In the part of the proof of Theorem 3 where z £ Ac Pi Bc, the 
stronger statement that \f(z)\ > 0 for any z £ Bc is actually true, though 
not necessary to the proof. 

COROLLARY 1. Let ft ^ 2 be an integer and let B — 1 if b = 2 and B = 
[(25 - 1) (2b - 1 - A / 2 ) / 2 ] if ft ^ 3, where the brackets are the greztest 
integer function. Also, let a prime p be expressed as 

n 

P = E aj>\ 

where an > 0, an_i ^ 0, an_2 è 0, and \ak\/an ^ 5 /or 0 ^ & ^ w — 2, am/ 

Uf(° ~ 1) ^ 0, thenf(x) is irreducible inZ[x]. 

Proof. Since all of the hypotheses of Theorem 3 except one are given, 
it is only necessary to show that 

b > max {r1/\/
r2, r2\ + i. 

Let ri* and r2* be the positive zeros of x2 — x — B and g(x) — 
x3 — x2 — B, respectively. Then, since m S B, we have that r± ^ ri* 
and r2 ^ r2*. Thus, we have only to show 

b > m a x f f i V v ^ , ^ * } + i 

Now, ri*/\/2 is a zero of h(x) = 2x2 — y/2x — i?. Since 

A(6 - i ) = i(26 - 1) (26 - 1 - V 2 ) - ^ > 0 

and 

g (ft - i ) = ^ ~ i)2(ft - f ) - £ > 0 

for 6 ^ 2, we then have that 

ft - i > max{ri*A/2,^2*}. 

Remark. We observe that the bound ^ is a quadratic function of ft. 
Thus, say, for the bases ft = 2, 3, 4, 5, 10, 50, and 100, the corresponding 
values of B are 1, 8, 19, 34, 167, 4830, and 19659. 

We can now give a simple and direct generalization of Theorem 1. 
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COROLLARY 2. If a prime p is expressed in the number system with hase 

h ^ 2 as 

n 

P - !>*&*, 0 Sak g 6 - 1, 
fc=0 

then the polynomial X^Lo etkXk is irreducible inZ[x]. 

Proof. This follows directly from Corollary 1. 

Example. Let p = 397, If we express p to various bases /? ^ 2, we obtain 
the following collection of irreducible polynomials: 

p Irreducible Polynomials 

1100011012 X8 + X7 + X3 + X2 + 1 
1122013 x5 + x4 + 2x3 + 2x2 + 1 
120314 x4 + 2x3 + 3x + 1 
30425 3x3 + 4x + 2 
1501, x3 + ox2 + 1 
11057 x3 + x2 + 5 
6158 6x2 + x + 5 

h i-. t i*\ir t ro M tin LK t t h * i î 1 l u - h i si i h r^e c o e t h u e i m ot / * * m u s t u -

\v .!•-!,* ; .-,1 *\ * îi ' . i l rifi'OîrMi ;S r.'Hinot b e used t,'» i o r l t l i e n n ' ' ! 1 ! ' Lihi* ,.i 

r 'v i*.1 : " » . . , i ! ucMi<iîï«^K A\« p r o v e t h e ioIl<-^'me th^ore*- v ' - u ' t n i ^ 

a m o n " -ii K tr . <• < o i id i l l 'HI DII 1 he size of i lu- < ot tin ie t i ts I -Mi < i>< • »« IM • • 

to ;*-M a n \ p u h n o i n i a l . 

1 i i i -^ ' i 'M 4 Lii M'A) - ^2l ; - « , i \
j Z [ A | />< << polynomial -mill .i„ > (J 

and a,, < * 0. //" 'here exists an intent ^ ,.: 2 Jen which t(i>) is a prime, 
>ih - i ) J±. ()f ,/>,// ' , / / ,/fj < c p v - N/) 4 ;]) 4 / ^ f ( ) ^ A' S // - J . ///<>, 
f *xj *.\ in'cdm ihle in ZjxL 

.Proof. Let .4 = {z £ C: |s| < & - £}. If s £ 4 e, then 

t(462 - 86 + 3)/4 ^ >ReL + ^ ) = £ ^ 

^ _ ««(6-2* + i ) ««[JzL^Jô -_è)JM±16 - t)] -. n 

\z\; -\z\ " " R r - M = "• 
Thus , the zeros «j of f(z) are all in yl, so Re (ai) < & — % and f(x) is 
irreducible by Theorem 2. 

Remarks. 1. I t should be noted t h a t Theorem 4 omits the possibility of 
testing a polynomial in the very special case an = 1 and b• = 2. 
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2. Any polynomial/(x) can be tested by Theorem 4 since one of ± / (x) 
or ± / ( —#) will have two non-negative leading coefficients. For example, 
let/(x) = 2x3 - ox2 + 107. Since -f(-x) = 2x3 + ox2 - 107, - / ( - 9 ) 
7^ 0, and — / ( —10) = 2393 is a prime, then/(x) is irreducible. 

3. The above theorems will not always be successful in demonstrating 
the irreducibility of an irreducible polynomial, even if the size of the 
numbers involved is not too large. This is because irreducible polynomials 
exist which take no prime value at integral arguments. A simple example 
is x2 + x + 4, which is irreducible, but for integral x is even and is never-
equal to dz2. A more general example is xv + (p — l)x + 6p, where p is 
a prime = 1 (mod 35). (Also see [1, b. 2, VIII, 120].) 

4. The transformation x = ay can sometimes aid in showing ir
reducibility. For example, using Theorem 4 with f(x) — xz — x + 59, 
we have/(7) 9^ 0 and/(8) = 563, a prime. However, 59 exceeds the size 
of the coefficients allowed in Theorem 4 with base b = 8. If we set x = 2y} 

then g(y) - f(2y) - 8ys ~ 2y + 59, so g(3) ^ 0, g(4) - 563, and the 
bound on the coefficients is now 70, with permits 59. Thus, f(x) is ir
reducible. 

5. The reciprocal polynomial xnf(l/x) may sometimes aid in either 
increasing the size of the coefficients or in searching for prime values 
of/(*) . 

6. In searching for prime values of f(x), certain values of f(x) do not. 
need to be considered because they are known to be composite; for, if p is 
a prime divisor of jf(xo), then p divides/(xo + kp), k Ç Z, so f(x0 + kp) 
will be composite if f(xo + kp) •=£ zhp. The possibility that f(xQ + kp) 
— zhp can be settled at the outset by noting that f(x) is an increasing 
function to the right of the maximal real part of its zeros. 
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