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A Weighted L*-Estimate of the Witten
Spinor in Asymptotically Schwarzschild
Manifolds

Felix Finster and Margarita Kraus

Abstract. 'We derive a weighted L?-estimate of the Witten spinor in a complete Riemannian spin man-
ifold (M",g) of non-negative scalar curvature which is asymptotically Schwarzschild. The interior
geometry of M enters this estimate only via the lowest eigenvalue of the square of the Dirac operator
on a conformal compactification of M.

1 Introduction

Since Witten’s proof of the positive mass theorem [3, 17, 20], spinors have been a
valuable tool for the analysis of asymptotically flat manifolds; see for example [8,
10] or the integral estimates of Riemannian curvature [4-6]. These last estimates
have the disadvantage that they involve the isoperimetric constant, which depends
on the geometry in the interior (i.e., away from the asymptotic end) and is therefore
in most situations not known. In order to get curvature estimates which do not
involve the isoperimetric constant, one needs better control of the Witten spinor.
This was our motivation for looking at weighted integral norms of the Witten spinor.
In order to concentrate on the role of the interior geometry, we chose the geometry
in the asymptotic end as simple as possible, i.e., the Schwarzschild metric. Thus the
question under consideration is to what extent the unknown interior geometry can
affect the behavior of the Witten spinor in the asymptotic end. In this paper, we
quantify this effect by an integral inequality. We find that the effect of the interior
geometry on a suitable weighted L?-norm is described purely in terms of the lowest
eigenvalue of the square of the Dirac operator on a conformal compactification of M.

To be more specific, we now describe the problem and our main results in the most
familiar and physically most interesting case of dimension three. Thus let (M?, g) be
a complete Riemannian manifold of non-negative scalar curvature which is asymp-
totically Schwarzschild, i.e., the metric in the asymptotic end is

4
g= 1+ﬂ £0,
2r

where gy is the Euclidean metric, and r = |x] is the Euclidean norm of x € R’. The
Witten spinor is a solution of the massless Dirac equation which at infinity goes over
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Figure 1: The asymptotically Schwarzschild manifold (M, g) and its conformal compactifica-
tion (M, §).

to a constant spinor v with ||¢)g|| = 1. More precisely, a Witten spinor ) has the
following asymptotic approximation at infinity,

(1.1) W(x) = (1+g) 72¢0+o(rl2).

This expansion is used in [17,20] for the proof of the positive mass theorem. In order
to get an estimate of the error term, we point compactify the manifold with a con-
formal transformation of the form § = \’g, in such a way that the geometry of K
remains unchanged, the scalar curvature stays non-negative, and the compactifica-
tion of the asymptotic end is isometric to a cap C C S}, of a sphere of radius o (for
an illustrating example see Figure 1). Then the compactification (M, §) is a closed
manifold of non-negative scalar curvature, and it is clear from the Lichnerowicz—
Weitzenbéck formula that the square of the Dirac operator on M is positive, D> > 0.
Since the scalar curvature is strictly positive in the spherical cap, we even know that
the lowest eigenvalue is non-zero: inf o(D?) > 0. Moreover, using methods of
spin geometry, it is possible under various geometric conditions (for example in-
volving only scalar curvature) to bound the lowest eigenvalue of D? from below
(see [1,2,7,11,12,14,16]). Then the following inequality gives a detailed estimate of
the Witten spinor.

Theorem 1.1  There is a constant c independent of the geometry of K such that

Ltz [ o= (1)l v <

In the course of proving this theorem, we derive an identity involving Witten
spinors, which is of some interest in its own right, as we now explain. We choose
an orthonormal basis (g )i=1,. 4 of the spinors at infinity and consider the corre-
sponding family ¢; of Witten spinors,

(1.2) Dip; =0, lim ¢i(x) =ve; (G=1,...,4).

x| —o00
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We let G and G be the Green’s functions of the square of the Dirac operator on
M and the sphere S?, respectively, and denote their integral kernels by G(x, y) and
Gs3 (x, y). The next theorem expresses the weighted L2-norms of the Witten spinors
(1.2) in terms of the difference of these integral kernels, with an explicit error term.

Theorem 1.2 For sufficiently large R, the Witten spinors satisfy the identity

2
Adp

4 , 4 s 2
/K;WHH dHMJr/M\K;H%— (1+§) o,

= 64m’c* lim Tr(G(n, y) — Gg (n, y))
nZy—mn ’

202 m 2
+4/ ﬁd3x—4/ (1+—) )\d3x,
Br(0) O° T Br(0)N(M\K) 2r

where d°x is the Lebesgue measure on R®. Here we assume that the asymptotic end M\ K
is diffeomorphic to R* \ B,(0) and work in the corresponding chart.

This equality clearly gives finer information than the inequality of Theorem 1.1. The
interesting point is that the interior geometry enters only via the Green’s function G.
We learn that the influence of the interior geometry on the weighted L?>-norm is
described precisely by the behavior of G(1, y) as y — m.

In this paper, we prove the analog of Theorem 1.1 and Theorem 1.2 in general
dimension. For the proof, we work as in [5] with the spinor operator, which is
composed of a basis of Witten spinors (1.2). Our first step is to get a connection
between the conformally transformed spinor operator and a quadratic expression in
the Dirac Green’s function on M (see Section 3). In Section 4 we find that after sub-
tracting suitable counter terms, we can integrate this expression over M to obtain
the Green’s function G of the square of the Dirac operator minus suitable counter
terms. Then our task becomes to analyze the behavior of G near the pole 1 of the
spherical cap. This is done in Section 5, where we estimate the difference of G and
the corresponding Green’s function on the sphere using Sobolev techniques. In Sec-
tion 6, we compute the Green’s functions on the sphere explicitly. Finally, in Section
7 we combine the results of Sections 3 and 4 to obtain an identity for an integral of
the trace of the spinor operator (Theorem 7.1). Using a positivity argument together
with the estimates of Sections 5 and 6, we then conclude our main results (Corollary
7.4, Theorem 7.5 and Corollary 7.6).

We finally remark that our methods also work similarly for harmonically flat man-
ifolds (see [19] for the definition), except for Lemma 7.3, where an angular depen-
dence of the function A would lead to a “mixing” of the angular momentum modes,
making the situation more complicated. Since we did not find a simple argument
to overcome this problem, we here restrict our attention to a Schwarzschild end. A
generalization to harmonically flat manifolds would be desirable in view of the fact
that the metric of every asymptotically flat manifold can be made harmonically flat
by an arbitrarily small perturbation [19].
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2 The Conformal Compactification

Let (M",g) be a complete Riemannian manifold of dimension n > 3 with non-
negative scalar curvature. For simplicity, we assume that the manifold has one
asymptotic end which is isometric to Schwarzschild. By rescaling, we can assume
without loss of generality that the ADM mass is equal to two.

Definition 2.1 A complete Riemannian manifold (M", g) of dimension n > 3 is
said to be asymptotically Schwarzschild if there is a parameter p > 0, a compact set
K C M and a diffeomorphism ¢: M \ K — R" \ B,(0) such that

4

2.1) pg=(1+2) s

‘X‘”72

Here B,(0) denotes an open Euclidean ball in R”, and g is the Euclidean metric
on R".

In the asymptotic end it is most convenient to work in the chart (¢, M \ K); we use
the notation
r(x) = |p(x)| forx e M\ K.

The metric (2.1) is obviously conformally equivalent to the Euclidean metric. More-
over, the Euclidean R” is conformal to a sphere S of radius o with the north pole
removed. This is is seen explicitly in the usual chart obtained by stereographic from
the north pole, where

2072 :
(2.2) 81 = () 8o-

o’ +r?

Therefore, we can arrange by a conformal transformation that the asymptotic end is
isometric to the cap of a sphere of radius o with the north pole removed. Further-
more, we want to keep the metric inside K unchanged, and we want to preserve the
positivity of scalar curvature. In the next lemma we construct a function A such that
the conformal transformation

gives us a metric with the desired properties.
Lemma 2.2  Thereis a function A € C°*° (M) satisfying the following conditions:

i) ANg=1,
(ii) For some radius R > p,

24) A = (L) (1 r(x)%) T on g (R Be(0)).

o2+ r(x)?

(iii) The scalar curvature corresponding to the metric (2.3) is non-negative.
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More specifically, we can arrange that
(2.5) p<o<R<cm(p+1)
with a constant ¢ that depends only on the dimension.

Proof It is more convenient to write the metric in the asymptotic end as § = pgo
with

(x) = (1 + r(x)%) .

Our first attempt is to define p piecewise. To this end, we choose R, = p+C(n) with
a suitable constant C(#) and set

1\~ .
(1+rnj) lfr<R*,
p=p(r(x)) =

202

—_ ifr > R,.
o’ +r? =0

In order to make this function continuous at r = R,, we let

1\~ -2
a:R*[z(HRH) -1

By choosing C(n) sufficiently large, we can arrange that the square bracket is uni-
formly bounded from above and below. In the region r < R,, the metric ¢ coincides
with g, whereas in the region 7 > R,, §is the metric on S};. Obviously, in both of these
regions the conformally transformed metric has all the required properties. Unfor-
tunately, the function y is not smooth at r = R,.. More precisely, a short calculation
shows that the first derivative of ;1 makes a negative jump, i.e.,

. / . li
R*LIER*'U/(r) R*llgR*M(r)<0.

As a consequence, the scalar curvature § corresponding to ¢, given by the formula

n—1 ) n—2

§—=14 2 Au
) n—ZM a

(where A = —V'V, is the Laplacian in R") is positive at r = R, in the distributional
sense. By mollifying p(r) in a small neighborhood of = R,, we can thus arrange
that § > 0. We finally set R = o + 1. |

For clarity, we denote the manifold M with metric (2.3) by (M, §). Then by (i), the
manifolds M and M are isometric on K. By (ii), M is isometric on o HR" \ Br(0))
to the cap of the sphere S with the north pole 1t removed. We denote the geodesic
distance from the north pole by d,

(2.6) d: S" = R,
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and let B;(n) be the geodesic balls of radius s around the north pole. Then

IR \ Br(0)) = (B(;(n) \ {n}) Cc Sl with =20 arctan(%) .

We now compactify M by adding the north pole. The resulting manifold, denoted
by (M, §), is called the conformal compactification of (M, g). For r > R we set

Cr = (7' (R"\ B,(0)),8) C M.

We also identify C, via the isometry of the stereographic projection with a closed
subset of S”. We refer to the set C = Cg as the spherical cap of (M,g). We always
identify it with the set Bs(11) C S..

We remark that there are also conformal compactifications with the above proper-
ties (i)—(iii), for which o is arbitarily large, thus violating (2.5). However, such con-
formal compactifications do not seem to give good estimates of the Witten spinor,
and we shall not consider them here.

3 The Spinor Operator and the Dirac Green’s Function

From now on we need to assume that (M, ¢) is a spin manifold. This assumption
is no restriction in dimension three, whereas in general it poses a constraint for the
topology of M. As a consequence, the manifold M is also spin. In fact, taking out
the point 11 and performing a conformal transformation, every spin structure on M
induces a spin structure on M. We fix corresponding spin structures on M and M
throughout.

We let ¥ and 3 be conformally equivalent spinor bundles over (M, ¢) and (M, §)
and denote the corresponding Dirac operators by D and D. According to [11,13]
there is a fiberwise isometry ¥ — ¥, ¢ +— 1) such that

n+l

(3.1) Dip = A75 (DT ).

In the coordinates induced by the diffeomorphism ¢ of Definition 2.1, we choose a
family of constant spinors ¢ ; such that g1, ..., YN, N = 217/2] is an orthonormal
basis in the asymptotic end M \ o~ (R"\ Bz(0)), and we consider the boundary value
problem

(3.2) Dy =0, | l‘im Yi(x) = .

This boundary value problem was first considered in [20]; its solutions are called
Witten spinors. The existence and uniqueness of the Witten spinors was proven in
[3,17]. They decay at infinity as

Vi =tho; + O, b = O(r'™"), KO = O(™").

In [5] the spinor operator 11, was introduced, which we now slightly generalize, using
the following.
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Notation 3.1 Let E; — X, E; — X be vector bundles over the manifold X. By
E1 X Ez — X xX

we denote the vector bundle 7} E; ® 7} E; with the projections 7;: X x X — X to the
i-th factor.

Definition 3.2  Let 1y, ...,1¥n be a family of solutions of (3.2). Then the spinor
operator I1 € I'(X X X*) is defined by

N

T(x, ) = Y (Wi(y), - i),

i=1
This definition reduces to the spinor operator as used in [5] if x and y are equal,
II(x) .= II(x,x): X, — X,.

From the boundary values (3.2) it is obvious that lim|y_., II(x) = 1. When con-
sidering conformal transformations of the spinor operator, we must keep in mind
that the transformed Witten spinor should again be a solution of the Dirac equation.
According to (3.1), this leads us to the following definition.

Definition 3.3  On the manifold (M,g) with § = A\’g we define the conformally
transformed spinor operator I1 € T'(X X X*) by

N
M(x,y) = AT AT ()Y (@iy), i),

i=1
where 1)1, . . ., ¥y are the solutions of (3.2).

In Euclidean space, the Witten spinors are constant, and therefore I1(x) = 1. Apply-
ing the above definition to the metric (2.1), we obtain for the spinor operator Ilsg, in
the Schwarzschild metric the explicit expression

n—1

1 T o=z
(33) Hsch(x) = (1 + W) ]IEX.

In the remainder of this section we will establish a connection between the confor-
mally transformed spinor operator on (M, ) and the Green’s function of the Dirac
operator.

Definition 3.4 Let X be a spin manifold and A the diagonal of X x X,

A={(x,x)withxe M} C X xX.
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We let Sy be a smooth section in the bundle ¥ K X*|((X x X) \ A),
Sx: X X X\ A — Yy X%,
and we also consider Sx as the integral kernel of a corresponding operator acting on

the compactly supported, smooth spinors on X by

(Sxth)(x) = / Sx(x, )ly) dy.

X\{x}

Then Sx is called the Green’s function of the Dirac operator D on X if it satisfies the
distributional equation Dy ,Sx(x, y) = d(x, y).

This distributional equation can be stated equivalently by the condition that

/ Sx (Db () d'x = ()
X

for all compactly supported smooth sections in the spinor bundle. As is easily verified
by a direct computation, the Green’s function on R" with the Euclidean metric is
given by

(3.4) Sw(x,y) = ——— X7

Wnt = y["

where w,,_1 is the volume of S"~!. The Green’s functions of conformally flat spaces
can be computed using the following transformation law for the Green’s function
under conformal changes.

Lemma 3.5 Let (X,g) and (X, ) be two manifolds with conformally equivalent met-
rics, § = \*g. Then the corresponding Green’s functions S and S are related by

Sx(x, ) = AT (AT (1)Sx(x, ).
Proof Let S be the Green’s function of the Dirac operator (X, g), i.e.,
D, [ Sx(x () dy = V().
X

Then from (3.1),

ntl

DA 0 [ Sele NG dr) = A 05
X

and thus

ntl

D [ AT WSel AT (A (I dy) = AT (),
X

where D and dj denote the Dirac operator and the volume element on X, respec-
tively. ]
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Theorem 3.6  Let (M, g) be an asymptotically Schwarzschild manifold and (M7~ g) its
conformal compactification. Then the conformally transformed spinor operator 11 and
the Green’s function Sg; of the Dirac operator on (M, ) satisfy the following identity,

M(x, ) = wy_, (20°)" ™ S570x, 1)S57(1, ),

wheren € C C (M, §) is the north pole in the spherical cap of the compactification.

Proof Let B.(11) C C be a ball of radius € around 11, & < §. Then

N
[ M (06 dy =3 [ iy, o dxbiy)
M\B. (1) i—1 Y M\B:(n)

N
= "" - "i d Ai
;/ﬁBz(n)w ne - i) (x) dxpi(y)

where 12%‘ = 2 i, and n. is the outer normal on dB.(11). Here the vector field

Vv, is defined by

§Vy s w) = (P, w- ;) A

Similarly, we obtain

(3.5) / / (D1 (x), T1(x, y) DA y)) dxdy
M\B-(n) J M\B_/(n)

Z(/(;B w (@1, e - Pi)x) dx) .</03,(11)< i o)y dy)

In order to investigate the limit ¢ — 0, we consider the trivialization of the spinor
bundle in a neighborhood of the north pole given by stereographic projection from
the south pole —1. The change of the charts of S% \ (1t U —n) given by the stereo-
graphic projections from the north and south pole is given by w(x) = o?x/|x|* with
differential dw,(v) = \XI2 S(x/|x|)v, where S(x/|x|) denotes the reflection at (R - x)=.
Thus, for an orthonormal basis (e, . . ., e,) of R”, the vector fields &: R" \ 0 — R",

x— Z +|x‘ S(x/|x|)e; are extendable to the sphere S” \ (—n) as orthonormal vector
fields. The lift of S(x/|x|) € O(n) to Pin(n) is given by Clifford multiplication with

x 202

x* __ 9 4
|x| 2+ ‘x‘z pp (nE)

for x € p(B.(n)), and therefore the Clifford product§ (1 - i)im
to the north pole as orthonormal basis 19 ; (1), . . ., 1/10 5141 (n).

,,,,, N are extendable

From the asymptotic behavior of the solutions of (3’.2) it follows that

ne(x) - Pi(x) = (20%) 7 ()" i () + O ()
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with (i ; (1), 1}0,]-(11)> = d;j, where (r',€Q): S — R" denotes the coordinates of the
stereographic projection from the south pole. Therefore,

lim [ (00, ne - i) dx = lim £ 7"(20%) T vol(S: 7)), dhos (1) + O(e)
€=0 JoB.(n) e~

= w1202 T (), Py ().

Now in (3.5) we can take the limit ¢ — 0 to obtain

L (D), 11(x, ) D (y)) dxdy = (20°)" (g1 (), (W) - wi_,
MxM

= (202" ! /7 (S0, %) D o1 (x), Sgr (1, y)Dipa () dxdy - wyy .

MxM

4 The Green’s Function of the Square of the Dirac Operator

Let us outline our strategy. Our goal is to derive weighted L?-estimates of the Witten
spinors. Since the spinor operator is composed of the Witten spinors (see Definition
3.3), the expression fM TrII(x) dx is of interest, where Tr denotes the trace on the
N-dimensional vector space X, (for details see Section 7). Using the formula from
Theorem 3.6 and the cyclicity of the trace, we are led to the integral

(4.1) / Syr(, %) Szz(x, 1) dx.

M

If the last argument of the second factor Si; were different from 1, we could immedi-
ately carry out the integral,

(42) /_ S (XS (x, y) dx = G, y) (y £ 1),
M

where G denotes the Green’s function of the Dirac operator squared,
(4.3) D2G(x, ) = d(x — ).

This simple argument suffers from the problem that the integrals in (4.1) and (4.2)
diverge. Namely, since the order of the pole of Si; is expected to be the same as in
Euclidean space (3.4), we find that the product of the Green’s functions should have
a non-integrable pole of the form

Sir(1, %) Sy (x, ) ~ pIEh

where d denotes the geodesic distance from the north pole (2.6). Despite this prob-
lem, one can hope that the above argument works if suitable functions are subtracted
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from the integrands in order to compensate for the singularities. This leads us to
conjecture a relation of the following form,

/ (Szz(n, %)Sgr(x, ) — (counter terms)) dx = ;im (G(n, y) — (counter terms)) .
M n#y—n

In order to specify the counter terms, we let x5 := X be the characteristic function of
the spherical cap. Now we take the Dirac Green’s function of the sphere and multiply
it by s, so that it is supported inside the cap C around the north pole. Using the
isometry with the spherical cap of M, we can lift S5 to M,

Ss: M x M\ A — Xy K X2 with Ss(x, y) = x5(x)Ss: (%, y)xs ()

Finally, we set

(4.4) Gs(y) = / S5(1, )5 (x, y) dx.

M

Theorem 4.1  The Dirac Green’s function S on the compact manifold (M, §) satisfies
the relation

/ (S0 0S5(x, 1) — S50, 050x,10) dx =l (Gl ) = Ga())
M n£y—n

In Section 6 the counter terms are computed more explicitly, see Lemma 6.1. The
remainder of this section is devoted to the proof of the above theorem. For any
y € Bs4(n), we introduce the function f,: M — R by

(4.5) £ (%) = Syz(x, y) — Ss(x, y).
Lemma 4.2  There is a constant c such that

| fylloe < cforally € Bs(n) and lim f,(x) = fu(x) uniformly inx € M.
1 y—n

Proof Welet v € C§°(RR) be a non-negative test function p € C5°(R) with M‘[o,%] =
1,0 < p < landsuppp C (—1,1), and we define the function : S — R by

0y

(4.6) nex) = (5

where d is again the geodesic distance from the north pole (2.6). This function is
supported inside the spherical cap and is identically equal to one in the neighborhood
Bs>(n) of the north pole. For y € Bs4(n) we set g,(x) = SM(X, ¥) — n(x)Ss(x, y).
Then @gy(x) = —(grad n(x))Ss: (x, y). Since the function grad 7 is supported in the
annulus Bs (1) \ B;/,(n), whereas y € Bs /4(1), and using that the Green’s function on
the sphere is smooth away from the pole x = y (see Section 6 for details), we conclude
that Dg, € C>(M). Applying standard elliptic regularity theory, we obtain that
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gy € C°°(M) and that it is uniformly bounded in y. Again using that Sg: is smooth
away from the diagonal, we conclude that Ss(x, y) is smooth for x € Bs(n) \ B; 12(n),
and is bounded uniformly in x and y. We finally note that

f) =gy () + (1 = 1:(x))S(x, y). u
Using (4.5), we decompose the product of Green’s functions as follows,

(4.7) Syr(n, %) S57(x, y) = Sz(x, 1) * Szz(x, y)
= (Ss(x, ) + fu(x))" (Ss(x, y) + £, (x))
= S5(n,x)S5(x, y) + fu(x)"S5(x, y)
+S5(x, )" £,(5) + fulx)™ f (%),
where again y € B;/,(11) and x € M. Let us analyze the x-integrals of the expressions
obtained. The integral over the first term gives precisely G, (4.4). For the last three

expressions we can interchange the integral with the limit y — n, as the next lemma
shows.

Lemma 4.3  The following limits can be taken inside the integral,

(48) lim [ "S5t e = [ "S5
n#y—n M M

(4.9) lim Ss(x, )" f(x) dx:/ S5 (2, 1) fu(x) dx,
nFy—n Sy M

(4.10) lim /fn(x)*f},(x)* dx:/ fux) fu(x)* dx.
n#£y—n M M

Proof Equations (4.9) and (4.10) follow immediately from Lebesgue’s dominated
convergence theorem using Lemma 4.2 and the fact that the pole of the Green’s func-
tion on the sphere is integrable (see Section 6 for details). The proof of (4.8) is a bit
harder, and we use the symmetry of Sg» on S. Let ¢, be an isometry on S, with
©y(y) = n. Then since the Lebesgue integral over S is invariant under ¢,

/ )55, ) di = / Fu)* S5, y) dx = / Fo 0 (0 S306, ) di.
M sn st
Now we can again apply Lebesgue’s dominated convergence theorem:

lim fu(x)*Ss(x, y)dx = lim /f%(n)(x)*s(g(x,n)dx
n#y—n Jyr n#£y—n s

_ / £ S5, ) dlx = / f SsGe ) dr. m
st i
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We write (4.7) in the form

Sar(n, x)Sx7(x, y) — S5 (1, x)S5(x, y)
= F(x) = fulx)"Ss(x, y) + S5(x, )" £, (x) + fu(x)" £, (x).

According to Lemma 4.2 and Lemma 4.3, we may commute the integral over x with
the limit y — n as follows,

/ (Sz7(1, %) S57(x, ) — S5(n, x)S5(x, m)) dx
M

= lim F,(x)dx = lim [ F,(x)dx
M Y—n y=n a1

= )l,li)l}‘ ~ (Sﬁ(nv X)SM(X, )/) - S(S (nv x)S5(x, )/)) dx.
M

This concludes the proof of Theorem 4.1.

5 Pointwise Estimate of G near the Pole

In this section we shall estimate the quantity lim,_,,(G(n, y) — Gs(y)) appearing in
Theorem 4.1. The first difficulty is that that Gs is defined by an integral (4.4) and
is thus rather complicated; it would be more convenient to work instead with the
Green’s function on the sphere Gg: (1, y). Therefore, we introduce the function Hj
by

(5.1) Hs(y) = Gs:(n, ) — Gs(y).

This function depends only on the Green’s functions on the sphere and can be com-
puted explicitly (for details see Lemma 6.1 below). Thus it remains to control the dif-
ference of the Green’s functions G and Gg:. First we need to localize the last Green’s
function inside the spherical cap, so that we can lift it to M. To this end, we multiply
it with the function 7 (4.6), which is supported inside the spherical cap and is iden-
tically equal to one in a neighborhood of the north pole. Then our task is to estimate
the limit

(5.2) }ig}lv(y) with y(y) := G(n, y) — n(y)Gs: (n, ).

Our strategy is as follows. When we apply the Dirac operator squared to v, the
d-contributions cancel,

(5.3) h(y) == D*y(y) = D’ (n(»)Gs: (n, y)) — (D*n(3))Gs: (n, »).

The resulting terms all involve derivatives of 77 and are thus supported in the annulus
% < d < 94, where G, is smooth (for details see Section 6). We conclude that

h € C§°(C). We consider the equation

(5.4) D>v=h onM
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as an elliptic equation for . Standard elliptic regularity theory yields that v €
C>(M). Furthermore, the operator D? is essentially self-adjoint on the Hilbert
space L?>(M) of square-integrable spinors with domain C>°(M). According to the
Lichnerowicz—Weitzenbock formula and the fact that the scalar curvature is non-
negative on M, we know that the operator D? is strictly positive, and we obtain

1
(5.5) IV 2@ty < m“hﬂwﬁy

This L?-estimate is clearly not good enough, we need a pointwise estimate. The gen-
eral method is to derive integral estimates for the derivatives of v and then to apply
the Sobolev imbedding theorem. The Sobolev imbedding theorem on a manifold
involves the isoperimetric constant (see [5,9]). The basic problem is that the isoperi-
metric constant on M depends on the unknown geometry in the compact set K and
is therefore not under control. In order to bypass this problem, we shall always work
with functions which are supported inside the spherical cap, so that we can use the
Sobolev imbedding on S%. More specifically, we work with the Sobolev inequality [9]

n
(5.6) [v(m)] < sup|77k7| < CSH’I]k"YHHk.Z(S;) for k > X
Sy

Here cs is the Sobolev constant on the unit sphere §", and the Sobolev norm || - |[ 21
is defined by

sy = >, o7 [ IV f@)| dx.

x with |k| <k S;

We inserted the factor o2/%I=" for convenience; it makes the Sobolev norm invariant
under scalings of .

It remains to get estimates for the Sobolev norms in (5.6). The next lemma shows
that we can equivalently consider the L>-norms of higher powers of Dirac operator.

Lemma 5.1 There is a constant ¢ which depends only on n and the quotient § /o (but
is independent of y) such that

k

(5.7) ||77k+1ﬂ|§{k«2(sg) =c Z gt HUZH@Z“YH%Z(sg)-
=1

Proof Since both sides of the inequality have the same scaling in ¢, we may assume
that o = 1. Using the Leibniz rule and the boundedness of 1 and its derivatives, we
immediately get

(5.8) HT}kH’Y”]de-,Z(S”) <c Z / ||Vﬁ(77|h\+1f(x))”2 dx.

s <k 'S

"
o
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Thus it suffices to show that the right side of (5.8) is controlled by the right side of
(5.7). We proceed by induction in k. For k = 0, there is nothing to prove. Sup-
pose that the inequality holds for given k. Then by the Leibniz rule and the Schwarz
inequality,

||77k+sz+17||iZ(sn) = ||Dk+1(77k+27)||22(sn) +(Lo.t),

where “(Lo.t.)” stands for L*-norms of V*(n/*!~) for lower orders || < k + 1. Using
the induction hypothesis, we obtain

k+1 k+1

- 1 -
>l Dl = = Y ID 0 Dy,
=1 I=1

The Lichnerowicz—Weitzenbdck formula together with the fact that the scalar curva-

ture is non-negative imply that D> > A. Hence setting y = n**!,

(D, DY) 2gsn = (D 2y, XV ey > (A Xy, X ) 2 s

Integrating by parts, for each Laplacian we bring one derivative on each side of the
scalar product. Commuting covariant derivatives we pick up curvature terms which
are clearly bounded on S". We thus obtain

(A Yy xNeey = D (Vo7 Vo) ey + (Lo,

|k|=k+1

Again using the induction hypothesis, the result follows. ]

The L?-norms on the right side of (5.7) can easily be estimated similar to (5.5),

~ T 1 T
- R ; 2 1+2
I D sy = 1P = rrma 1P

1

2 _ ~17012
”Y||Lz(1\7,) = WH'D h||L2(sg)~

Notice that the norm on the very right depends only on the geometry of the spherical
cap. Combining this last estimate with (5.6) and Lemma 5.1, we obtain the following
result.

Corollary 5.2  There is a constant ¢ depending only on 7 and /o such that

0.711

limA(y) < —2
o = (DY)

Proof Putting together the above estimates, we obtain

k
(5.9) lim 7(y)? = 70 < ¢ o™ D,
=1

—2n k

co ~
< — N "D .
< e o I
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Since h is a given function on the spherical cap, the summands in the last sum can
be bounded by a constant depending only on #, § and . In order to determine the
scaling in o, we first note that

DGsi (x,y) = b5 (x, ) = 0 "65:(0'x,07'y) = 0 "DiGsr(0 "%, 071 y),

and thus
G (x,y) = 0_"+2G5v;(0_1x, aly).

Using this in (5.3), one sees that h scales like 0~". We conclude that the last sum in
(5.9) is scaling invariant, and therefore this sum can be bounded by a constant which
depends only on the quotient § /0. ]

6 The Green’s Functions on the Sphere

In the previous constructions we used the Green’s functions on the sphere Sg: and
Gs:. We shall now compute these Green’s functions and estimate the composite ex-
pressions Ss(x, 1)Ss(1, x) and Gs — Ggp.

Under the conformal transformation of S?\ {n} to Euclidean R", the Green’s func-
tion Sy clearly goes over to the Green’s function of Euclidean space (3.4). Applying
Lemma 3.5, we thus obtain an explicit formula for the Green’s function on S/ in the
coordinates of the stereographic projection from the north pole:

1—n 1—n

61 Sybep =TT (YT

Wy [x = y[" N o? + [x]? o + [y

In particular, one sees that the Green’s function on the sphere is smooth away from
the diagonal, and that the pole at x = y is integrable.

In the next lemma we compute the product Ss(x, 11)Ss (1, x) as well as G5 and Hs
defined by (4.4), (5.1). It is most convenient to work on S} in the coordinate system
obtained by stereographic projection from the south pole. The corresponding radial
coordinate r’ is related to the radial coordinate r in the stereographic projection from
the north pole by

(6.2) r'=—.

Lemma 6.1 Setting R’ = o?/R, the following identities hold inside the spherical

cap C,

(63) 5(x, 1S5, ) = (2:2)1 ()
(6.4 Gs0) = —— (=7 %% ",
(6:5) Hs(0) = wnl_l (02 + r’2 022%272%
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Proof The identity (6.3) can be obtained in two ways. Either one computes the
product Ss(x, y)Ss(y, x) with S5 in the “north pole chart” (6.1) and takes the limit
y — 00, or, alternatively, one can compute the product Ss(x, 1)S; (11, x) in the chart
of the stereographic projection from the south pole.

For the rest of the proof we work with the stereographic projection from the south
pole, which we denote by 7m: S! — R". Using the explicit formulas (3.4), (6.1), (2.2),
we obtain

Gi(y) = / S3(,2)S3(x, y) dx = / S5 (1,38 (x, ) dx

S B;(n)

n
4

1—n

20?2 402 p
= Sir(0,)Siw (x, ) ( )
/W(Ba(ﬂ)) o+ |x[* \ o + |y[?

1—n

2 2
- ( Uzio|y|2)

/ (Dyr aF(0)) St (x, ) dx
m(Bs(n))
with

(S PR |
(6.6) F(x) := / ?
Wp—1 r

T.
7 (x) 0-2 + 7—2 Tn_l

We now integrate by parts. The boundary terms drop out because F vanishes on
OB;s(n) (note that the pole at the origin is of order (r’)"~2, and so we do not need to
worry about boundary terms there). We conclude that

402 ) =
o +yl?

2 1—n

) " F(y),

G = (

F(x) DR Spe (x, y) dx = (—
/Bm) . L+ [y

proving (6.4); Hs can be computed similarly,

Hs(y) = / S5 (1, %)Ss (x, ) dx
$1\B;(n)

7( 402 )15"
C\or |y

Now we integrate by parts. Since Dyg» . Sgs(x, y) gives a contribution only for x =
y € R" \ w(Bs(n)), only the boundary integrals contribute. The boundary terms on
O(m(Bs(11))) again drop out because F vanishes there. Thus it remains to consider the
boundary terms at infinity,

/ (Do F(x)) S (x, 7) dx.
R\ 7(B; (1))

2 1—n

4o 2 .
Hily) = () T, [ v P ) ds

where v- denotes Clifford multiplication with the outer normal. Putting in (3.4),
(6.6), we obtain (6.5). [ |
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Substituting (6.4), (6.5) into (5.1), we also obtain an explicit expression for the
Green’s function Gg;,

1 40 T [ 20 1
ST By i bl . S
(M%) Wh1 N o2+ 172 g o247l

This formula shows that Gg (x, y) is indeed smooth away from the diagonal.

7 A Weighted L'-Estimate of the Deviation Operator

In this section, we first combine the previous results to derive an integral estimate for
the trace of the spinor operator (Theorem 7.1). We then introduce the so-called devi-
ation operator, which gives us information on how much the spinor operator differs
in the asymptotic end from the spinor operator in Schwarzschild. Using a positivity
argument (Lemma 7.3), we can then prove the main results of this paper: a weighted
L!-estimate of the deviation operator (Theorem 7.5) and a weighted L?-estimate of
the Witten spinors (Theorem 7.6).

Let 1 be a function which in the asymptotic end coincides with the norm of the
spinor operator in Schwarzschild (3.3) and vanishes otherwise,

1\ 2=
(7.1) w:M—-R, ulx) :XM\K(x)(l + 772) ’
r(x)"
In the next Theorem we compute an integral involving the trace of the matrix IT— pl.

Theorem 7.1  The spinor operator on M satisfies the following identity,
(7.2) / Tr(TI(x) — p(x)DA(x) dx = wﬁfl(Zaz)"_1 lim Tr(y(y)) + Ne,
M y—n

with 7y according to (5.2), and where c is given by explicit integrals in Euclidean space,

207 1\ s
(73) a:/ ﬁaz"x—/ (1+ =) A @
B(0) 07 F ] B(0)\B,(0) ||

Here d"x is the Lebesgue measure in R", and X is to be chosen as in Lemma 2.2.

We point out that the parameters -y and « clearly depend on the conformal compact-
ification, but they are (for a given function A\) independent of R. This is obvious for
7 because its definition (5.2) involves only the Green’s functions on M and S”. For
the parameter « it follows from the fact that for r > R, A is given by (2.4), so that
the second integrand in (7.3) reduces to the first. Hence the integrals in (7.3) remain
unchanged if R is increased.
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Proof of Theorem 7.1 Using Definition 3.3 and Theorem 3.6, we get
/ Tr(II(x) — p(x)DA(x) dx
M
= / Tr(fl(x) — ,u(x))\l_”(x)]l) dx
M

:/ Tr(wﬁfl(Zaz)”*ISM(x, ) ~M(n, x) — u(x))\lfn(x)]l) dx
M

= wi_1(20_2)n71 / TI'(SM(TI,X)SM(X, TI) — S(g(‘ﬂ, JC)S5()C7 n)) dx
M

+/ Tr(wﬁfl(Zoz)”_IS(;(x, n)Ss(n, x) — u(x))\l_"(x)]l) dx.
M

According to (2.4), (7.1) and (6.3), (6.2),
wﬁfl(ZJZ)”_IS(g(x, mSs(n,x) — p(x)AN"(x) =0 onC,
and thus the last integral reduces to an integral over the annular region M \ (K UC).

Furthermore, we can apply Theorem 4.1 as well as (5.1), (5.2) to obtain

/ Tr(H(x) — u(x)]l) A(x) dx = wﬁ_l(ZJZ)”*l }im Tr(v(y))
M —n

#ud Qo ) — [ T(pAWI) dx
M\ (KUC)

The last two terms can be computed explicitly with (6.5) and (2.1),

2 2 sy [ 20°
R A=
R/

R g2 a1 202 "
= Wy_1 7 dr = —— d"x,
0 o° +r Bg(0) o- + |x|

1\
() A(x) dx = / 1+ —— Mo L(x)) d"x.
/M\(KUC) s Br(0)\B,(0) ( |x|“*2) ¢ u

We now analyze the integral in (7.2) in more detail, with the aim of getting a
connection to an L!-norm. Inside the compact set K, the function \ vanishes. Thus
according to Definition 3.2, for every spinor ¢ € ¥,

N

(74) (0, () — pODY) = (b, THEW) = > (i), ¥)* > 0.

i=1
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Hence the matrix IT — p is positive, and we can control the sup-norm by the trace,
(7.5) [ITI(x) — p(ON|| < Tr(TI(x) — pu(x)1) forallx € K.

In the asymptotic end, where v > 0, we cannot expect that the operator IT — pl is
still positive. Nevertheless, the next lemma shows that the integral over the trace is
indeed positive and can be identified with the trace of a positive operator, which we
call the deviation operator.

Definition 7.2 Working in the asymptotic end in the chart (¢, M\ K), we introduce
for every solution 1); of the boundary value problem (3.2) the Witten deviation 1);
by

n—1
n—2

0 = i — (1+r(x)%) Yo,i-

For every x € M \ K, the deviation operator 011 is defined by

N

OTI(x): T — N1 ¢h = Y (504i(x), )52y ().

i=1

Thus the deviation operator is defined similarly to the spinor operator; one only
replaces the Witten spinors by the corresponding Witten deviations. Repeating the
argument in (7.4), one sees that the deviation operator is also positive.

Lemma 7.3

/ Tr(IT(x) — p(x)DA(x) dx = / Tr(6I1) A (x) dx.
M\K

M\K

Proof We work in the chart (¢, M \ K) and in ¢(M \ K) = R" \ B,,(0) choose polar
coordinates (r,w) with w € §"~1. According to the behavior of the Dirac operator
under conformal transformations (3.1), every Witten spinor 1 can be written in the
form

1\ i
~(1+-s) @
v = ( T ()
with ¥ a harmonic spinor on R” \ B,(0) endowed with the Euclidean metric. We
now expand ¥ in partial waves,

= 1
W(rw) =T+ Ww) s,
=1

where [ are the angular quantum numbers, and the W/(w) are linear combinations
of the corresponding spin-weighted spherical harmonics. From the smoothness of ¢
and the asymptotics at infinity, it is clear that the sum converges in L? (R" \ B,,(O))N.
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Consequently, the Witten spinors and the Witten deviations have the following par-
tial wave expansions,

n

vitrw) = (14 = (s 3 W) ).
=1

)

n

1 2 - 1
i(r,w) = (1 + W) ; \Iff(w)rm%.

Using that the spin-weighted spherical harmonics for different [ are orthogonal on
L?(8"1), a short calculation shows that for all > R,

/ Tr(II(x) — p(x))(r, w)dw = / Tr (1) (r, w) dw. [ |
Sn*l

51171
Combining Theorem 7.1 with the above lemma, we immediately obtain the fol-

lowing identity for the weighted L'-norm of the spinor operator and the deviation
operator.

Corollary 7.4  The spinor operator on M satisfies the following identity,
/ Tr(Il(x)) dx + / Tr(0TI(x))A\(x) dx = w?_,(20*)" " lim Tr(v(y)) + Na,
K M\K y—n

where 7 and « are given by (5.2) and (7.3).

Putting in the estimate of Corollary 5.2 gives the following result.

Theorem 7.5  There is a constant ¢ depending only on the dimension such that

(p+1)"
(7.6) /K | TI(x) || dx + /M\K [[6ILCo)[[ACx) dx < Cmv

where X is to be chosen according to Lemma 2.2.

Proof According to Lemma 7.3 and the positivity of II(x) and 6II(x), we know that
/ TGO dx + / I6T1(x) [ AGo) dx < / Tr(I(x) — p(x)DA(x) dx.
K M\K M

We now apply Corollary 5.2 and use that, according to (2.5), o scales like the ra-
dius p. Furthermore, it is obvious from (7.3), (2.5) that « scales like p”. This gives
the estimate

c(p+1)"

— Lt c(p+ 1)
2 infD2) TP

/ TG dx + / 1T AGY) dx <
K M\K
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It remains to bound the lowest eigenvalue of D? from above. To this end, we choose

a smooth wave function v which is supported in the spherical cap, and consider its

Rayleigh quotient,

<®1/)7 ®1/}>L2(M) i
(O d)pany  — o

From this theorem one obtains weighted L2-estimates for all Witten spinors.

info(D?) < m

Corollary 7.6 There is a constant ¢ depending only on the dimension such that
every Witten spinor ¢ satisfies the weighted L?-estimate

) ) pr D
| welras+ | V@I de< e 5

with A according to Lemma 2.2.

Proof We choose a basis of Witten spinors 1, . .., ¥, such that ¢»; = 1. Then for

allp € 3,
N

(@, Tx)) = > [(Whi(x), 6)* > [(1h(x), 8) 2.

i=1

Taking the supremum over all unit spinors ¢, we conclude that ||¢(x)||> < [[TI(x)]|.
In the same way, one sees that ||§9(x)||? < ||6T1(x)||. [ |

Theorem 1.1 and Theorem 1.2 are special cases of Corollary 7.6 and Corollary 7.4,
respectively.
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