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Abstract. Let BðHÞ denote the C*-algebra of all bounded linear operators on a
separable Hilbert space H. For A;B 2 BðHÞ, the chordal transform fA;B, as an
operator on BðHÞ, is defined by fA;BðXÞ ¼ ðjA�j2 þ IÞ�1=2 �A;BðXÞðjBj2 þ IÞ�1=2, where
�A;B is the generalized derivation defined on BðHÞ by �A;BðXÞ ¼ AX � XB. Ortho-
gonality of the range and the kernel of fA;B, with respect to the unitarily invariant
norms jjj:jjj, are discussed. It is shown that if A, B are self-adjoint, then
jjj fA;BðXÞjjj 	 jjjXjjj for all X. Related norm inequalities comparing fA;B and �A;B are
also given.

2000 Mathematics Subject Classification. Primary 47A30, 47B10, 47B15, 47B20,
47B47, 47B49. Secondary 46B20.

1. Introduction. Let BðHÞ denote the C*-algebra of all bounded linear opera-
tors on a separable Hilbert space H. For operators A;B 2 BðHÞ, the generalized
derivation �A;B, as an operator on BðHÞ, is defined by

�A;BðXÞ ¼ AX � XB ð1Þ

for all X 2 BðHÞ. If N;M 2 BðHÞ are normal, then �N;M is called a generalized nor-
mal derivation. Also, for A;B 2 BðHÞ, we define the chordal transform fA;B, as an
operator on BðHÞ, by

fA;BðXÞ ¼ A�j j
2
þI

� ��1=2

�A;BðXÞ Bj j2þI
� ��1=2

ð2Þ

for all X 2 BðHÞ. When A ¼ B, we simply write fA for fA;A. The chordal transform
has some geometric properties that resembles those of the chordal distance. Recall
that the chordal distance between any two complex numbers a and b is given by

dða; bÞ ¼
ja � bjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jaj2 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jbj2 þ 1
p : ð3Þ
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It is easy to see that

dða; bÞ 	 1 ð4Þ

for all complex numbers a and b (see, e.g., [16, pp. 316–317]).
The orthogonality of the range and the kernel of certain derivations has been

extensively studied by several authors (see, e.g., [1], [2], [5], [9], [10], [12], [13], and
references therein).

In Section 2 of this paper, we investigate the related orthogonality results for the
chordal transform. In Section 3, we establish norm comparison for the generalized
derivation �A;B and the chordal transform fA;B, which are closely related to certain
gap formulas that are useful in perturbation theory of operators (see, e.g., [8], [11],
[15], and [17]).

Some of these comparison results enable us to give norm inequalities that are
considered as noncommutative versions of the inequality (4).

In addition to the usual operator norm k:k, which is defined on all of BðHÞ, we
are interested in the general class of unitarily invariant (or symmetric) norms. Each
unitarily invariant norm jjj:jjj is defined on a norm ideal Cjjj:jjj associated with it.
This ideal, which is a Banach space under the norm jjj:jjj, is contained in the ideal of
compact operators. Every unitarily invariant norm satisfies the invariance property

jjjUAVjjj ¼ jjjAjjj ð5Þ

for all A 2 Cjjj:jjj and for all unitary operators U;V 2 BðHÞ. It also satisfies the
symmetry property

jjjBACjjj 	 jjjAjjj jjCjj ð6Þ

for all A 2 Cjjj:jjj and for all B;C 2 BðHÞ.
For a compact operator A 2 BðHÞ, let s1ðAÞ � s2ðAÞ � . . . � 0 denote the sin-

gular values of A, i.e., the eigenvalues of jAj ¼ A�Að Þ
1=2. Every unitarily invariant

norm of an operator is a symmetric gauge function of the singular values of that
operator. For 1 	 p 	 1, the Schatten p-norms

kAkp ¼
X1
j¼1

s
p
j ðAÞ

 !1=p

ð7Þ

are typical examples of unitarily invariant norms, where by convention kAk1 ¼ s1ðAÞ

is the usual operator norm of the compact operator A. The norm ideals associated with
these norms are the Schatten p-classes Cp, 1 	 p 	 1. Hence C1, C2, and C1 are the
trace class, the Hilbert-Schmidt class, and the class of compact operatos, respectively.
The Hilbert-Schmidt class is a Hilbert space under the inner product

hA;Bi ¼ tr B�A ¼ tr AB�; ð8Þ

where tr is the trace functional. So the Hilbert-Schmidt norm is also given by

kAk2 ¼ tr A�Að Þ
1=2

¼
X1
i;j¼1

Afj; ei


 ��� ��2 !1=2

ð9Þ

where fejg and ffjg are any orthonormal bases for H. For the theory of unitarily
invariant norms, the reader is referred to [3], [7], or [18].
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2. Orthogonality of the Range and the Kernel of fA;B. It has been shown in [10,
Theorem 2] that if N, M, S 2 BðHÞ such that N, M are normal, S 2 C2, and
NS ¼ SM, then

�N;MðXÞ þ S


 

2

2
¼ �N;MðXÞ


 

2

2
þ Sk k2

2 ð10Þ

for all X 2 BðHÞ. This says that, in the usual Hilbert space sense, ran �N;M \ C2 is
orthogonal to ker �N;M \ C2, where ran �N;M and ker �N;M denote the range and the
kernel of �N;M, respectively.

Moreover, it has been shown in [12, Corollary 1] that if N, M, S 2 BðHÞ such
that N, M are normal, S 2 Cjjj:jjj, and NS ¼ SM, then

jjj�N;MðXÞ þ Sjjj � jjjSjjj ð11Þ

for all X 2 BðHÞ. That is, with respect to the unitarily invariant norm jjj:jjj, ran
�N;M \ Cjjj:jjj is orthogonal, in the sense of [1, Definition 1.2], to ker �N;M \ Cjjj:jjj. In this
result and in the sequel, it is assumed that if T=2Cjjj:jjj, then jjjTjjj ¼ 1. Generalizations
of (10) and (11) to certain nonnormal derivations have been also given in [10] and [12],
respectively. For the usual operator norm, (10) has been proved earlier by Anderson [1],
and for the Schatten p-norms, it has been proved by Maher [14].

Our first orthogonality result for fA;B can be stated as follows.

Theorem 1. Let N;S 2 BðHÞ such that N is normal, S 2 C2, and NS ¼ SN. Then

fNðXÞ þ S


 

2

2
¼ fNðXÞ


 

2

2
þ Sk k2

2 ð12Þ

for all X 2 BðHÞ:

Proof. If fNðXÞ þ S=2C2, then fNðXÞ=2C2; so fNðXÞ þ S


 

2

2
¼ fNðXÞ


 

2

2
þ Sk k2

2¼ 1.
Suppose that fNðXÞ þ S 2 C2. Then fNðXÞ 2 C2, and so S�fNðXÞ 2 C1. Since N is
normal and NS ¼ SN, it follows by the Fuglede theorem that N�S ¼ SN�, and so
S�N ¼ NS�. Now

S�fNðXÞ ¼ S� N�j j
2
þI

� ��1=2

ðNX � XNÞ Nj j2þI
� ��1=2

¼ S� N�j j
2
þI

� ��1=2

NX Nj j2þI
� ��1=2

�S� N�j j
2
þI

� ��1=2

XN N2
�� ��þ I
� ��1=2

¼ S�N N�j j
2
þI

� ��1=2

X Nj j2þI
� ��1=2

�S� N�j j
2
þI

� ��1=2

X Nj j2þI
� ��1=2

N

¼ NS� N�j j
2
þI

� ��1=2

X Nj j2þI
� ��1=2

�S� N�j j
2
þI

� ��1=2

X Nj j2þI
� ��1=2

N

¼ NY � YN;

where Y ¼ S� N�j j2þI
� ��1=2

X Nj j2þI
� ��1=2

; so Y 2 C2 and NY � YN 2 C1. Employ-
ing a result of Weiss [20, Theorem 8], we get trS�fNðXÞ ¼ 0. Now

fNðXÞ þ S


 

2

2
¼ fNðXÞ


 

2

2
þ Sk k2

2þ2Re trS�fNðXÞ

¼ fNðXÞ


 

2

2
þ Sk k2

2;

as required &
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Using an argument similar to that used in the proof of Theorem 2 in [10], The-
orem 1 can be applied to yield the following corollary.

Corollary 1. Let N, M, S 2 BðHÞ such that N, M are normal, S 2 C2, and
NS ¼ SM. Then

fN;MðXÞ þ S


 

2

2
¼ fN;MðXÞ


 

2

2
þ Sk k2

2 ð13Þ

for all X 2 BðHÞ.

Proof. On H � H, let L ¼
N 0
0 M

� �
, T ¼

0 S
0 0

� �
, and Y ¼

0 X
0 0

� �
. Then L is

normal, T 2 C2, LT ¼ TL, fLðYÞ ¼
0 fN;MðXÞ

0 0

� �
, and fLðYÞ þ T ¼

0 fN;MðXÞ þ S
0 0

� �
. Now the result follows by applying Theorem 1 to the operators

L, T, and Y. &

It has been pointed out in [12] that (10) and (11) can be extended to derivations
induced by any pair of operators (A, B) that satisfies the Fuglede-Putnam property,
i.e., A�S ¼ SB�, whenever AS ¼ SB, where S 2 BðHÞ. For several such pairs, we
refer to [4] and references therein. In the same spirit, and again by using an argument
similar to that used in the proof of Theorem 2 in [10], Corollary 1 can be applied to yield
the following more general Hilbert space orthogonality result for fA;B.

Corollary 2. Let A;B;S 2 BðHÞ such that (A, B) satisfies the Fuglede-Putnam
property, S 2 C2, and AS ¼ SB. Then

fA;BðXÞ þ S


 

2

2
¼ fA;BðXÞ


 

2

2
þ Sk k2

2 ð14Þ

for all X 2 BðHÞ

For the general class of unitarily invariant norms, one can employ the analysis
in [12] to prove the following Banach space orthogonality result for fA;B.

Theorem 2. Let A;B;S 2 BðHÞ such that (A, B) satisfies the Fuglede-Putnam
property, S 2 Cjjj:jjj, and AS ¼ SB. Then

jjjfA;BðXÞ þ Sjjj � jjjSjjj ð15Þ

for all X 2 BðHÞ.

It should be mentioned here that (14) and (15) remain also true if A ¼ B is a cyclic
subnormal operator. For derivations, this has been proved in [10] and [12]. The example
given in [12] shows that the cyclicity assumption on A cannot be dispensed with.
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For A;B 2 BðHÞ and S 2 C2, it can be shown that �A;BðXÞ þ S


 

2

2
¼

�A;BðXÞ


 

2

2
þ Sk k2

2 for every X 2 C2 if and only if S�A ¼ BS�. When A ¼ B, this has
been observed in [13]. In the same direction, we have the following characterization
of those operators in C2 which are orthogonal to ran fA;BjC2.

Theorem 3. Let A;B;S 2 BðHÞ such that S 2 C2. Then

fA;BðXÞ þ S 2
2 ¼


 

fA;BðXÞ



 

2

2
þ Sk k2

2

for all X 2 C2 if and only if S�
1A ¼ BS�

1, where

S1 ¼ ð A�j j
2
þIÞ�1=2Sð Bj j2þIÞ�1=2:

Proof. If S�
1A ¼ BS�

1, then ð Bj j2þIÞ�1=2S�ð A�j j2þIÞ�1=2A ¼ Bð Bj j2þIÞ�1=2S�

ð A�j j2þIÞ�1=2. This, together with the fact that trYZ ¼ trZY whenever YZ;ZY 2 C1,
implies that for every X 2 C2, we have

trS�fA;BðXÞ ¼ trS�ð A�j j
2
þIÞ�1=2

ðAX � XBÞð Bj j2þIÞ�1=2

¼ trS�ð A�j j
2
þIÞ�1=2AXð Bj j2þIÞ�1=2

� trS�ð A�j j
2
þIÞ�1=2XBð Bj j2þIÞ�1=2

¼ tr ð Bj j2þIÞ�1=2S�ð A�j j
2
þIÞ�1=2AX � tr ð Bj j2þIÞ�1=2S�ð A�j j

2
þIÞ�1=2XB

¼ trBð Bj j2þIÞ�1=2S�ð A�j j
2
þIÞ�1=2X � tr ð Bj j2þIÞ�1=2S�ð A�j j

2
þIÞ�1=2XB

¼ tr ð Bj j2þIÞ�1=2S�ð A�j j
2
þIÞ�1=2XB � tr ð Bj j2þIÞ�1=2S�ð A�j j

2
þIÞ�1=2XB

¼ 0:

Now

fA;BðXÞ þ S


 

2

2
¼ fA;BðXÞ


 

2

2
þ Sk k2

2þ2Re trS�fA;BðXÞ

¼ fA;BðXÞ


 

2

2
þ Sk k2

2:

Conversely, if fA;BðXÞ þ S


 

2

2
¼ fA;BðXÞ


 

2

2
þ Sk k2

2 for every X 2 C2, then Re tr
S�fA;BðXÞ ¼ 0 for every X 2 C2. Replacing X by iX, we get Im trS�fA;BðXÞ ¼ 0, and
so trS�fA;BðXÞ ¼ 0 for every X 2 C2. But by straightforward computations, we have
tr S�

1A � BS�
1

� �
X ¼ trS�fA;BðXÞ ¼ 0 for every X 2 C2. Consequently, S�

1A � BS�
1

¼ 0, and so S�
1A ¼ BS�

1, as required. &

Invoking the Gateaux differentiability of the Schatten p-norms and the usual
operator norm, enables us to characterize those operators that are orthogonal to the
rang of fA;B with respect to these norms. We leave the details to the interested reader.
For derivations, related characterizations have been demonstrated in [5] and [13].

3. Norm Comparison Results for �A;B and fA;B. In this section we present several
norm estimates comparing �A;B and fA;B. Recall that if T 2 BðHÞ is self-adjoint, then
the Cayley transform of T is the unitary operator given by

CðTÞ ¼ ðT � iIÞðT þ iIÞ�1
ð16Þ
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Our first comparison result can be stated as follows.

Theorem 4. Let A;B 2 BðHÞ. Then

jjj fA;BðXÞjjj 	 jjj�A;BðXÞjjj 	 Ak k2þ1
� �1=2

Bk k2þ1
� �1=2

jjj fA;BðXÞjjj ð17Þ

for every X 2 BðHÞ and for every unitarily invariant norm jjj:jjj.

Proof. Since Tj j2þI
� ��1=2



 


 	 1 and Tj j2þI

� �1=2


 


 ¼ T�j j2þ1
� �1=2


 


 ¼

Tk k2þ1
� �1=2

for every T 2 BðHÞ, the desired inequalities follow from (2) and (6). &

For the usual operator norm, the case X ¼ I of Theorem 4 is very closely related
to Theorem 2.5 in [17], which asserts that the gap metric is equivalent to the metric
generated by the usual operator norm (see also [11] and references therein).

For self-adjoint operators we have the following norm equality.

Theorem 5. Let A;B 2 BðHÞ be self-adjoint. Then

2jjj fA;BðXÞjjj ¼ jjj�CðAÞ;CðBÞðXÞjjj ð18Þ

for every X 2 BðHÞ and for every unitarily invariant norm jjj:jjj.

Proof. The desired norm equality follows from the identity 2ifA;BðXÞ ¼ ðA2 þ IÞ1=2

ðA � iIÞ�1�CðAÞ;CðBÞðXÞðB � iIÞ�1
ðB2 þ IÞ1=2, the fact that ðT 2 þ IÞ1=2ðT � iIÞ�1 and

ðT � iIÞ�1
ðT2 þ IÞ1=2 are unitary for every self-adjoint operator T 2 BðHÞ, and the uni-

tary invariance of jjj:jjj &

Combining (17) and (18) enables us to generalize a classical inequality of Fan
and Hoffman [6] concerning Cayley transforms.

Corollary 3. Let A;B 2 BðHÞ be self-adjoint. Then

jjj�CðAÞ;CðBÞðXÞjjj 	 2jjj�A;BðXÞjjj 	 jjjAjjj2 þ 1
� �1=2

jjBjj2Þ1=2jjj�CðAÞ;CðBÞðXÞjjj ð19Þ

for every X 2 BðHÞ and for every unitarily invariant norm jjj:jjj

As another application of (18), we have the following noncommutative version
of the inequality (4).

Corollary 4. Let A;B 2 BðHÞ be self-adjoint. Then

jjjfA;BðXÞjjj 	 jjjXjjj ð20Þ

for every X 2 Cjjj:jjj.
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Proof. Since CðAÞ and CðBÞ are unitary operators, it follows from (18) and the
triangle inequality that

2jjj fA;BðXÞjjj ¼ jjj�CðAÞ;C;ðBÞðXÞjjj

	 jjjCðAÞXjjj þ jjjCðBÞXjjj

¼ 2jjjXjjj;

from which the desired inequality follows. &

It should be mentioned here that the inequality (20) remains also true if A;B are
assumed to be unitary operators. This follows from (2), the triangle inequality, and
the unitary invariance of jjj:jjj.

An extension of the inequality (20) to arbitary (i.e., not necessarily self-adjoint
or unitary) operators is given in the following result, in which the direct sum X � Y

stands for the 2 � 2 operator matrix
X 0
0 Y

� �
defined on H � H. Recall that if 
 is

the symmetric gauge function associated with jjj:jjj, then

jjjX � Yjjj ¼ 
 s1ðXÞ; s1ðYÞ; s2ðXÞ; s2ðYÞ; . . .ð Þ ð21Þ

for all X;Y 2 Cjjj:jjj. Thus, in particular

X � Y ¼ max Xk k; Yk kð Þ




 ð22Þ

for all X;Y 2 BðHÞ, and

X � Y p ¼ Xk kp
pþ Yk kp

p

� �1=p










 ð23Þ

for all X;Y 2 Cp, where 1 	 p < 1.

Corollary 5. Let A;B 2 BðHÞ. Then

jjj fA;BðXÞ � fA�;B� ðXÞjjj 	 jjjX � Xjjj ð24Þ

for every X 2 Cjjj:jjj.

Proof. On H � H, let Ã ¼
0 A

A� 0

� �
; B̃ ¼

0 B�

B 0

� �
, and X̃ ¼

0 X
X 0

� �
. Now

the inequality (24) follows by applying the inequality (20) to the self-adjoint operators
Ã; B̃, and the operator X̃. Note that jjjX̃jjj ¼ jjX � Xjjjj by the unitary invariance of
jjj:jjj. &

Specializing the inequality (24) to the usual operator norm and the Schatten
p-norms, we have the following corollary, which includes noncommutative versions
of the inequality (4). &

Corollary 6. Let A;B 2 BðHÞ. Then

ðaÞ max fA;BðXÞ


 

; fA�;B� ðXÞ



 

� �
	 Xk k ð25Þ

for every X 2 BðHÞ.
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ðbÞ fA;BðXÞ


 

p

p
þ fA�;B� ðXÞ


 

p

p
	 2 Xk kp

p ð26Þ

for every X 2 Cp, where 1 	 p < 1. In particular, if A;B are normal, then

fA;BðXÞ


 



2
	 Xk k2 ð27Þ

for every X 2 C2.

Proof. The inequalities (25) and (26) follow from the inequality (24), in view of
the identities (22) and (23). The inequality (27) follows from (26) together with the
fact that

fA;BðXÞ


 



2
¼ fA�;B� ðXÞ


 



2
ð28Þ

for every X 2 BðHÞ. To verify the identity (28), first we assume that A;B are diagonal
operators, say Aej ¼ ajej and Bfj ¼ bj fj for some orthonormal bases fejg and ffjg of H
and for some scalars aj; bj; j ¼ 1; 2; . . .. Then, by (9) and simple computations, we have

fA;BðXÞ


 

2

2
¼
X1
i;j¼1

fA;BðXÞ fj; ei


 ��� ��2

¼
X1
i;j¼1

ai � bj

�� ��2
aij j2þ1
� �

bj

�� ��2þ1
� � Xfj; ei


 ��� ��2

¼
X1
i;j¼1


aai �

bbj

��� ���2
aij j2þ1
� �

bj

�� ��2þ1
� � Xfj; ei


 ��� ��2
¼ fA�;B� ðXÞ


 

2

2
:

Now for the general case (i.e., when A;B are normal but not necessarily diag-
onal operators), we utilize the Voiculescu perturbation result [19], which says that
every normal operator is the sum of a diagonal operator and a Hilbert-Schmidt
operator with arbitrarily small Hilbert-Schmidt norm. This completes the proof of
the corollary. &

We remark here that an alternative proof of the inequality (27) can be based on
the inequality (4), instead of the identity (28), together with the Voiculescu pertur-
bation result mentioned above.

Our final comparison result is a considerable improvement of Theorem 4 for the
Hilbert-Schmidt norm and for normal operators. In the proof of this result we need
some orthogonality results given in Section 2.

Theorem 6. Let A;B;S 2 BðHÞ such that A;B are normal, S 2 C2, and AS ¼ SB.
Then

fA;BðXÞ þ S


 



2
	 �A;BðXÞ þ S


 



2
	 Ak k2þ1
� �1=2

Bk k2þ1
� �1=2

fA;BðXÞ þ S


 



2
ð29Þ

for every X 2 BðHÞ:
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Proof. We have

fA;BðXÞ þ S


 

2

2
¼ fA;BðXÞ


 

2

2
þ Sk k2

2 ðby Corollary 1Þ

	 �A;BðXÞ


 

2

2
þ Sk k2

2 ðby Theorem 4Þ

¼ �A;BðXÞ þ S


 

2

2
ðby the indentity ð10ÞÞ

This proves the first inequality in (29).
To prove the second inequality in (29), let S1 ¼ A�j j2þI

� ��1=2
S Bj j2þI
� ��1=2

.
Then S1 2 C2. Since AS ¼ SB, it follows that AS1 ¼ S1B, and so

fA;BðXÞ þ S1



 

2

2
¼ fA;BðXÞ


 

2

2
þ S1k k2

2 ðby Corollary 1Þ

	 fA;BðXÞ


 

2

2
þ Sk k2

2 ðby the inequality ð6ÞÞ

¼ fA;BðXÞ þ S


 

2

2
ðby Corollary 1Þ

On the other hand

�A;BðXÞ þ S


 



2
¼ A�j j

2
þI

� �1=2

fA;BðXÞ þ S1

� �
Bj j2þI
� �1=2










2

	 Ak k2þ1
� �1=2

Bk k2þ1
� �1=2

fA;BðXÞ þ S1



 


2

ðby the inequality ð6ÞÞ

Consequently,

�A;BðXÞ þ S


 



2
	 Ak k2þ1
� �1=2

Bk k2þ1
� �1=2

fA;BðXÞ þ S


 



2
;

which completes the proof of the theorem. &
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