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We consider the stability of laminar high-Reynolds-number flow through a planar channel
formed by a rigid wall and a heavy compliant wall under longitudinal tension with
motion resisted by structural damping. Numerical simulations indicate that the baseline
state (with Poiseuille flow and a flat wall) exhibits two unstable normal modes: the
Tollmien–Schlichting (TS) mode and a surface-based mode which manifests as one of
two flow-induced surface instabilities (FISI), known as travelling wave flutter (TWF) and
static divergence (SD), respectively. In the absence of wall damping the system is unstable
to TWF, where the neutrally stable wavelength becomes shorter as the wall mass increases.
With wall damping, TWF is restricted to long wavelengths through interaction with the
most unstable centre mode, while for wall damping greater than a critical value the system
exhibits an SD mode with a two branch neutral stability curve; the critical conditions
along the upper and lower branches are constructed in the limit of large wall damping. We
compute the Reynolds–Orr and activation energy descriptions of these neutrally stable
FISI by continuing the linear stability analysis to the following order in perturbation
amplitude. We find that both FISI are primarily driven by the working of normal stress on
the flexible wall, lower-branch SD has negative activation energy, while upper-branch SD
approaches zero activation energy in the limit of large wall damping. Finally, we elucidate
interaction between TS and TWF modes for large wall mass, resulting in stable islands
within unstable regions of parameter space.
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1. Introduction

A series of seminal experiments performed by Kramer in the late 1950s suggested that
turbulent drag generated by flow around a streamlined body (like a submarine) could
be significantly reduced by applying a compliant coating (Kramer 1957, 1960). The idea
was motivated by Gray’s paradox, the observation that a swimming dolphin generates
significantly less turbulent drag than might be expected given the swimming speed (Gray
1936). However, subsequent experiments proved inconclusive and the drag reduction
observed in dolphins has since been attributed to cutaneous ridges in their skin (Carpenter,
Davies & Lucey 2000), as opposed to the compliance alone.

Although controversial, Kramer’s experiments motivated the theoretical study of the
stability of viscous flow over a compliant surface (the classical Orr–Sommerfeld stability
problem with a Blasius baseline flow profile and appropriate boundary conditions).
The seminal work was conducted by Benjamin (1960), who showed how the classical
Tollmien–Schlichting (TS) mechanism for instability of viscous flow over a rigid plate
(Tollmien 1929; Schlichting 1933) could be generalised to flow over an Euler–Bernoulli
beam with finite mass and internal damping held under longitudinal pre-tension: these
TS waves were notably stabilised by wall flexibility but destabilised by wall damping
(confirmed numerically by Carpenter & Garrad 1985). So, in principle, a compliant
coating with appropriately chosen properties could delay the onset of TS instabilities. This
prediction was confirmed by a series of experiments by Gaster (1988), who demonstrated
that wall compliance can increase the critical Reynolds number for TS by up to 30 %.

However, the analysis of Benjamin (1960) also demonstrated that wall flexibility and
damping could, in principle, destabilise other surface-based normal modes not present in
a rigid channel; these modes have been termed flow-induced surface instabilities (FISI).
Benjamin showed that these modes could be classified through their response to wall
damping (an irreversible transfer of energy from the fluid to the wall), suggesting a
threefold classification system, with modes denoted as either class A, B or C (Benjamin
1963): class A modes are destabilised by wall damping, class B modes are stabilised while
class C modes are not influenced (such as the Kelvin–Helmholtz instability, Cairns 1979).
Note that, according to this framework, TS waves are class A (Benjamin 1963).

For incompressible viscous flow over a compliant surface these FISI fall broadly into
two categories: travelling wave flutter (TWF) and static divergence (SD). TWF is a
class B instability, observed in the experiments of Gaster (1988), which takes the form
of a travelling wave propagating with wavespeed close to that of the unloaded elastic
wall (Carpenter & Garrad 1986); the mechanism of instability is similar to that of
wind generating water waves, sustained by viscous effects within narrow viscous layers
across the flow (Benjamin 1959; Carpenter & Gajjar 1990). Conversely, SD is a class
A instability, observed in the experiments of Gad-El-Hak, Blackwelder & Riley (1984),
taking the form of a stationary or very slowly propagating mode (Carpenter & Garrad
1986); the mechanism of instability is not clearly understood, but non-zero wall damping
is essential for destabilisation in an infinitely long system (Carpenter & Garrad 1986),
although the story is more complicated when the compliant panel is of finite length
(Lucey & Carpenter 1992, 1993; Peake 2004; Burke et al. 2014). In this study we consider
the limit of large wall damping to elucidate the mechanism of SD in a long compliant
channel.

Analogous FISI are also evident in the study of fully developed Poiseuille flow through a
long flexible-walled channel formed with two compliant walls, with the distinct advantage
that the baseline flow is genuinely parallel. In this case the classical TS mechanism evident
in a rigid channel (Drazin & Reid 1981) is only weakly modified by wall compliance
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Flow-induced surface instabilities in a flexible channel

(Hains & Price 1962) and weakly destabilised by wall damping (Green & Ellen 1972).
However, these TS modes are accompanied by symmetric or anti-symmetric TWF and
SD modes (Green & Ellen 1972; Davies & Carpenter 1997a; LaRose & Grotberg 1997)
with similar characteristics to those observed for Blasius flow over a compliant surface.
For instance, neutrally stable TWF has wavespeed less than the maximal speed of the
Poiseuille flow and is destabilised by viscous effects across internal critical layers (the
fluid pressure becomes out of phase with the wall motion, allowing work to be done on
the wall; Davies & Carpenter 1997a; Huang 1998). In contrast, the SD mode onsets with
almost zero wavespeed and the neutral stability curve eventually coalesces with that of
the TS mode (Davies & Carpenter 1997a). This stability problem was recently revisited
by Lebbal, Alizard & Pier (2022), extending the analysis of the parameter space and
presenting an energy analysis of the TS and FISI modes. We present a similar energy
analysis for our FISI below, although we decompose the work done by Reynolds stresses
by explicitly calculating the modification to the mean flow induced by steady streaming.

Conversely, when the planar compliant channel is inherently asymmetric, formed by
one flexible wall and one rigid wall (as in the present study), the system exhibits a nearly
symmetric TS mode alongside strongly asymmetric FISI modes (Stewart, Waters & Jensen
2010b): in this case neutrally stable TWF exhibits wavespeed greater than the maximal
speed of the Poiseuille flow (in the absence of wall damping), and is unstable via a ‘weak’
critical layer in the centre of the channel; SD exhibits a strongly asymmetric eigenfunction
and a two branch neutral stability curve completely distinct from that of the TS mode. We
investigate this two branch structure of neutrally stable SD in more detail below.

Furthermore, these FISI can interact with the hydrodynamic modes (including TS), with
energetically favourable interactions between modes of class A and class B. For example,
for Blasius flow over a flat surface Carpenter & Garrad (1985) demonstrated an interaction
between TS and TWF modes in viscous flow with sufficient wall damping. Davies &
Carpenter (1997a) also observed a mode interaction between TS and SD in flow through a
compliant channel, which is energetically puzzling as both constituents are class A. In this
study we elucidate several instances of mode interaction between the hydrodynamic and
FISI modes, showing that in each case the interaction results in a stabilisation of a nearby
region of the parameter space.

These FISI are related to the classical instabilities of aeroelasticity, known as flutter
and divergence (Fung 1969) which have been identified in the study of potential flow over
a compliant surface (Carpenter & Garrad 1986) and in a compliant channel (Grotberg
& Davis 1980; Walsh 1995). However, there is evidence that these inviscid instabilities
are both class C: Carpenter & Garrad (1986) showed that flutter arises as a coalescence
between neutrally stable modes of class A and class B (similar to Cairns (1979), for
Kelvin–Helmholtz instabilities with surface tension), while divergence is absolutely
unstable (Carpenter, Lucey & Davies 2001). Note that the study of aeroelasticity also
extends into the compressible flow regime (e.g. Dettenrieder & Bodony 2022), but in the
present study we restrict our attention to incompressible flows.

Landahl (1962) expressed the classification scheme of Benjamin (1960) in terms of the
activation energy of the neutrally stable modes (the amount of energy needed to establish
a wave of given amplitude in a previously undisturbed flow), characterised by the change
in mechanical impedance induced by a small increment in frequency from the neutral
value: modes with negative (positive) activation energy correlate to modes which are
destabilised (stabilised) by wall damping and are thus class A (class B). Class C modes
have zero activation energy at onset. Cairns (1979) formalised this argument (making
the analogy to plasma physics), constructing the activation energy for a neutral inviscid
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wave from the increment in normal stress induced by a change in perturbation frequency.
However, this analysis relies on a scalar dispersion relation for the system (a dispersion
relation constructed as a scalar-valued function of the wavenumber and frequency, in
this case in terms of the normal stress on the wall), which is not typically how the full
Orr–Sommerfeld stability problem is formulated (see for example Davies & Carpenter
1997a; Stewart et al. 2010b). In this paper, we construct a scalar dispersion relation for
the Orr–Sommerfeld stability problem in an asymmetric compliant channel, and use this
expression to compute the corresponding sign of the activation energy (both numerically
and in several asymptotic limits).

An alternative way to characterise the neutrally stable FISI is through the work done
by the fluid on the wall (Davies & Carpenter 1997a; Huang 1998). However, formulation
of the energy budget of the neutrally stable modes involves continuing the linear stability
analysis (the first-order problem) to the following order (the second-order problem) and
computing the steady corrections to the energy budget that arise at this order, but then
eliminating the second-order variables in favour of first-order variables, the so-called
Reynolds–Orr energy equation (Domaradzki & Metcalfe 1987; Schmid & Henningson
2001; Stewart et al. 2010b). However, this procedure obscures calculation of the work
done by the fluid on the wall. In this paper, we continue the stability calculation to second
order, allowing reconciliation with the activation energy and direct calculation of the work
done by the fluid on the wall for each of the neutrally stable FISI.

So, in summary, the literature on flow over compliant surfaces elucidates a number of
different modes of FISI, which can be characterised by their response to dissipation (both
in the fluid and in the wall), their activation energy and their total work done by the fluid on
the wall. However, what is missing is a clear understanding of mechanisms which generate
these FISI (particularly SD).

Furthermore, these FISI are also known to play a role in instability of physiological
systems. For example, Stewart et al. (2010b) showed how local hydrodynamic (e.g. TS)
and surface-based modes (TWF, SD) can be combined to form global eigenmodes of
flow through a rigid channel with a finite-length flexible panel, as a prototypical model
for flow through a Starling resistor experiment (e.g. Bertram, Raymond & Pedley 1990;
Bertram 2003). The analysis in the present study, where we focus particularly on the role
of wall mass and structural damping, is of strong relevance to the onset of self-excited
oscillations in air flow through the larynx during speech production (Titze 1988; Mittal,
Erath & Plesniak 2013a).

In this paper, we choose a prototypical system involving Poiseuille flow through a long
asymmetric flexible-walled channel and propose a method to extract a scalar dispersion
relation of the fully viscous system, from which we compute the activation energy of the
modes directly (§ 2). We consider the stability of viscous (fully developed) Poiseuille flow
through an asymmetric compliant channel in the absence of wall damping when the wall
is heavy (i.e. non-negligible wall mass), elucidating neutrally stable TS and TWF modes,
their interaction and providing a new asymptotic description of TWF in the limit of large
wall mass (§ 3). We further consider how finite wall damping influences the stability of the
system, providing a novel rational asymptotic description of neutrally stable SD and TWF
in the limit of large wall damping, and elucidating their interaction with the hydrodynamic
modes (§ 4). Furthermore, in Appendix A, we consider an inviscid model where the flow
is both irrotational and potential (i.e. plug flow, based on the earlier work for potential
flow over a compliant surface, Landahl 1962; Benjamin 1963; Carpenter & Garrad 1986),
including a derivation of the inviscid activation energy and characterisation of the neutrally
stable FISI.
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Figure 1. Set-up of the flow in dimensionless variables.

2. The model

We consider the stability of the flow of viscous fluid through a planar (asymmetric)
channel of baseline width a, formed by a rigid wall and a flexible wall. The fluid is assumed
to be incompressible and Newtonian of density ρ and viscosity μ, driven by a fixed flow
rate Q (per unit width in the out-of-plane direction).

We establish Cartesian coordinates in the plane of the channel, where the coordinate x
parameterises the rigid wall and the coordinate y is normal to the rigid wall oriented into
the channel. The model set-up shown in figure 1. For simplicity we assume that the flexible
wall can only move normal to the rigid wall (in the y-direction) and so its location can be
expressed in the form y = h(x, t) at time t. Note that others have included lateral motion of
the compliant wall driven by fluid shear (e.g. LaRose & Grotberg 1997; Tsigklifis & Lucey
2017), but that is neglected here for simplicity.

Following earlier studies of the stability of flow past flexible-walled boundaries (e.g.
Carpenter & Garrad 1986; Davies & Carpenter 1997a; Stewart et al. 2010b) we assume
the compliant wall can be modelled as an Euler–Bernoulli beam subject to an external
pressure pe. In particular, we assume the flexible wall has restoring forces due its mass m0,
internal viscous damping d0 and longitudinal pre-tension T0.

We introduce dimensionless variables by scaling all lengths on a, velocities on Q/a,
times on a2/Q and pressures on ρQ2/a2 from which we obtain the dimensionless
parameters (each marked with a tilde)

R̃ = Qρ

μ
, T̃ = aT0

ρQ2 , d̃ = ad0

ρQ
, m̃ = m0

ρa
, (2.1a–d)

where R̃ is the Reynolds number of the flow, T̃ is the dimensionless pre-tension of the
wall, d̃ is the dimensionless wall damping and m̃ is the dimensionless wall mass. All
dimensionless variables take the same symbol as their dimensional counterpart and we
henceforth drop tildes for convenience.

2.1. Governing equations
The fluid flow is governed by the (two-dimensional) incompressible Navier–Stokes
equations, where u = (u, v) and p denote the dimensionless velocity and pressure of the
fluid, respectively, in the form

ux + vy = 0, (2.2a)

ut + uux + vuy = −px + R−1(uxx + uyy), (2.2b)
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vt + uvx + vvy = −py + R−1(vxx + vyy). (2.2c)

On the rigid wall we apply boundary conditions of no slip and no penetration in the form

u = 0, v = 0, ( y = 0), (2.2d)

while on the compliant wall we apply kinematic and no-slip conditions in the form

u = − hthx

1 + h2
x
, v = ht

1 + h2
x
, ( y = h). (2.2e)

The shape of the flexible wall is governed by a normal stress balance, in the form

p − 2
R(1 + h2

x)
(vy − hx(uy + vx) + h2

xux)

= pe(x) − Thxx

(1 + h2
x)

3/2 + mhtt

(1 + h2
x)

1/2 + dht

(1 + h2
x)

1/2 , ( y = h). (2.2f )

This wall model includes the same features as Benjamin (1960, 1963) and Landahl (1962).
We note that this balance includes the normal viscous stress (terms appearing with
coefficient R−1).

2.2. Nonlinear energy equation
To analyse the energy budget of the modes of instability in this collapsible channel system
we compute the energy budget by taking the scalar product of the momentum equations
(2.2b,c) with the fluid velocity u in the form

(uut + vvt) + u(uux + vvx) + v(uuy + vvy) + 1
2 (u2 + v2)(ux + vy)

= −upx − vpy + R−1(uuxx + uuyy + vvxx + vvyy) − p(ux + vy). (2.3a)

This energy equation can be manipulated into the familiar form

F + P = K + E + D, (2.3b)

where

F = −
(

1
2

∫ h

0
u(u2 + v2) dy

)
x
, (2.3c)

P = −
(∫ h

0
up dy

)
x
, (2.3d)

K =
(

1
2

∫ h

0
(u2 + v2) dy

)
t
, (2.3e)

E = −W = ht

[
p − 2

R(1 + hx
2)

(vy − hx(uy + vx) + h2
xux)

]y=h

= −[ht(σn) · n]y=h

= peht − T
hthxx

(1 + h2
x)

3/2 + m
hthtt

(1 + h2
x)

1/2 + d
h2

t

(1 + h2
x)

1/2 , (2.3f )
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D = R−1
{∫ h

0
(2u2

x + 2v2
y + (uy + vx)

2) dy −
(∫ h

0
(2uux + vvx + vuy) dy

)
x

}
, (2.3g)

where σ is the Newtonian stress tensor and n is the outward pointing unit normal to the
flexible wall (see figure 1). Here, F is the kinetic energy flux extracted from the mean flow,
P is the rate of working of the axial pressure gradient, K is the rate of change of kinetic
energy, W = −E is the rate of working of fluid normal stress on the wall and D is the rate
of energy loss due to fluid viscosity in the bulk. Note that we re-write E by substituting the
normal stress balance (2.2f ) and the boundary conditions (2.2e), which then expresses the
work done by the fluid on the wall in terms of the wall parameters. Note also that previous
studies (e.g. Carpenter & Gajjar 1990; Huang 1998) have considered the work done by
fluid pressure on the wall, whereas in this case we consider the work done by the normal
stress, including the viscous contributions (see also Lebbal et al. 2022).

2.3. Linearisation around the uniform basic state
We assume the velocity and pressure of the steady flow when the elastic wall is flat to be
of the familiar (fully developed) Poiseuille form

(u, v) = (U( y), 0) = (6y(1 − y), 0), p = pe = P(x) = C − 12
R

x, h = 1, (2.4)

where C is a constant, which is a solution to (2.2) for all C. We note that the external
pressure is not spatially uniform; we are applying an external pressure gradient to maintain
a flat base state. Such an assumption was previously applied by Stewart et al. (2010b) and is
consistent with earlier work which ignored the pressure gradient associated with the mean
flow in the normal stress balance (e.g. Carpenter & Garrad 1985; Davies & Carpenter
1997a).

We add a small perturbation to this steady flow in the form

(u, v, p, h) = (U( y), 0, P(x), 1) + ε(φ̂y, −φ̂x, p̂, η̂) + ε2(φ̆y, −φ̆x, p̆, η̆) + O(ε3), (2.5)

where ε � 1 is the perturbation amplitude, and φ̂ and φ̆ are the perturbation
streamfunctions at O(ε) and O(ε2), respectively. Note that conservation of mass (2.2a)
is satisfied automatically at each order.

We substitute the (2.5) into the Navier–Stokes equations (2.2b,c), the boundary
conditions (2.2d,e) and the normal stress balance (2.2f ) and examine successive orders
in the perturbation amplitude ε.

At O(1) these equations are satisfied automatically, while at O(ε) the governing
equations of the system become

φ̂yt + Uφ̂xy − φ̂xUy + p̂x − R−1(φ̂xxy + φ̂yyy) = 0, (2.6a)

φ̂xt + Uφ̂xx − p̂y − R−1(φ̂xxx + φ̂xyy) = 0, (2.6b)

subject to

φ̂y = 0, φ̂x = 0, ( y = 0), (2.6c)

φ̂y + Uy(1)η̂ = 0, φ̂x + η̂t = 0, ( y = 1), (2.6d)

while the normal stress balance takes the form

p̂ + 2R−1(φ̂y + Uy(1)η̂)x + Tη̂xx − mη̂tt − dη̂t = 0, ( y = 1). (2.6e)
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Here, we have explicitly included the normal viscous stress contributions in (2.6e),
although these cancel identically at this order due to the no-slip boundary condition (2.6d).

Similarly, at O(ε2), the governing equations of the system become

φ̆yt + Uφ̆xy − Uyφ̆x + p̆x − R−1(φ̆xxy + φ̆yyy) = φ̂xφ̂yy − φ̂yφ̂xy, (2.7a)

φ̆xt + Uφ̆xx − p̆y − R−1(φ̆xxx + φ̆xyy) = φ̂xφ̂xy − φ̂yφ̂xx, (2.7b)

subject to boundary conditions

φ̆y = 0, φ̆x = 0, ( y = 0), (2.7c)

φ̆y + Uy(1)η̆ = −φ̂yyη̂ − 1
2 Uyy(1)η̂

2 − η̂xη̂t, φ̆x + η̆t = −η̂φ̂xy, ( y = 1), (2.7d)

and the normal stress balance

p̆ + 2R−1(φ̆xy + Uy(1)η̆x) + Tη̆xx − mη̆tt − dη̆t

= −η̂p̂y − 2R−1(φ̂xyyη̂ + Uyy(1)η̂η̂x + (φ̂yy − φ̂xx)η̂x), ( y = 1). (2.7e)

2.4. The first-order equations
To solve the first-order governing equations, we assume that all hatted variables are wave
like in the form

f̂ = ˆ̂f ( y) ei(kx−ωt) + (
ˆ̂f ( y) ei(kx−ωt))∗, (2.8)

where k is the wavenumber and ω is the corresponding frequency of the perturbation,
while ∗ denotes the complex conjugate. We also express our neutral stability curves in
terms of the perturbation wavespeed, c = ω/k for k real (Whitham 1974).

Substituting (2.8) into the first-order governing equations (2.6a)–(2.6e), we have(
U − ω

k

) ˆ̂
φy − ˆ̂

φUy = −ˆ̂p + 1
ikR

(−k2 ˆ̂
φy + ˆ̂

φyyy), (2.9a)

k2
(

U − ω

k

) ˆ̂
φ = −ˆ̂py + 1

ikR
(−k4 ˆ̂

φ + k2 ˆ̂
φyy), (2.9b)

subject to boundary conditions

ˆ̂
φ = 0,

ˆ̂
φy = 0, ( y = 0), (2.9c)

ˆ̂
φ = ω

k
ˆ̂η,

ˆ̂
φy = −Uy(1) ˆ̂η, ( y = 1), (2.9d)

and the normal stress balance

ˆ̂p = 1
ikR

(−k2 ˆ̂
φy + ˆ̂

φyyy) = (Tk2 − mω2 − idω) ˆ̂η, ( y = 1). (2.9e)

Combining (2.9a) and (2.9b) by eliminating ˆ̂p, we obtain the classical Orr–Sommerfeld
equation (see below, Drazin & Reid 1981; Schmid & Henningson 2001).

We adopt two complementary approaches to solve this linear system. First, we use the
no-slip boundary condition (2.9d) to eliminate the wall amplitude ˆ̂η to derive a (closed)
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Flow-induced surface instabilities in a flexible channel

fourth-order homogeneous system for ˆ̂
φ( y) in the form(

U − ω

k

)
(
ˆ̂
φyy − k2 ˆ̂

φ) − Uyy
ˆ̂
φ − 1

ikR
(
ˆ̂
φyyyy − 2k2 ˆ̂

φyy + k4 ˆ̂
φ) = 0, (2.10a)

subject to four boundary conditions

ˆ̂
φ(0) = 0,

ˆ̂
φy(0) = 0, (2.10b)

ω
ˆ̂
φy(1) + Uy(1)k ˆ̂

φ(1) = 0, (2.10c)

1
ikR

Uy(1)(−k2 ˆ̂
φy(1) + ˆ̂

φyyy(1)) + (Tk2 − mω2 − idω)
ˆ̂
φy(1) = 0. (2.10d)

For fixed Reynolds number, R, and wavenumber, k, we solve the eigenvalue problem
numerically by discretising (2.10) using a Chebyshev spectral method similar to that used
by Stewart et al. (2010b) modified to include the wall mass. For a given value of the
wavenumber and the other model parameters (R, T , m and d), for N Chebyshev modes the

numerical method isolates eigenvalues ωi and corresponding eigenfunctions ˆ̂
φi( y; k, ω)

for i = 1, 2, . . . , N. Typical eigenvalue spectra are shown in figure 6(c,d), where the
eigenvalues can be divided into the familiar A, P and S branches (Mack 1976; Drazin &
Reid 1981; Schmid & Henningson 2001). As the number of Chebyshev modes increases the
additional eigenvalues appear with increasingly large and negative imaginary part (along
the S branch) and the portion of the spectrum close to neutral stability becomes well
resolved. See Wang (2019) for further details. Knowledge of the entire eigenvalue spectrum
(as opposed to just neutrally stable modes) serves to elucidate the mode interactions
discussed in later sections. For the plots in this paper we normalise the eigenfunction

so that ˆ̂
φy(1) = −Uy(1) = 6, consistent with the inhomogeneous formulation (2.11). We

focus particular attention on neutrally stable solutions, where Im(ω) = 0, which we
isolate using a bisection method and trace various slices through the parameter space.
In particular, we compute the neutrally stable wavenumber, denoted kn, corresponding
(real) neutrally stable frequency, denoted ωn and corresponding (real) wavespeed, denoted
cn = ωn/kn, as a function of the model parameters in figures 2–10.

To make analytical progress we also adopt an alternative approach which separates
computation of the eigenfunction from the stability calculation. In this case we
first normalise the eigenfunction based on the amplitude of the wall profile, scaling

the perturbation streamfunction according to ˆ̂
φ = ˆ̂η ˜̂

φ and express (2.9) as a closed

inhomogeneous system for ˜̂
φ( y) alone in the form(

U − ω

k

)
(
˜̂
φyy − k2 ˜̂

φ) − Uyy
˜̂
φ − 1

ikR
(
˜̂
φyyyy − 2k2 ˜̂

φyy + k4 ˜̂
φ) = 0, (2.11a)

subject to

˜̂
φ(0) = 0,

˜̂
φy(0) = 0, (2.11b)

˜̂
φ(1) = ω

k
,

˜̂
φy(1) = −Uy(1). (2.11c)

In this way, the streamfunction ˜̂
φ( y) can be computed for any k and ω, independent

of the stability criteria. Landahl (1962) achieved an analogous separation in his (more
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approximate) approach by expressing the problem in terms of the wall admittance, which
facilitated calculation of the activation energy. Given a solution of (2.11), following Cairns
(1979), the normal stress balance on the flexible wall can be expressed as a dispersion
relation of the system in the form

D(ω, k) ≡ 1
ikR

(
˜̂
φyyy(1) − k2 ˜̂

φy(1)) − (Tk2 − mω2 − idω), (2.11d)

which is zero for normal modes. Crucially, this approach formulates the dispersion relation
as a scalar-valued function involving the frequency ω and the wavenumber k (in this case in
terms of the normal stress balance on the wall), rather than as a inhomogeneous eigenvalue
problem which must be solved numerically (e.g. Davies & Carpenter 1997a; Stewart et al.
2010b); this scalar dispersion relation has two components: the first group of terms arises
due to the viscous normal stress on the wall, while the second group of terms arises
from the contributions to the Euler–Bernoulli beam. The inviscid dispersion relation (see
Appendix A) does not have the viscous terms but contains an extra term due to inertial
contribution to the pressure, which cancels identically here due to the no-slip condition on
the flexible wall. We use this dispersion relation to compute the activation energy of the
neutrally stable surface-based modes following Landahl (1962) and Cairns (1979).

Note that our choice of normalisation for the numerical solutions of the homogeneous
system (2.10) means that at neutral stability the two streamfunction profiles are identical

( ˆ̂
φ( y;ωn, kn) = ˜̂

φ( y;ωn, kn)). For notational simplicity, we henceforth denote ˜̂
φ( y) =

φ( y).

2.5. The second-order equations
At second order we express the variables in the form

ğ(x, y, t) = ˘̆g( y) e2i(kx−ωt) + ¯̆g( y) + ( ˘̆g( y) e2i(kx−ωt))∗. (2.12)
Substituting (2.12) into the second-order equations (2.7), we consider steady streaming
terms which are independent of both x and t (denoted with an additional overline) to obtain
a system which depends only on y, in the form

−¯̆px+ 1
R

¯̆
φyyy = φ̂yφ̂xy−φ̂xφ̂yy, ¯̆py = 0, (0 ≤ y ≤ 1), (2.13a)

subject to
¯̆
φy(0) = 0,

¯̆
φy(1) = −Uy(1) ¯̆η − 1

2 Uyy(1)η̂
2 − φ̂yy(1)η̂ − η̂tη̂x, (2.13b)

noting that x and t independent terms occur at this order from products of the first-order
eigenfunctions. Note also that the term ¯̆px is independent of x, representing the steady
modification to the pressure gradient along the channel. The corresponding kinematic
boundary condition is identically zero. Steady streaming can either result in a modification
to the steady pressure gradient ( ¯̆px), a modification to the steady flux along the channel
( ¯̆q = ¯̆

φ(1) − ¯̆
φ(0)) or the mean wall position ( ¯̆η), only one of which can be fixed by

solving the equations. In this case we are assuming a fixed baseline flow rate which
imposes ¯̆q = 0 and ¯̆η = 0 to ensure the total mass of fluid in the channel remains fixed.
By integrating (2.13a) and applying boundary conditions (2.13b) we obtain a prediction of
the streamfunction profile ¯̆

φy and pressure gradient p̆x in terms the numerically computed
eigenfunctions from the first-order problem (see Wang (2019), for details). This profile is
used to calculate the full expression for the work done on the wall by the fluid in the time-
and space-averaged energy budget (see § 2.6).
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Flow-induced surface instabilities in a flexible channel

2.6. The Reynolds–Orr energy equation
We obtain the linearised energy equation by substituting the expansion (2.5) into the
energy equation (2.3). The first non-trivial balance emerges at second order in perturbation
amplitude, where we have

Uφ̆yt + U2φ̆xy − UUyφ̆x + Up̆x + Pxφ̆y − R−1(Uφ̆yxx + Uφ̆yyy + Uyyφ̆y)

+ (φ̂xφ̂xt + φ̂yφ̂yt) + (Uφ̂xφ̂xx + 2Uφ̂yφ̂xy − Uyφ̂xφ̂y + Uφ̂xφ̂yy)

+ p̂xφ̂y − p̂yφ̂x − R−1(φ̂yφ̂yxx + φ̂yφ̂yyy + φ̂xφ̂xxx + φ̂xφ̂xyy) = 0. (2.14)

Domaradzki & Metcalfe (1987) (see also Stewart et al. 2010b; Lebbal et al. 2022)
demonstrated that the terms involving breved variables can be eliminated in favour of
terms involving the first-order variables alone (using the O(ε2) governing equations),
analogous to the derivation of the classical Reynolds–Orr equation (see details in Schmid
& Henningson 2001). The corresponding energy budget is obtained by integrating across
the static channel (0 ≤ y ≤ 1) to obtain the work done by nonlinear Reynolds stresses,
which was termed Ŝ by Stewart et al. (2010b). However, in this approach, it is not then
possible to explicitly construct the full expression for the work done by the fluid on the
wall as some contributions are embedded within Ŝ . In this study, we adopt an alternative
approach where we retain the full expressions for the terms in the energy equation (2.14)
involving both hatted and breved variables. In this case the energy budget at O(ε2) can be
expressed as

F̂ + P̂ = K̂ + Ê + D̂, (2.15a)

where

F̂ =
(

−
∫ 1

0

1
2

U(3φ̂y
2 + φ̂x

2
) dy −

∫ 1

0

3
2
φ̆yU2 dy

)
x

, (2.15b)

P̂ =
(

−
∫ 1

0
φ̂yp̂ dy

)
x

−
∫ 1

0
(Pxφ̆y + Up̆x) dy, (2.15c)

K̂ =
(∫ 1

0

1
2
(φ̂x

2 + φ̂y
2
) dy +

∫ 1

0
Uφ̆y dy

)
t

, (2.15d)

Ê = −Ŵ = −(Tη̂tη̂x)x + 1
2 (Tη̂2

x + mη̂2
t )t + dη̂2

t

−R−1[−Uyy(η̂φ̂x)x + φ̂yφ̂yy − 3φ̂yφ̂xx + Uyφ̆y]y=1, (2.15e)

D̂ = R−1
∫ 1

0
(4φ̂2

xy + (φ̂yy − φ̂xx)
2 + 2Uyφ̆yy) dy

− R−1

(∫ 1

0
(2φ̂yφ̂xy + φ̂xφ̂xx − φ̂xφ̂yy + 2Uφ̆xy + Uyφ̆x) dy

)
x

; (2.15f )

where F̂ represents the net energy extracted from the mean flow across the channel, P̂
represents the work done by axial pressure forces over a wavelength, Ŵ = −Ê represents
the total work done by the fluid normal stress on the wall (note the wall elasticity
parameters appear as the normal stress condition (2.6e) has been used to eliminate the
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fluid pressure on the wall) and D̂ represents the total viscous dissipation across the bulk
of the channel.

Following Landahl (1962), we average (2.15) over a wavelength of perturbation where it
reduces to (∫ 1

0

1
2
(φ̂x

2 + φ̂y
2
) dy + 1

2
(Tη̂2

x + mη̂2
t )

)
t

= −d(η̂t)
2

− R−1
∫ 1

0
(4φ̂2

xy + (φ̂yy − φ̂xx)
2 + 2Uyφ̆yy) dy

− R−1[φ̂yφ̂yy − 3φ̂yφ̂xx + Uyφ̆y]y=1; (2.16)

the term on the left-hand side is the rate of change of the activation energy of the system
(sum of kinetic and elastic energies for the fluid and the wall), while the terms on the
right-hand side represent (non-conservative) energy losses due to the wall damping, fluid
viscosity across the bulk and viscous stresses exerted on the flexible wall, respectively.
In a conservative system (with no wall damping or viscous dissipation) the activation
energy is constant and must always be positive definite in this case. This suggests that
undamped modes must always be class B (according to Benjamin’s framework) in the limit
of large Reynolds number. However, in the fully inviscid limit (Appendix A) the activation
energy can be negative due to the extra (inertial) contribution to the fluid pressure on the
wall which cancels in the viscous problem due to the no-slip condition. However, this
approach cannot be used as a measure of activation energy for neutrally stable modes in a
viscous system, since this formulation neglects the contribution of viscosity in establishing
the neutrally stable mode. We propose an alternative method to construct the sign of the
activation energy of neutrally stable viscous modes in the following subsection.

Instead, taking the average of (2.15) over both a period and wavelength (again denoted
with an overbar), the averaged energy budget (2.15) reduces to

¯̂P = ¯̂E + ¯̂D, (2.17a)

where

¯̂P = −
∫ 1

0
Up̆x dy, (2.17b)

¯̂E = − ¯̂W = dη̂
2
t − R−1[φ̂yφ̂yy − 3φ̂yφ̂xx + Uy

¯̆
φy]y=1, (2.17c)

¯̂D = R−1
∫ 1

0
(4φ̂

2
xy + (φ̂yy − φ̂xx)

2 + 2Uy
¯̆
φyy) dy. (2.17d)

We particularly consider the averaged work done by the fluid on the wall over a period
and wavelength, ¯̂W = − ¯̂E , which we compute below. This time-averaged energy budget
(2.17) also serves as a useful check of our neutrally stable solutions and we confirm that the
total error is O(10−5) for all cases tested (Wang 2019). Note also that this energy budget
explicitly separates the work done by the fluid on the wall and the work done by the axial
pressure gradient, whereas in Stewart et al. (2010b) these contributions were lumped into
other terms.
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Flow-induced surface instabilities in a flexible channel

2.7. Activation energy
As shown previously, the Reynolds–Orr energy budget calculation does not lead to a
self-consistent prediction of the activation energy for a viscous perturbation mode. Instead,
we follow the formulation of Landahl (1962), who computed the activation energy of a
neutrally stable mode as proportional to the difference in mechanical impedance arising
from a small perturbation from the neutral point. As noted by Landahl (1962), this
approach does not necessarily hold for a viscous flow as it neglects some terms, but, as
in that study, we assume that the sign of the activation energy is predicted correctly for
a viscous flow. Indeed, we show below that the sign of the activation energy for the FISI
is consistent with the classification framework of Benjamin (1960) based on the response
to wall damping. Similarly, Cairns (1979) defined activation energy for a neutral inviscid
wave (using piecewise-constant velocity profiles with no shear or critical layers), arguing
that since both boundary layer flow and plane Poiseuille flow have nearly neutral inviscid
normal modes in the long-wave limit, their activation energy can be approximated using
the inviscid equations (provided a small indentation is taken in the complex plane to pass
around the critical point) and the sign of their activation energy predicts the destabilising
effects of viscosity in the Orr–Sommerfeld equation. We follow the notation of Cairns
(1979) and express the activation energy in terms of the fluid pressure on the wall through
the dispersion relation D(ω, k) (cf. (2.11d)); since D = 0 for normal modes, it emerges that
this difference in normal stress (impedance) must be Taylor expanded about the neutral
stability point to obtain an expression for the activation energy in the form (Landahl 1962;
Cairns 1979)

Ŵ = Re
(

1
4
ωn

∂D
∂ω

(kn, ωn)

)
ˆ̂η2 ≡ W ˆ̂η2

. (2.18)

Based on the dispersion relation (2.11d), this formula suggests there are two contributions
to the activation energy for a viscous mode at neutral stability, one arising due to viscous
effects and the other due to wall elasticity (wall mass and pre-tension). However, we note
that if φ is purely real then the viscous contribution to D is purely complex, and so does
not contribute to the activation energy. For an inviscid fluid (see Appendix A) there is
another contribution which cancels here due to the no-slip boundary conditions. We use
(2.18) below to compute the activation energy of neutrally stable FISI using a combination
of numerical and asymptotic analysis. In particular, we apply (2.18) to compute explicit
expressions for the activation energy in the limit of large wall mass (§ 3) and large wall
damping (§ 4). Furthermore, to numerically compute the activation energy of a neutrally
stable normal mode, we perturb the neutrally stable frequency by a real (small) amount
±Δω, and use a second-order centred finite difference stencil to approximate the derivative
in (2.18) with error O(Δω2), in the form

W ≈ Re
(

ωn

4
D(ωn + Δω, kn) − D(ωn − Δω, kn)

2Δω

)
. (2.19)

This numerical interpretation is equivalent to computing the difference in mechanical
impedance arising from a small perturbation from the neutral stability point, consistent
with Landahl (1962). Note this approach to construct the activation energy only works for
normal modes which are surface based (flutter, divergence, TWF, SD) and does not work
for the hydrodynamic modes (TS).
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Figure 2. Neutral stability curves for Poiseuille flow as a function of the Reynolds number for selected values
of the wall mass with fixed wall tension (T = 10) and zero wall damping (d = 0), illustrating: (a) critical
wavenumber kn; (b) critical wavespeed cn. In each panel we consider m = 0 (black), m = 1 (red), m = 10 (blue)
and m = 100 (magenta). The asterisks correspond to the leading-order prediction for neutrally stable TWF in
the limit of large wall mass and low Reynolds number (3.2) while the open circles in (b) correspond to the
leading-order wavespeed for large mass and large Reynolds number. The shaded regions in (a) indicate where
the base state is asymptotically stable for m = 100. The inset to (a) shows the neutrally stable wavenumber as
a function of wall tension T for three values of the Reynolds number (R = 1, R = 103 and R = 106).

3. Stability of Poiseuille flow in the absence of wall damping

We consider the stability of Poiseuille flow through an asymmetric compliant channel with
a flexible wall with mass and pre-tension, using the numerical method described in § 2.4
to analyse the neutrally stable solutions of the system in the absence of wall damping
(§ 3.1), examining the mode interaction between TWF and TS (§ 3.2), before exploring the
asymptotic structure of the neutrally stable TWF modes in the limit of large wall mass
(§ 3.3).

3.1. Numerical results
To assess the stability of viscous system in the absence of wall damping, in figure 2
we trace neutral stability curves as a function Reynolds number in terms of the critical
wavenumber (figure 2a) and the corresponding wavespeed (figure 2b) for selected values
of the wall mass. As expected, the system is unstable to class A TS modes within a
tongue-shaped region for sufficiently large Reynolds numbers, analogous to those found
in a rigid-walled channel (Drazin & Reid 1981). For small and large values of the wall
mass the corresponding TS neutral stability curve is only modified very slightly from the
case with zero wall mass (figure 2a). For example, the corresponding critical Reynolds
number for instability is modified from Rc ≈ 7743 for m = 0 to Rc ≈ 7693 for m = 1000.
However, we note that for a range of intermediate values of the wall mass the behaviour
of the TS mode is more complicated, exhibiting a mode interaction with TWF which is
explored in more detail in § 3.2.

The base flow is also unstable to a single surface-based normal mode, which takes the
form of class B TWF at neutral stability. The corresponding neutral stability curves each
enclose a region for small wavenumbers and each exhibit two regimes (figure 2a,b). For
small Reynolds numbers these neutral stability curves are independent of R, where the
critical wavespeed reduces from twice the maximal flow speed (c = 3 for R = 0, where
the system is notably still unstable to TWF) towards zero as the wall mass increases.
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Note that for our choice of non-dimensionalisation the limit R → 0 corresponds to
increasing fluid viscosity rather than vanishing flow velocity. Indeed, in a different
approach where the wall parameters are scaled consistent with Squire’s theorem
(Rotenberry & Saffman 1990), the TWF neutral stability curves no longer persist all the
way to R = 0 (Lucey & Carpenter 1995; Davies & Carpenter 1997a).

For large Reynolds numbers and low wall mass, the neutrally stable TWF modes are
long wavelength but the corresponding limiting wavespeed becomes less than the maximal
flow speed (c < 3/2) as the wall mass increases and the weak critical layer structure
of Stewart et al. (2010b) is replaced by conventional critical layers (discussed in § 3.3).
Conversely, for large values of the wall mass the critical wavenumber increases for large
Reynolds numbers, encompassing modes of shorter wavelength (this short-wavelength
mode is explored in detail in § 3.3). The transition between the long- and short-wavelength
scalings occurs when m ≈ T , reminiscent of the change in stability observed in potential
flow with zero wall damping (Appendix A). However, in the viscous case the instability
is class B and occurs as a result of a single normal mode becoming unstable rather
than as a result of mode coalescence. Conversely, for T > m the viscous system is
long wavelength unstable while the potential flow system is stable. Hence, despite some
qualitative similarity of the neutral stability curves, the flutter and TWF instabilities are
distinct.

To further explore the behaviour of neutrally stable TWF as the wall becomes heavier, in
figure 3 we trace the corresponding neutral stability curves as a function of wall mass for
various Reynolds numbers, plotting the critical wavenumber (figure 3a) and the critical
wavespeed (figure 3b) in the absence of wall damping. For low values of the wall mass
the system is long wavelength unstable to TWF, where the neutral stability curves are
independent of mass for small m (figure 3a,b). Conversely, for large wall mass the critical
wavenumber (figure 3a) and frequency (figure 3b) both increase with m1/2 and the neutral
stability curves become independent of Reynolds number; we exploit this asymptotic
scaling in § 3.3. For the neutrally stable TWF mode the total work done by the fluid on
the wall over a period is non-zero (figure 3c), in agreement with the mechanism of TWF
described by Huang (1998). However, we note that this quantity changes sign when m ≈ T ,
suggesting a change in mechanism (figure 3(c) inset). In particular, the total work done by
the fluid normal stress on the wall is positive ( ¯̂W = − ¯̂E) for large Reynolds numbers and
low wall mass. On the other hand, the activation energy of TWF is always positive for all
values of wall mass, consistent with its classification as a class B instability (figure 3d).
In summary, this figure shows that in the absence of wall damping the viscous system is
unstable to class B TWF which always has positive activation energy but where the work
done by the fluid on the wall can change sign as a function of wall mass.

3.2. Mode interaction between TS and TWF
In § 3.1 we noted that as the wall mass increases the critical wavespeed of TWF reduces
below the maximal flow speed and becomes independent of Reynolds number (figure 2). It
emerges that for some parameter values the TWF mode and the TS mode interact (evident
from the modification to the TS neutral stability curve in figure 2 for m = 100). Such a
mode interaction between class A and class B modes is energetically favourable.

To elucidate this mode interaction in more detail, figure 4 explores the neutral stability
curves of TWF and TS modes in terms of the critical wavenumber (figure 4a) and
wavespeed (figure 4b) as a function of the wall mass for fixed pre-tension and Reynolds
number. Across most of the parameter space these neutral stability curves are distinct, but
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Figure 3. Neutral stability curves of TWF as a function of wall mass for various values of the Reynolds
number with fixed pre-tension (T = 10) and no wall damping (d = 0): (a) critical wavenumber kn; (b) critical

wavespeed cn; (c) the negative of the work done by the fluid stress on the wall ¯̂E = − ¯̂W ; (d) the activation
energy W. In each panel we consider R = 10 (solid), R = 100 (dashed) and R = 1000 (dotted). The asterisks
in (a,b,d) correspond to the leading-order prediction for neutrally stable TWF in the limit of large wall mass
(3.2). The shaded region in (a) indicates where the base state is asymptotically stable for R = 1000. The insets
to (c) and (d) show the work done by the fluid on the wall and the activation energy on a linear scale for small
values.

we note that for 50 � m � 120 the neutral stability curve for TS is no longer independent
of wall mass (this range is within the unstable zone of the primary TWF mode). Across
this range the frequency of the TS and TWF modes become comparable (for a given
wavenumber) and the resulting mode interaction breaks the TS neutral curve into two
pieces. These two segments connect to the unstable zones for TS at large and small mass,
respectively, but also exhibit a distinct loop at each end within which the base flow is
asymptotically stable (shaded regions in figure 4). To examine these islands of stability,
we plot the growth rate of the two most unstable normal modes (Im(ω)) as a function of
wavenumber for various values of the wall mass (figure 4c–e). For low mass (figure 4c)
the TWF and TS modes remain distinct, and both are unstable across a narrow range of
wavenumbers. The mode interaction is evident for m = 65 (figure 4d), where the traces
of the two modes deviate and almost touch one another, resulting in a narrow range of k
where both modes are stable within the larger TWF unstable zone, but also a substantial
increase in the growth rate for larger wavenumbers. The mode interaction is similarly
evident for m = 100 (figure 4e), where the stable island is now relatively large compared
with the outer TWF neutral curve (figure 4a). In summary, this figure demonstrates that TS
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Figure 4. Mode interaction between TS and TWF, plotting the neutral stability curves for Poiseuille as a
function of wall mass for fixed pre-tension (T = 10) and Reynolds number (R = 106) with no wall damping
(d = 0), illustrating: (a) the critical wavenumber kn; (b) the critical wavespeed c. The shaded regions in (a)
indicate where the base state is asymptotically stable. The asterisks in (a), (b) correspond to the leading-order
prediction for neutrally stable TWF in the limit of large wall mass (3.2). To illustrate the mode interaction we
plot traces of the perturbation growth rate Im(ω) as a function of wavenumber for the two most unstable normal
modes of the system for: (c) m = 10; (d) m = 65 and (e) m = 100. The insets in (d) and (e) show a close-up of
the mode interaction.

and TWF modes can interact resulting in large stable islands within previously unstable
regions.

3.3. The limit of large wall mass
The viscous system with no wall damping exhibits an asymptotic scaling in the limit of
large mass (m � 1) for fixed wall tension (figure 4), which we exploit by adopting the
short-wavelength rescaling

k = m1/2k0, ω = ω0 + m−1/2ω1 + O(m−1), (3.1a)

where k0 and ω0 are to be determined at neutral stability. In this limit it emerges that the
perturbation eigenfunction is zero across the interior of the channel and close to the lower
rigid wall and exhibits a rapidly varying (viscous) solution over a narrow boundary layer
adjacent to the compliant wall; a typical eigenfunction profile in this regime is shown in
figure 5(a). Across this wall layer we expand the variables according to

y = 1 − m−1/2Y, φ( y) = −m−1/2Φ0(Y) + O(m−1), D = mD0 + m1/2D1 + O(1).

(3.1b)
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Figure 5. Neutrally stable eigenfunctions for TWF for pre-tension T = 10 and no wall damping, illustrating:
(a) numerically computed eigenfunction profile Re(φ( y)) for m = 100 and R = 10 compared with the large
m approximation to the eigenfunction (3.1e) for the same wall mass; (b) numerically computed eigenfunction
profile Re(φ( y)) for m = 10, R = 106. The dashed lines in (b) indicate the positions of the two critical layers.
The inset to (b) shows the streamwise velocity profile Re(φy( y)) in the neighbourhood of the critical layer.

In this limit, the inhomogeneous Orr–Sommerfeld system (2.11) takes the leading-order
form

Φ0,YYYY − 2k2
0Φ0,YY + k4

0Φ0 = 0, (Y ≥ 0), (3.1c)

subject to boundary conditions

Φ0,Y(0) = −Uy(1) = 6, Φ0(0) = −ω0

k0
, Φ0 → 0 as Y → ∞. (3.1d)

These equations can be solved explicitly in the form

Φ0 = −
(

ω0

k0
+ (ω0 − 6)Y

)
exp(−k0Y), (Y ≥ 0). (3.1e)

For k0 and ω0 as calculated below, this profile shows excellent agreement with the
numerically computed perturbation streamfunction for large wall mass (figure 5a). As
in the full system, the leading-order normal stress balance on the wall (2.11d) can be
expressed as a dispersion relation

D0(ω0, k0) ≡ ω2
0 − Tk2

0, (3.1f )

implying that ω0 = √
Tk0 for normal modes, and so the leading-order system is always

neutrally stable. This is consistent with the potential flow formulation in Appendix A,
where the inviscid class B mode is neutrally stable.

Expanding the normal stress balance (2.11d) to the following order (O(m1/2)), we obtain
the next-order correction to the dispersion relation (which includes viscous effects) in the
form

D1(ω0, ω1, k0) ≡ 1
ik0R

(Φ0,YYY(0) − k2
0Φ0,Y(0)) + 2ω0ω1. (3.1g)

Normal modes require D1 = 0, so that

ω1 = − ik0

R
(ω0 − 6)

ω0
, (3.1h)
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independent of both the wall tension and the wall mass (in contrast to the inviscid flutter
modes of Appendix A). Hence, neutrally stable TWF (with Im(ω1) = 0) requires ω0n = 6
and k0n = 6/

√
T in the limit of large wall mass, independent of the Reynolds number. We

note particularly that the TWF can be shown to be unstable even for R = 0 (unlike the
TWF modes reported by Stewart et al. 2010b) since the leading-order balance is between
the tension and mass components of the flexible wall.

Expressing in terms of the original model parameters, we obtain the criticality
conditions

kn = 6
(m

T

)1/2
, ωn = 6, (3.2)

which show excellent agreement with the numerical predictions for large mass (asterisks
in figures 2–4). The leading-order stability criterion involves only the viscous components
of the flow and is independent of the fluid inertia. In this case, for m � 1 the instability
is driven by the wall inertia alone, which dominates the leading-order activation energy
(obtained by expanding (2.18)), in the form

W = 1
2 mω2

0 + O(m1/2), (3.3)

the kinetic energy of wall deflections at leading order. Since W > 0, this TWF instability
is class B, as expected. This prediction shows almost perfect agreement with the numerical
simulations for large wall mass (figure 3d).

At neutral stability the steady correction to the pressure gradient along the channel (2.13)
takes the form

¯̆px = 72R−1 + O(m−1/2), (3.4)

which remains O(1) as m → ∞. Hence, the breved terms are all O(1) and do not feature
in the leading-order (O(m1/2)) components of the time-averaged energy budget (2.17); at
neutral stability the time-averaged components take the simple form

¯̂D = ¯̂W = 288k0nm1/2

R
+ O(1), (3.5)

which is plotted in figure 3(c), showing excellent agreement with the numerical
calculation.

Note that although asymptotically large values of m are not feasible for conventional
materials, the scalings show reasonable agreement with the numerical simulations even
for O(1) values of the wall mass (figure 3) and so this analysis provides insight into the
mechanism of TWF in feasible parameter regimes. At leading order the oscillating wall
and the fluid are perfectly in phase (φ is purely real when normalised by η), where the net
work done by the fluid stress on the wall releases energy ( ¯̂W > 0) which is then dissipated
by viscous effects across the boundary layer beneath the wall ( ¯̂D > 0). The neutrally stable
TWF oscillation results in a slightly less negative (steady) pressure gradient along the
channel compared with the baseline flow (p̆x > 0), but the accompanying decrease in
energy is a higher-order effect i.e. the work done by Reynolds stresses does not feature
at leading order in the energy balance. This observation contrasts with the TWF modes of
Lebbal et al. (2022), who found TWF modes driven by the working of Reynolds stresses,
although the rate of working of fluid normal stress on the wall is also a (less significant)
source of energy.
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3.3.1. The limit of large wall mass and Reynolds number
The scalings identified above assume that the Reynolds number remains O(1) with
respect to the increasing wall mass. However, we note that the neutral stability curves
in figure 2 indicate a different scaling regime for larger Reynolds numbers, where the
critical wavenumber (figure 2a) and frequency both increase weakly with R1/16, while
the critical wavespeed is independent of Reynolds number (figure 2b). In principle, the
scalings (3.1) could be modified to capture this behaviour by setting R = R0mn, for
some n > 0. In this case the leading-order dispersion relation would again be (3.1f ) with
corresponding critical wavespeed cn = √

T/m. This approximation is plotted as open
circles in figure 2(b), showing excellent agreement with the neutral stability curves for
large Reynolds numbers. Setting n = 1 would balance the convective inertia with the
viscous dissipation at leading order across the boundary layer. However, if n > 1 then the
boundary layer profile for neutrally stable TWF can be further decomposed into distinct
layers including a viscous layer adjacent to the wall, an inviscid shear layer and a critical
layer (similar to the ‘triple-deck’ decomposition of neutrally stable TWF arising in Blasius
flow over a compliant surface discussed by Carpenter & Gajjar 1990); a typical example
of the eigenfunction profile in this regime is shown in figure 5. The neutral stability curves
in figure 2(a) suggest that this new scaling regime emerges for n ≈ 2, while consistency
with the observed scaling in Reynolds number would suggest n ≈ 8. However, we do not
pursue this scaling further here.

4. Stability of Poiseuille flow including wall damping

We now consider the additional influence of wall damping on the stability of the
flexible-walled system. In particular, we trace the neutral stability curves of TWF and
SD numerically (§ 4.1), construct an asymptotic approximation to these neutral stability
curves in the limit of large wall damping (§ 4.2) and examine mode interactions with the
hydrodynamic modes for large wall mass (§ 4.3).

4.1. Numerical results
We consider the numerical results in two stages. First, we consider weak damping (§ 4.1.1)
to examine how the class B TWF modes from § 3 are perturbed by an irreversible energy
transfer to the wall. We then consider large wall damping (§ 4.1.2), where unstable SD
modes destabilise for much lower Reynolds numbers and rearrange the structure of the
neutral stability curves.

4.1.1. Weak wall damping
To examine the influence of weak wall damping on the TWF normal mode of § 3.1,
figure 6 illustrates the TWF neutral stability curves as the wall damping is increased
from low values, showing the critical wavenumber (figure 6a) and the critical frequency
(figure 6b) as a function of the Reynolds number. TWF is stabilised by wall damping
(as expected), where the critical wavenumber and frequency are both reduced for all
values of the Reynolds number; the short-wavelength scaling of the neutral stability curve
for large Reynolds numbers is overwhelmed by even small amounts of damping (see
curve for d = 0.25), with the critical wavenumber decreasing weakly with R for finite
damping.

As the wall damping increases a second neutral stability curve also becomes evident
(see figure 6 for d = 0.5, d = 0.75, d = 0.9), encompassing a stable island within the
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Figure 6. Neutrally stable curves of Poiseuille flow as a function of Reynolds number for various small values
of the wall damping with fixed wall mass (m = 10) and pre-tension (T = 10) illustrating: (a) the critical
wavenumber kn ; (b) the critical frequency ωn. In each panel we consider d = 0 (solid line), d = 0.25 (dashed
line), d = 0.5 (dashed line), d = 0.75 (dash-dotted line), d = 0.9 (dotted line) and d = 1 (dash-dotted line).
The shaded regions in (a) indicate where the base state is asymptotically stable for d = 0.5. The insets indicate
the neutral stability curves traced as a function of R for the TS mode in terms of (a) critical wavenumber,
(b) critical frequency. Normal modes of the weakly damped system including: (c) trace of the five most
unstable eigenvalues in the complex frequency plane as a function of wavenumber for R = 10 000 and d = 0.9,
where arrows indicate the direction of increasing wavenumber and red crosses indicate eigenvalues for k = 1;
(d) wider eigenvalue spectrum for k = 1 and R = 10 000, with an inset around the two most unstable centre
modes.

TWF unstable region. As the wavenumber increases, the locus of the surface-based mode
in the complex frequency plane is deviated toward the locus of another hydrodynamic
mode (figure 6c), causing it to cross into the lower half-plane and form a stable zone. We
identify this hydrodynamic mode by continuing to larger wavenumbers, showing that it
takes the form of a ‘centre’ mode, located on the P branch of the eigenvalue spectrum
with wavespeed close to the maximal flow speed (Schmid & Henningson 2001); see the
corresponding eigenvalue spectrum in figure 6(d). Such centre modes have recently been
identified as destabilising in channel flows of viscoelastic fluids (Khalid et al. 2021), but
this mode always remains stable in the present case. This stable island enlarges as the
wall damping increases, where the encompassing neutral stability curve interacts with the
outer TWF neutral stability curve, deviating toward one another (e.g. see neutral stability
curves for d = 0.9 in figure 6a,b). For sufficiently large wall damping this stable loop
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Figure 7. Neutral stability curves of Poiseuille flow as a function of Reynolds number for various large values
of the wall damping with fixed wall mass (m = 10) and pre-tension (T = 10), illustrating: (a) the critical
wavenumber kn; (b) the critical frequency ωn; (c) the negative of the work done by the fluid stress on the wall
¯̂E = − ¯̂W ; (d) the activation energy W. In each panel we consider d = 10 (black), d = 100 (red) and d = 1000

(blue). The shaded region in (a) indicates where the base state is asymptotically stable for d = 10. The symbols
in (a), (b) and (d) correspond to the leading-order prediction of the large d approximation for TWF (asterisks,
(4.13a,b) with +), SD(l) (filled triangles, (4.13a,b) with −) and SD(u) (open inverted triangles, (4.38a,b)).
The insets in (a) and (b) show the neutral stability curves as a function of Reynolds number for the large d
theory (filled circles, (4.37a,b)). The inset to (c) shows the ratio of the work done by fluid normal stress on

the wall ( ¯̂W) to the energy dissipation in the bulk fluid ( ¯̂D) computed numerically for SD as a function of
Reynolds number, alongside asymptotic predictions in the limit of large damping for both lower-branch SD
(inverted triangles, computed from (4.16)) and upper-branch SD (triangles, computed numerically from (4.19)).
The inset in (d) shows a close-up around zero activation energy.

interacts with the TWF neutral curve, merging and separating in a different configuration
(see curves for d = 1 in figure 6a,b); this neutral curve structure is discussed in greater
detail in § 4.1.2. Note that the neutral stability curves for TS (insets to figure 6a,b) are
not significantly influenced by wall damping. In summary, this figure demonstrates that
neutrally stable TWF is stabilised by wall damping, reducing the critical wavenumber
but also facilitating a mode interaction which creates a stable island within the TWF
unstable region. Furthermore, figure 6 shows how the three neutrally stable points for a
given Reynolds number (for sufficiently large wall damping) all arise from instability of
the same normal mode.
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Figure 8. Neutral stability curves of Poiseuille flow as a function of the wall damping for various Reynolds
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to the leading-order prediction of the large d approximation for TWF (asterisks, (4.13a,b) with +), SD(l) (filled
triangles, (4.13a,b) with −) and SD(u) (open inverted triangles, (4.38a,b)).

4.1.2. Large wall damping
To examine the stability of the system for values of the wall damping beyond the
merger noted previously, figure 7 illustrates the neutral stability curves as a function
of Reynolds number in terms of the critical wavenumber (figure 7a) and the critical
frequency (figure 7b). The neutral stability curves are rearranged compared with figure 6:
the low Reynolds number portion of the TWF neutral curve has merged with the lower
branch of the stable loop, forming a single neutral stability curve for TWF, while the
large-Reynolds-number portion of the TWF neutral stability curve has merged with the
upper branch of the stable loop forming a two branch loop for class A SD. Hence, similar to
Stewart et al. (2010b), SD is only unstable above a critical Reynolds number and the neutral
stability curve exhibits a two branch structure; we term the upper (lower) branch as that
with greater (lower) critical wavenumber. For non-zero wall damping the time-averaged
work done by the fluid normal stress on the wall ( ¯̂W) is always positive for all normal
modes (figure 7c). We note that along the upper branch of the SD neutral stability curve
the activation energy is weakly negative (figure 7d), approaching zero from below as the
Reynolds number increases. This suggests that the upper branch SD for large damping
is nearly class C, reminiscent of the class C divergence mode that becomes unstable in
damped potential flow (Appendix A). However, we show in § 4.2 that this upper-branch
neutral stability curve approaches zero wavenumber as the Reynolds number increases,
and so the critical wavenumber does not asymptote to kd as R → ∞. We also show below
that this upper-branch SD mode exhibits a very different energy balance to the inviscid
divergence mode, involving viscous effects at leading order, and so we cannot conclude
that these two modes are aligned.

In order to assess the properties of these FISI, figure 8 plots neutral stability curves
of the system as a function of wall damping. As expected, for each Reynolds number
the system exhibits three neutral stability curves for sufficiently large wall damping; the
neutral stability curves for TWF and lower branch SD are parallel and exhibit similar
critical wavenumber (figure 8a) and frequency (figure 8b), where both scale with d−1/2 as
d → ∞. Conversely, upper-branch SD exhibits critical wavenumber independent of wall
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correspond to the inviscid core solution (4.22), while the dashed lines correspond to the two boundary layer
solutions (4.26) and (4.30). Here, T = 10, m = 10 and R = 1000.

damping (figure 8a) and the critical frequency scales with d−1 as d → ∞ (figure 8b). We
utilise these scalings in § 4.2 to construct rational asymptotic descriptions of TWF and SD
in the limit of large wall damping.

To elucidate the spatial structure of the three neutrally stable FISI, figure 9 illustrates the
streamfunction profiles of TWF (figure 9a), lower-branch SD (figure 9b) and upper-branch
SD (figure 9c) for the same Reynolds number and choice of wall properties. The spatial
profiles of TWF and lower-branch SD are similar, exhibiting a non-trivial asymmetric
profile across the entire domain. Conversely, upper-branch SD exhibits rapid variations
across narrow boundary layers adjacent to the channel walls, indicating a substantial
difference in mechanism.

4.2. The limit of large wall damping
The scalings identified in § 4.1 facilitate a rational asymptotic description of neutrally
stable TWF and SD modes in the limit of large wall damping, building on the ad hoc
description of lower-branch SD provided by Stewart et al. (2010b) (based on a flow profile
assumption). In particular, in the limit of large wall damping we describe neutrally stable
lower-branch SD and TWF (§ 4.2.1) and neutrally stable upper-branch SD (§ 4.2.2).

4.2.1. Neutrally stable TWF and lower-branch SD in the limit of large wall damping
Following the scalings identified in § 4.1 we return to the inhomogeneous system (2.11)
and treat the wall damping as a large parameter (d � 1). We adopt a long-wavelength,
low-frequency rescaling in the form

k = d−1/2k0, ω = d−1/2ω0 + d−1ω1 + O(d−3/2), (4.1)

where k0 and ω0 are to be determined at neutral stability. We expand the perturbation
streamfunction and the dispersion relation D according to

φ = φ0 + d−1/2φ1 + O(d−1), D = d1/2D0 + D1 + O(d−1/2). (4.2)

The inhomogeneous Orr–Sommerfeld system (2.11) becomes at leading order

φ0,yyyy = 0, (0 ≤ y ≤ 1), (4.3)
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subject to boundary conditions

φ0 = 0, φ0,y = 0 ( y = 0), (4.4)

φ0 = ω0

k0
, φ0,y = −U′(1) = 6, ( y = 1). (4.5)

We solve for φ0 explicitly in the form

φ0( y) = 1
k0

y2(ω0(3 − 2y) + 6k0(−1 + y)), (0 ≤ y ≤ 1). (4.6)

Given k0 and ω0 as calculated below, this profile is plotted in figure 9(a) (figure 9(b))
against numerical predictions of the eigenfunction for TWF (lower-branch SD) showing
excellent agreement. In both cases the leading-order streamfunction is purely real for
neutrally stable solutions.

Substituting these expansions into the normal stress balance (2.11d) and substituting for
φ0 we obtain the leading-order dispersion relation

D0(ω0, k0) ≡ 1
ik0R

φ0,yyy(1) + iω0 = 12
ik0R

(
3ω0

k0
− 1

)
+ iω0, (4.7)

where the first term corresponds to viscous effects and the second term is due to wall
damping. For normal modes D0(ω0, k0) = 0, so we have

ω0 = 36k0

12 + k2
0R

, (4.8)

where ω0 is purely real for k0 real.
To fix the corresponding critical wavenumber of the system we expand the governing

equations to the following order in the form:

1
ik0R

φ1,yyyy =
(

U − ω0

k0

)
φ0,yy − Uyyφ0, (4.9a)

subject to the inhomogeneous boundary conditions

φ1(0) = 0, φ1,y(0) = 0, (4.9b)

φ1(1) = ω1

k0
, φ1,y(1) = 0. (4.9c)

We integrate (4.9) four times and apply the four boundary conditions to determine φ1
explicitly as a polynomial in y. The normal stress condition (2.11d) at O(1) then implies
the first-order correction to the dispersion relation, in the form

D1(ω0, ω1, k1) ≡ 1
ik0R

φ1,yyy(1) + iω1. (4.10)

Setting D1 = 0 and substituting for φ1( y), we obtain the correction to the frequency in the
form

ω1 = iω0R
210k0

(9k2
0 − 17ω0k0 + 7ω2

0). (4.11)

Looking for neutrally stable solutions (Im(ω1) = 0), we obtain a second constraint linking
k0 and ω0 in the form

9k2
0 − 17ω0k0 + 7ω2

0 = 0. (4.12)

Solving the constraints (4.8) and (4.12) simultaneously, we obtain a pair of physical
solutions which can be rewritten in terms of the unscaled dimensionless variables and
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parameters in the form

kn± =
(

2(11 ∓ √
37)

dR

)1/2

, ωn± = 2
7

(
291 ± 6

√
37

dR

)1/2

. (4.13a,b)

These solutions are almost indistinguishable from the numerically computed neutral
stability curves as d becomes large (figures 7a,b and 8a,b), where kn+ corresponds to
TWF and kn− corresponds to lower-branch SD.

The dispersion relation (2.11d) expanded to first order (D ≈ d1/2D0 + D1) can be
differentiated to calculate the leading-order activation energy (2.18). Applying the neutral
stability condition (4.8), the corresponding activation energy can be calculated as

W± = 3(37 ± 17
√

37)

980
+ O(d−1/2), (4.14)

independent of Reynolds number. So neutrally stable TWF (SD), the +(−) branch
of solutions, has positive (negative) activation energy, as expected. Again these show
excellent agreement with numerically computed activation energy along the two neutrally
stable branches (figure 7d).

This asymptotic analysis elucidates the steady correction to driving pressure gradient
(2.13), which can be calculated as

¯̆px = −36(25 ± √
37)

7R
+ O(d−1/2). (4.15)

Hence, unlike TWF modes described in the limit of large mass (§ 3.3), the oscillating flow
serves to make the steady pressure gradient along the channel more negative at leading
order.

Furthermore, we calculate the leading-order contributions to the terms in the
time-averaged energy budget (2.17), where we obtain

(
¯̂D,

¯̂W,
¯̂P) = (25 ± √

37)

49R
(804, 552, 252) + O(d−1/2). (4.16)

Hence, approximately 2/3 of the energy consumed by dissipation across the bulk ( ¯̂D)
is provided by the working of fluid stresses on the wall ( ¯̂W), in strong agreement with
the numerical simulations (inset to figure 7c), with the remaining amount released by a
decrease in the steady (negative) pressure gradient along the channel ( ¯̂P). However, in this
case we also note that the contributions involving breved variables to the leading-order
terms in the time-averaged energy budget (2.17) combine perfectly to zero at this order,
and so there is an additional balance between the terms involving hatted variables in ¯̂W
and ¯̂D, suggesting a similar mechanism to the TWF mode described in § 3.3 where the
correction to the mean flow does not play a role; this balance is not true in general and
arises because the leading-order eigenfunction is purely real when normalised on the wall
deflection, so the wall and flow are perfectly in phase at neutral stability.

Note that, although asymptotically large values of wall damping are not feasible
for conventional materials, the scalings show reasonable agreement with the numerical
simulations even for O(1) values (figure 8) and so this analysis provides insight into the
mechanism of these FISI in feasible parameter regimes. At leading order the oscillating
wall and the fluid are perfectly in phase (φ is purely real when normalised by η), where
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both the net work done by the fluid stress on the wall ( ¯̂W > 0) and the work done by the
steady pressure gradient ( ¯̂P > 0) release energy (in a ratio of approximately 2 : 1), which

is then dissipated by viscous effects across the channel ( ¯̂D > 0). A similar mechanism of
SD driven by the working of fluid normal stress on the wall was recently noted by Lebbal
et al. (2022). However, their work found that TWF modes were primarily driven by the
rate of working of Reynolds stresses, in contrast to the modes analysed here, although the
working of fluid normal stress on the wall was also shown to be mildly destabilising.

4.2.2. Neutrally stable upper-branch SD in the limit of large wall damping
Following the scalings identified in figure 8 we return to the full model (2.11) and assume
the wavenumber remains O(1) with respect to the wall damping and rescale according to

k = k0, ω = d−1ω0 + O(d−2), (4.17)

where we calculate the criticality conditions in terms of the wavenumber k0 and
leading-order frequency ω0. Similarly, we expand the streamfunction according to

φ = φ0 + O(d−1). (4.18)

The inhomogeneous linear stability problem (2.11) becomes at leading order

U(φ0,yy − k2
0φ0) − Uyyφ0 = 1

ik0R
(φ0,yyyy − 2k2

0φ0,yy + k4
0φ0), (4.19a)

subject to boundary conditions

φ0 = 0, φ0,y = 0 ( y = 0), (4.19b)

φ0 = 0, φ0,y = −Uy(1) = 6, ( y = 1); (4.19c)

note that the leading-order kinematic boundary condition does not involve the wall profile
in this limit. This system for φ0 is notably independent of the leading-order frequency ω0.
Substituting these expansions into the normal stress balance (2.11d) leads to the dispersion
relation

D(ω0, k0) ≡ 1
ik0R

(φ0,yyy(1) − k2
0φ0,y(1)) − Tk2

0 + iω0 + O(d−1). (4.19d)

In this case, the wall mass does not feature in the leading-order problem, but, unlike
lower-branch SD modes (§ 4.2.1), the restoring force due to wall tension features
prominently. To the best of our knowledge it is not possible to solve this system
analytically, but numerical solution is straightforward using a spectral method analogous
to that described in § 2.4. It emerges that numerical solution of the leading-order system
(4.19) is sufficient to isolate the critical conditions for instability; these neutral stability
curves are shown in figure 7, plotting the approximated critical wavenumber (inset to
figure 7a) and critical frequency (inset to figure 7b) as a function of the Reynolds number,
showing excellent agreement with the numerically computed neutral stability curves of
upper-branch SD.

Given the leading-order dispersion relation (4.19d) we find that the leading-order
activation energy for neutrally stable upper branch SD is O(d−1) and so approaches zero
as the wall damping becomes large, consistent with the numerical simulations (figure 8d).
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Hence, this upper-branch SD mode approaches class C as the wall damping becomes large,
reminiscent of the inviscid divergence mode (Appendix A).

This approach does not provide analytical insight into the partition of energy, but we note
that numerical calculation of the corresponding energy terms in (2.17), plotted as symbols
in figure 7(c), show excellent agreement with the full computations. These numerical
computations indicate that the mechanism of upper-branch SD is broadly similar to

lower-branch SD, with energy released by the working of fluid stress on the wall ( ¯̂W > 0)

and the working of the steady pressure gradient along the channel ( ¯̂P), which is then

dissipated by viscous effects across the bulk ( ¯̂D). In the limit of large damping the ratio of
work done by fluid normal stress on the wall compared with the work done by dissipation in

the fluid ¯̂W/
¯̂D ≈ 0.73 as R → ∞ (almost perfectly independent of T); this value is close

to, but slightly larger than, that predicted for lower-branch SD ( ¯̂W/
¯̂D = 46/67 ≈ 0.69,

§ 4.2.1), but the balance is broadly similar. Interestingly, unlike lower-branch SD, the
contributions to these energies which arise from the (breved) terms do not all cancel
internally, and so contribute to the overall partition (the leading-order eigenfunction is
complex, so the wall and streamfunction profiles are not in phase, and the work done by
Reynolds stresses is non-negligible).

To form a more intuitive description of the flow we consider the leading-order system
in the limit of large damping (4.19) in the additional limit of large Reynolds number. It
emerges that the eigenfunction φ0 can be separated into an inviscid core with viscous
effects confined to a narrow boundary (critical) layers adjacent to the walls. Based on the
scalings evident in figure 7(a,b), we consider long-wavelength, low-frequency instabilities
of the form

k0 = R−1/7k00, ω0 = R−2/7ω00 + O(R−4/7). (4.20)

Across the inviscid core, the eigenfunction φ0 is expanded according to

φ0 = φ00 + R−2/7φ01 + O(R−4/7), (4.21)

where the governing equations (4.19) become at leading order in R

Uφ00,yy − Uyyφ00 = 0, (4.22a)

subject to reduced boundary conditions

φ00(0) = 0, φ00(1) = 0. (4.22b)

This system admits the simple solution φ00 = AU, where A is an undetermined constant.
Note that this inhomogeneous system has already been normalised with respect to the wall
deflection, and so A must be calculated as part of the solution. Plotting this parabolic
profile (for A as computed below) shows reasonable agreement with the numerically
computed eigenfunction (figure 9c). In this case the outer limit of the axial velocity
component takes the form

φ00,y → AUy(0) = 6A as y → 0, (4.22c)

φ00,y → AUy(1) = −6A as y → 1. (4.22d)

For large Reynolds numbers the flow exhibits narrow boundary layers adjacent to the
walls of width R−2/7. Adjacent to the rigid wall (denoted with the superscript (r)) we
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rescale
y = R−2/7Y, φ0 = R−2/7Φ

(r)
00 (Y) + O(R−4/7). (4.23)

In this case, the governing equations (4.19) take the leading-order form across the
boundary layer

6Yk00Φ
(r)
00,YY + iΦ(r)

00,YYYY = 0, (Y ≥ 0), (4.24a)

subject to boundary conditions

Φ
(r)
00 (0) = 0, Φ

(r)
00,Y(0) = 0, Φ

(r)
00,Y → 6A as Y → ∞. (4.24b)

This is Airy’s equation in Φ
(r)
00,YY , with solution

Φ
(r)
00,YY = A0Ai((6ik00)

1/3Y) + B0Bi((6ik00)
1/3Y), (4.25)

where Ai and Bi are Airy functions of the first and second kinds, respectively, and A0 and
B0 are complex constants; we immediately set B0 = 0 to ensure the solution is bounded at
Y = 0. Integrating this expression once, and applying the no-slip and far-field conditions
(4.24b) as well as known results for the integral of Airy functions (Abramowitz & Stegun
1965), we deduce

Φ
(r)
00,Y(Y) = 18A(6ik00)

1/3
∫ Y

0
Ai((6ik00)

1/3ζ ) dζ. (4.26)

For k00 and A calculated below, this profile is plotted in figure 9(c), showing good
agreement with the numerically computed streamfunction profile close to the rigid wall.
This expression can be integrated once more to obtain the streamfunction explicitly,
although the final expression is cumbersome and not reproduced here. In the limit as
Y → ∞ we obtain the limiting form

Φ
(r)
00 → 18A

(6ik00)1/3

(
Γ (1

3 )(6ik00)
1/3Y

9Γ (4
3 )

− 1

31/3Γ (1
3 )

+ O(Y−1)

)
, (4.27a)

where Γ (·) is the gamma function; this ejection of fluid from the boundary layer drives
flow in the inviscid core at first-order. The leading-order fluid pressure is constant across
the boundary layer on the rigid wall and takes the form

P(r)
00 = 1

ik00
Φ

(r)
00,YYY(0) = − 18 × 6A

31/3(6ik00)1/3Γ (1
3 )

. (4.27b)

Similarly, adjacent to the compliant wall (denoted with the superscript (c)) we rescale
the variables according to

y = 1 − R−2/7Y, φ0 = R−2/7Φ
(c)
00 (Y) + O(R−4/7). (4.28)

The governing equations (4.19a) across the boundary layer again reduce to Airy’s equation
(4.24a), subject to boundary conditions

Φ
(c)
00 (0) = 0, Φ

(c)
00,Y(0) = Uy(1) = −6, Φ

(c)
00,Y → −AUy(1) = 6A as Y → ∞.

(4.29)
In a similar manner to the other boundary layer, we deduce

Φ
(c)
00,Y(Y) = Uy(1) + 18(1 + A)(6ik00)

1/3
∫ Y

0
Ai((6ik00)

1/3ζ ) dζ. (4.30)

For k00 and A calculated below, this profile is also shown in figure 9(c), again
showing close agreement to the numerically computed profile close to the flexible wall.
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As before, this expression can be integrated once more to obtain the limiting form of the
streamfunction as Y → ∞ in the form

Φ
(c)
00 → −6Y + 18(A + 1)

(6ik00)1/3

(
Γ (1

3 )(6ik00)
1/3Y

9Γ (4
3 )

− 1

31/3Γ (1
3 )

+ O(Y−1)

)
, (4.31a)

which, similar to the boundary layer on the rigid wall, drives flow in the inviscid core at
first order. The leading-order fluid pressure is constant across the boundary layer on the
compliant wall and takes the form

P(c)
00 = − 1

ik0
Φ

(c)
00,YYY(0) = 18 × 6(A + 1)

31/3(6ik00)1/3Γ (1
3 )

. (4.31b)

The upper and lower boundary layer profiles can be solved for a given A. To determine
the constant A we expand the inviscid core flow to the following order in R−2/7 to obtain
the governing equations

Uφ01,yy − Uyyφ01 = (Uφ01,y − Uyφ01)y = Ak2
00U2, (4.32a)

subject to boundary conditions modified by the flow ejected from the boundary layers
(4.27a), (4.31a), in the form

φ01(0) = 18A

31/3(6ik00)1/3Γ (1
3 )

, φ01(1) = 18(A + 1)

31/3(6ik00)1/3Γ (1
3 )

. (4.32b)

This system can be solved directly using the method of variation of parameters. However,
we note that the x-momentum equation (2.6a) expanded to O(R−2/7) across the inviscid
core can be expressed as

p01 = −(Uφ01,y − Uyφ01), (4.33)

so that (4.32a) can be written in terms of the fluid pressure, in the form

p01,y = −Ak2
00U2. (4.34a)

Furthermore, using (4.33), the boundary conditions on φ01 (4.32b) can be re-written in
terms of the fluid pressure in the lower (4.27b) and upper boundary layers (4.31b), such
that

p01(0) = P(r)
00 = − 18 × 6A

31/3(6ik00)1/3Γ (1
3 )

, p01(1) = P(c)
00 = 18 × 6(A + 1)

31/3(6ik00)1/3Γ (1
3 )

.

(4.34b)
The two boundary layers are interacting across the core flow, in a similar manner to the
large-Reynolds-number approximation to lower-branch TS instabilities in a rigid channel
(Bogdanova & Ryzhov 1983; Pedley 2000; Stewart et al. 2010b). Integrating (4.34a)
once and applying both boundary conditions (4.34b), determines the amplitude of the
leading-order flow in the inviscid core, in the form

A =
(

−2 + 6
5

k2
00

31/3(6ik00)
1/3Γ (1

3 )

108

)−1

. (4.35)

We note that for k00 � 1 in (4.34a), where the cross-stream pressure gradient is weak,
P(r)

00 = P(c)
00 and this constraint reduces to A = −1

2 .
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The compliant wall boundary layer is coupled to the leading-order dispersion relation

D1(ω01, k00) ≡ P(c)
00 − Tk2

00 + iω00 = 108(A + 1)

31/3(6ik00)1/3Γ (1
3 )

− Tk2
00 + iω00. (4.36)

Neutrally stable modes (Im(ω00) = 0) can be identified by setting D1 = 0 coupled to the
criterion for A (4.35), resulting in a polynomial dispersion relation which can be solved for
k00n and ω00n by separating into real and imaginary parts; however, this final step must be
taken numerically. In the simplified case where the cross-stream pressure gradient is weak
we can approximate A ≈ −1

2 , these criticality conditions reduce to the explicit form

k00n =
(

317/6

21/3TΓ (1
3 )

)3/7

, ω00n = 1
31/2 Tk2

00n. (4.37a,b)

Furthermore, these criticality conditions can be expressed in terms of the unscaled
dimensionless variables and parameters in the form

kn =
(

317/6

21/3Γ (1
3)

)3/7

T−3/7R−1/7, ωn =
(

39/4

21/3Γ (1
3 )

)6/7

T1/7d−1R−2/7. (4.38a,b)

These expressions demonstrate excellent agreement with the numerically computed
neutral stability curves shown in figures 7 and 8.

Note that this analytical calculation could be extended to explicitly compute the partition
of energies for the neutrally stable modes (similar to lower-branch TWF and SD), where
each term is formally O(R−1). However, this calculation requires the first correction to
the streamfunction across the viscous boundary layers, and so is not pursued further
here.

4.3. Mode interaction with TS for large wall mass
In § 3.2 we elucidated a mode interaction between the undamped TWF and TS modes
for increasing wall mass, exhibiting a new stable island within the unstable TWF zone.
To explore this mode interaction in the presence of wall damping, in figure 10 we
plot the critical wavenumber (figure 10a) and frequency (figure 10b) of the system as
a function of Reynolds number for several values of the wall mass holding all other
parameters fixed. For low wall mass (e.g. m = 10 in figure 10), the wall damping is
sufficiently large so that the SD neutral curve has disconnected from the TWF neutral
curve (cf. § 4.2). As the wall mass increases the interaction with the centre mode, which
leads to the separate TWF and SD neutral stability curves (§ 4.1), becomes weaker,
meaning that the locus of the surface-based mode as a function of wavenumber no
longer transiently crosses into the lower half-plane. Instead, the system exhibits a single
neutral stability curve and the SD and TWF neutral curves merge together (m = 100 in
figure 10). As the wall mass increases the TS and TWF modes interact and eventually
merge into a configuration reminiscent of the case with low wall damping, where the
system exhibits a stable loop within the outer unstable region (e.g. m = 200). For even
larger values of the wall mass the neutral stability curve self-intersects, creating a second
stable island in the parameter space (e.g. m = 1000). Hence, although increasing wall
mass is destabilising to TWF, mode interaction leads to new stable islands within the
unstable region. Figure 10 also exhibits further evidence of mode interaction with a
visible modification to the TS neutral stability curve for large wall mass (e.g. m � 100).
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Figure 10. Neutral stability curves for Poiseuille flow as a function of wall mass for various Reynolds numbers
with fixed wall damping (d = 10) and pre-tension (T = 10), illustrating: (a) the critical wavenumber kn;
(b) critical frequency ωn. Here, we consider m = 10 (solid line), m = 100 (dashed line), m = 200 (dash-dotted
line), m = 1000 (dotted line) and m = 10 000 (dash-dotted line). The shaded regions in (a) indicate where the
base state is asymptotically stable for m = 1000.

However, given that this interaction occurs for very large Reynolds numbers we do not
consider this further.

5. Discussion

In this paper we considered the stability of flow through an asymmetric collapsible channel
formed by a rigid wall and a damped, tensioned wall with finite mass, considering both
potential flow (with a plug profile) and viscous flow (with a fully developed Poiseuille
profile). The simplified wall model is similar to classical studies of boundary layer
flow over a compliant surface (Benjamin 1960; Landahl 1962; Benjamin 1963) and in
flexible-walled channels (Hains & Price 1962; Green & Ellen 1972), and is prototypical of
compliant coatings used in an effort to delay laminar–turbulent transition. This choice of
wall model neglects the effect of bending stiffness and spring foundation from the general
formulation of a linear Euler–Bernoulli beam (these extra effects have been previously
considered in other studies, see Carpenter & Garrad 1986; Davies & Carpenter 1997a), in
an effort to reduce the number of model parameters.

In line with previous studies of flow over a compliant surface (Carpenter & Garrad
1985, 1986) and in compliant channels (Davies & Carpenter 1997a; Stewart et al.
2010b), we identified several forms of instability using a combination of numerical and
asymptotic analyses (in the limits of large wall mass and wall damping), elucidated
their corresponding neutral stability curves and their interaction with other normal
modes. Furthermore, we extended the linear stability analysis to the following order in
perturbation amplitude to construct the work done by the fluid normal stress on the wall
over a period of neutrally stable oscillation ( ¯̂W), and devised a numerical method to
construct the sign of the activation energy of these normal modes, from which they were
classified as either class A, B or C according to the framework of Benjamin (1960).

The simulations we have presented are restricted to a planar channel. It should be
noted that our choice of non-dimensionalisation means that the Squire transformation
(Squire 1933) cannot be directly applied, and so we are unable to make any conclusions
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about three-dimensional perturbations. However, we note that an alternative scheme of
non-dimensionalisation (where the wall parameters are scaled differently with respect
to Reynolds number) is compatible with a Squire transformation and so in that case
two-dimensional perturbations are always the most unstable (Rotenberry & Saffman
1990; Lucey & Carpenter 1995; Davies & Carpenter 1997a; Lebbal et al. 2022).
Three-dimensional flow also allows the possibility of more elaborate design of compliant
coating which may have more optimal properties for the delay of laminar–turbulent
transition (e.g. Nagy, Szabó & Paál (2022) considered a three-dimensional flow over a
compliant coating which can move in the streamwise direction only, exhibiting delay in
the onset of TS modes), but this level of complexity in the wall model is beyond the scope
of the current study.

Uniform potential flow in the absence of wall damping exhibits two normal modes,
which coalesce to form an unstable flutter mode for small wavenumbers, which is class
C at onset (Carpenter & Garrad 1986); this combined mode is only unstable when the
destabilising influence of the wall mass exceeds the stabilising influence of the wall
tension. This coalescence is overwhelmed by viscous effects in the fluid or the wall, where
the constituent normal modes are (de)stabilised and instabilities instead occur through
a single normal mode of the system crossing into the upper half-frequency plane. For
example, for low wavenumbers, potential flow with finite wall damping exhibits a class C
divergence instability through one normal mode, which onsets with zero frequency.

The viscous system with Poiseuille flow also exhibits two surface-based normal modes,
in addition to an infinite family of hydrodynamic modes analogous to those in a rigid
channel (Drazin & Reid 1981). Only one of these hydrodynamic modes can become
unstable (via the classical TS mechanism), tracing a two branch neutral stability curve
for large Reynolds numbers (figures 2 and 6). However, one of the surface-based normal
modes can also become unstable to a flow-induced surface instability. In the absence
of wall damping this surface-based normal mode becomes unstable as long-wavelength
TWF, which is class B at neutral stability; this mode persists as the wall mass becomes
negligible (figure 2) and so is not directly related to the inviscid flutter mode. In the limit
of large wall mass the neutrally stable TWF mode becomes increasingly short wavelength
(figure 3a), where the work done by the fluid normal stress on the wall releases energy
which is dissipated by the non-trivial viscous flow in the adjacent boundary layer (figure 5).

Conversely, for viscous Poiseuille flow in the presence of wall damping, the inviscid
divergence instability is replaced by a small wavenumber, low-frequency SD mode which
has weakly positive activation energy (class A), approaching class C in the limit of large
wall damping (figures 7 and 8). In this limit the neutrally stable SD perturbation profile
exhibits narrow viscous layers adjacent to the channel walls which interact across an
inviscid core (figure 9c), similar to lower-branch TS instabilities (Bogdanova & Ryzhov
1983). However, across the range of unstable wavenumbers the surface-based normal
mode can interact with the most unstable centre mode (a stable hydrodynamic mode
with wavespeed close to the maximal flow speed, Schmid & Henningson 2001), partially
stabilising the surface-based mode for an intermediate range of wavenumbers (figure 7).
This narrow range is confined by two neutral stability curves which run parallel, the lower
corresponding to a class B TWF mode and the upper to a class A SD mode (figures 7 and
8). Despite having contrasting responses to an irreversible energy transfer from the wall,
these two neutrally stable modes have similar character and have been simultaneously
described in the limit of large wall damping, where viscous effects are distributed across
the entire channel (figure 9a,b). We note in the limit of large damping both TWF and SD
exhibit a similar partition of energy at neutral stability, where approximately 2/3 of the
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energy dissipated by the fluid viscosity is released by the working of normal stress on the
flexible wall, while the remaining 1/3 arises due to a modification to the steady pressure
gradient along the channel. Note that a similar mechanism of SD, driven by the rate of
working of fluid normal stress on the wall, was recently noted by Lebbal et al. (2022).

For sufficiently large wall mass the surface-based normal modes can interact with the
TS mode (even when it is stable), and the subsequent deviation of the frequency leads
to stable islands within the large unstable region (figures 2, 4, 10). These stable zones
enlarge with increasing wall mass, and could be of use in designing compliant coatings for
delaying laminar–turbulent transition.

In this paper, focus was restricted to analysis of normal modes and their interactions.
However, non-modal analysis of Poiseuille flow through rigid channels or rigid pipes
has indicated that non-normality of the Orr–Sommerfeld operator can lead to substantial
transient growth in regions of the parameter space where the flow is asymptotically stable
(Reddy & Henningson 1993; Schmid & Henningson 2001; Schmid 2007). Such large
amplitude non-normal growth has been identified in Poiseuille flow through a compliant
channel by Hoepffner, Bottaro & Favier (2010) and in Blasius flow over a compliant
surface (Tsigklifis & Lucey 2017; Malik, Skote & Bouffanais 2018). However, it remains to
be determined if this transient growth simply provides an alternative route to the nonlinear
flow profiles which grow from the unstable normal modes, or if it can lead to additional
(possibly transient) nonlinear flow structures. Investigation of the non-modal stability of
flow in an asymmetric flexible-walled channel is an active avenue of future work.

In future work it would be interesting to infer whether the unstable FISI modes identified
herein are convective or absolute; from previous work in related systems we might expect
that TWF and TS would be convective instabilities (Lucey & Carpenter 1995) and that SD
would be an absolute instability (Carpenter & Garrad 1986). In addition, our method for
constructing the sign of the activation energy (§ 2.7) could be used to predict the sign of the
interaction coefficients as these normal modes grow in amplitude and decide if explosive
nonlinear breakdown is possible (Cairns 1979; Craik 1985). However, such considerations
are beyond the scope of the current study.

The system we have considered breaks the symmetry compared with the stability
analysis in a channel formed from two compliant walls (Davies & Carpenter 1997a; Lebbal
et al. 2022). Our inherently asymmetric system exhibits analogous modes of FISI to these
previous studies and the mechanism of energy transfer driving these instabilities is broadly
similar (involving the destabilising influence of the working of the fluid normal stress on
the flexible wall, Lebbal et al. 2022). However, the asymmetry of the channel also drives
some fundamental differences. For example, in our channel with one flexible wall, the FISI
eigenfunctions are fundamentally asymmetric about the channel mid-line (see figure 9)
while the TS eigenfunction remains almost perfectly symmetric (the wall deflection is
not a significant feature of the streamfunction profile). Conversely, in a channel with
two compliant walls the modes are either perfectly symmetric or anti-symmetric. This
difference in symmetry properties suppresses the interaction between SD and TS modes
noted by Davies & Carpenter (1997a) in our system. Furthermore, the asymmetry of our
channel results in cases where the TWF normal mode is supercritical (particularly for low
wall mass and damping, figure 2), not present in the system with two flexible walls (see
also Stewart et al. 2010b). It would be interesting to generalise the asymptotic structures
considered here to a channel formed from two compliant walls, but this is deferred to
future work.

This study considered the stability of flow through a long compliant channel with
periodic boundary conditions. However, the resulting normal modes can be superimposed
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to describe global instabilities of flow through a finite-length system, such as global TS
modes through a series of compliant segments as a model of flow over compliant coatings
(Davies & Carpenter 1997b; Sen et al. 2009), or self-excited oscillations which occur in
rigid channels with a finite-length compliant segment as a model of Korotkoff sounds
which occur during sphygmomanometry (Stewart, Waters & Jensen 2009; Stewart et al.
2010a). The latter is based on matching the flow across the junctions between rigid and
compliant segments using the formalism of Manuilovich (2004). Our reduced asymptotic
descriptions of the surface-based modes (§§ 3.3 and 4.2) could be utilised to form a rational
description of flow through a finite-length compliant segment (in a similar way to how
the interactive boundary layer theory constructed to describe lower-branch TS modes has
been used to describe global instabilities in a finite-length compliant segment, see Pedley
2000; Pihler-Puzović & Pedley 2013). Our reduced asymptotic descriptions also have
application to models of speech production and phonation in the vocal tract, where the
mass and damping of the vocal folds are key ingredients to the onset of instability (Titze
1988; Mittal, Erath & Plesniak 2013b). Application of our predictions to these finite-length
channel systems is deferred to future work.
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Appendix A. Stability of inviscid flow in an asymmetric compliant channel

In this appendix we consider the stability of inviscid flow through an asymmetric
compliant channel, closely related to the model of potential flow over a compliant surface,
examined by Landahl (1962) and Benjamin (1963) (reviewed by Carpenter & Garrad
1986). In particular, we consider the model presented in § 2 but assume that the fluid
is inviscid with a uniform plug flow profile, U( y) = U0, where U0 is a constant and
P(x) = 0. To ensure the flux is comparable to the Poiseuille flow we enforce U0 = 1.

We denote all variables with the superscript (i) to distinguish from the corresponding
viscous problem considered above. In this case, at O(ε) the linearised governing equations
(2.6a,b) take the form

φ̂
(i)
yt + U0φ̂

(i)
xy = −p̂(i)

x , −φ̂
(i)
xt − U0φ̂

(i)
xx = −p̂(i)

y , (A1a)

subject to linearised boundary conditions (dropping the no-slip conditions)

φ̂
(i)
x (0) = 0, −φ̂

(i)
x (1) = η̂

(i)
t + U0η̂

(i)
x , (A1b)

and the normal stress balance across the wall in the form

p̂(i)
(1) = −Tη̂(i)

xx + mη̂
(i)
tt − dη̂

(i)
t . (A1c)
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This system has analytical solution in terms of frequency ω and wavenumber k given by

(φ̂
(i)

, p̂(i)
, η̂

(i)
) =

(
(ω − U0k)

k
sinh(ky)
sinh(k)

,
(ω − U0k)2

k
cosh(ky)
sinh(k)

, 1
)

ˆ̂η(i)
cos(kx − ωt),

(A2)

where in this case the wave amplitude ˆ̂η(i)
is purely real. Note that this flow profile is

irrotational, consistent with the potential flow models of Landahl (1962) and Benjamin
(1963). To complete the problem we apply the normal stress balance (A1c) to determine
the inviscid dispersion relation

D(i)(ω, k) ≡ (ω − U0k)2

k
coth(k) + mω2 − Tk2 + iωd. (A3)

The two normal modes follow from setting D(i)(ω, k) = 0, and take the explicit form

ω
(i)
± = 2k coth(k) − idk±(4mTk2 − d2 + 4 coth(k)(kT − iU0d − mkU2

0))1/2

2(coth(k) + mk)
. (A4)

In a similar manner to § 2 we can construct the steady streaming component of the
second-order problem and the corresponding Reynolds–Orr energy equation. These are
not reproduced here for brevity. However, averaging the energy equation over a wavelength
of perturbation it can be written in the form

Ŵ
(i)
t = −d(η̂

(i)
t )2, (A5a)

where the inviscid activation energy is given by

Ŵ
(i) = 1

4

(
(ω2 − k2U2

0)

k
coth(k) + Tk2 + mω2

)
( ˆ̂η(i)

)2 ≡ W(i)( ˆ̂η(i)
)2. (A5b)

In this inviscid case we confirm by direct substitution that at neutral stability (Cairns 1979)

W(i)
± = 1

4
ω

(i)
±

∂D(i)

∂ω

∣∣∣∣∣
ω=ω

(i)
±

. (A5c)

Interestingly, ∂D(i)/∂ω depends explicitly on the wall damping parameter d, but when we
substitute the corresponding normal modes (A4) the dependency on d cancels identically.
In this case, neutrally stable modes with W(i) < 0 (termed negative energy waves by Cairns
1979) are class A according to Benjamin’s framework, while those with W(i) > 0 (positive
energy waves) are class B and those with W(i) = 0 are class C.

For a heavy pre-tensioned flexible wall with no wall damping the system is unstable for
m > T (so wall mass is essential for destabilisation), where Im(ω

(i)
+ ) > 0 for k < kf , which

satisfies the transcendental equation

Tkf tanh(kf ) = (m − T)

m
= 1 − T

m
< 1, (A6)

since T , m > 0. A typical case with m > T is shown in figure 11, plotting the frequency
(figure 11a) and activation energy (figure 11b) for both normal modes of the inviscid
system. For k ≥ kf we have two neutrally stable modes, one with negative activation energy
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Figure 11. Stability of potential flow through the asymmetric collapsible channel for T = 1 and m = 2 for
d = 0 (solid lines) and d = 0.1 (dashed lines): (a) the real and imaginary parts of the normal mode frequencies
ω

(i)
± as a function of the wavenumber k; (b) the activation energy as a function of wavenumber k. The open

circle is the neutral stability point for zero wall damping (denoted kf , (A6)) while the open square is the neutral
stability point for finite wall damping (denoted kd , (A7)).

(ω(i)
− , class A) and the other positive (ω(i)

+ , class B); both modes have positive activation
energy for k > kd, which satisfies

Tkd tanh(kd) = U0 = 1, (A7)

where Re(ω(i)
− (kd)) = 0. Note that kd > kf for all m, T > 0. At k = kf the two neutrally

stable modes of class A and class B coalesce to form a class C flutter mode which is
unstable for smaller wavenumbers (Benjamin 1963; Cairns 1979; Carpenter & Garrad
1986). However, it emerges below that that this mode coalescence is overwhelmed by
even mild viscous effects. Conversely, for m < T both normal modes are neutrally stable
for all k (the system is never unstable), where again ω

(i)
− transitions from class B to class

A as k increases through kd.
For potential flow with wall damping we note that neutrally stable modes must have

zero frequency (Re(ω(i)) = 0) to satisfy the averaged energy budget (A5). Hence, any
unstable mode must also have zero activation energy at onset (class C), with corresponding
critical wavenumber kd (A7). To examine how wall damping perturbs the flutter mode, in
figure 11 we trace the frequency (figure 11a) and activation energy (figure 11b) when the
wall damping is incremented from zero. In this case the two normal modes remain entirely
distinct as a function of wavenumber; for k < kd one normal mode (ω(i)

− ) is unstable and
the other is stable, while for k > kd both modes are asymptotically stable. This unstable
normal mode is destabilised by wall damping.

Hence, in the absence of wall damping, potential flow through a flexible-walled channel
is unstable to a class C flutter mode (provided the destabilising influence of wall mass
exceeds the stabilising influence of wall tension), which onsets as a coalescence between
neutrally stable modes of classes A and B. Conversely, for finite wall damping the
coalescence leading to flutter is suppressed and instead one of these normal modes
transitions to a class C divergence instability.
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PIHLER-PUZOVIĆ, D. & PEDLEY, T.J. 2013 Stability of high-Reynolds-number flow in a collapsible channel.
J. Fluid Mech. 714, 536–561.

REDDY, S.C. & HENNINGSON, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252,
209–238.

ROTENBERRY, J.M. & SAFFMAN, P.G. 1990 Effect of compliant boundaries on weakly nonlinear shear waves
in channel flow. SIAM J. Appl. Maths 50 (2), 361–394.

SCHLICHTING, H. 1933 Zur enstehung der turbulenz bei der plattenströmung. Nachr. Ges. Wiss. Göttingen
1933, 181–208.

SCHMID, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162.
SCHMID, P.J. & HENNINGSON, D.S. 2001 Stability and Transition in Shear Flows. Springer.
SEN, P.K., CARPENTER, P.W., HEGDE, S. & DAVIES, C. 2009 A wave driver theory for vortical waves

propagating across junctions with application to those between rigid and compliant walls. J. Fluid Mech.
625, 1–46.

SQUIRE, H.B. 1933 On the stability for three-dimensional disturbances of viscous fluid flow between parallel
walls. Proc. R. Soc. Lond. Ser. A 142 (847), 621–628.

STEWART, P.S., HEIL, M., WATERS, S.L. & JENSEN, O.E. 2010a Sloshing and slamming oscillations in a
collapsible channel flow. J. Fluid Mech. 662, 288–319.

STEWART, P.S., WATERS, S.L. & JENSEN, O.E. 2009 Local and global instabilities of flow in a
flexible-walled channel. Eur. J. Mech. (B/Fluids) 28 (4), 541–557.

STEWART, P.S., WATERS, S.L. & JENSEN, O.E. 2010b Local instabilities of flow in a flexible channel:
asymmetric flutter driven by a weak critical layer. Phys. Fluids 22 (3), 031902.

TITZE, I.R. 1988 The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83,
1536–1552.

TOLLMIEN, W. 1929 Über die entstehung der turbulenz. Nachr. Ges. Wiss. Göttingen 609, 21–44.
TSIGKLIFIS, K. & LUCEY, A.D. 2017 The interaction of Blasius boundary-layer flow with a compliant panel:

global, local and transient analyses. J. Fluid Mech. 827, 155–193.
WALSH, C. 1995 Flutter in one-dimensional collapsible tubes. J. Fluids Struct. 9 (4), 393–408.
WANG, D.Y. 2019 The energetics of self-excited oscillations in collapsible channel flows. PhD thesis,

University of Glasgow.
WHITHAM, G.B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.

956 A1-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1086

	1 Introduction
	2 The model
	2.1 Governing equations
	2.2 Nonlinear energy equation
	2.3 Linearisation around the uniform basic state
	2.4 The first-order equations
	2.5 The second-order equations
	2.6 The Reynolds--Orr energy equation
	2.7 Activation energy

	3 Stability of Poiseuille flow in the absence of wall damping
	3.1 Numerical results
	3.2 Mode interaction between TS and TWF
	3.3 The limit of large wall mass
	3.3.1 The limit of large wall mass and Reynolds number


	4 Stability of Poiseuille flow including wall damping
	4.1 Numerical results
	4.1.1 Weak wall damping
	4.1.2 Large wall damping

	4.2 The limit of large wall damping
	4.2.1 Neutrally stable TWF and lower-branch SD in the limit of large wall damping
	4.2.2 Neutrally stable upper-branch SD in the limit of large wall damping

	4.3 Mode interaction with TS for large wall mass

	5 Discussion
	Appendix A. Stability of inviscid flow in an asymmetric compliant channel
	References

