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Perfect Non-Extremal Riemann Surfaces
Paul Schmutz Schaller

Abstract. An infinite family of perfect, non-extremal Riemann surfaces is constructed, the first examples of
this type of surfaces. The examples are based on normal subgroups of the modular group PSL(2, Z) of level
6. They provide non-Euclidean analogues to the existence of perfect, non-extremal positive definite quadratic
forms. The analogy uses the function syst which associates to every Riemann surface M the length of a systole,
which is a shortest closed geodesic of M.

1 Introduction

(a) In the geometry of numbers, a well-known result of Voronoı̈ [22] states that a positive
definite quadratic form is extremal if and only if it is perfect and eutactic (see for example
Gruber/Lekkerkerker [10] and Martinet [13] for more on this subject). Extremal positive
definite quadratic forms correspond to extremal lattice sphere packings (see in particular
Conway/Sloane [7]).

Many problems in the classical (Euclidean) geometry of numbers have their analogues
in hyperbolic geometry. Let Tg , g ≥ 2, be the Teichmüller space of closed Riemann surfaces
of genus g, the surfaces being equipped with a complete hyperbolic metric (a metric of con-
stant curvature −1). Let syst be the function on Tg which associates to M ∈ Tg the length
of a systole of M (a systole is a shortest closed geodesic). Then M0 ∈ Tg is an extremal sur-
face if syst has a local maximum in M0. This is a non-Euclidean analogue of extremal lattice
sphere packings (for closed Riemann surfaces of genus 1 the two concepts coincide). It has
been introduced in Schmutz ([18], [19], see also the recent survey paper [21]). Extremal
surfaces are also the subject of [15], see further Bavard [4], Quine/Zhang [16].

(b) In order that a positive definite quadratic form f is extremal, it is not sufficient that
f is perfect. Voronoı̈ [22] had already announced the example of a perfect non-extremal
form of dimension 6. Such an example has eventually been described by Barnes [2], [3],
answering a question of Coxeter [8]. Also, of the 33 different perfect forms of dimension 7,
only 30 are extremal, see Conway/Sloane [6].

The aim of this paper is to provide non-Euclidean examples, namely to construct perfect
non-extremal Riemann surfaces. Perfect surfaces are those which are determined by their
set of systoles, see Section 2 for the precise definition.

In Section 3, I construct a family of infinitely many perfect non-extremal Riemann sur-
faces. The construction is based on normal subgroups of the modular group. More pre-
cisely, let G be a torsion-free normal subgroup of PSL(2,Z) of finite index and of level 6.
The corresponding surface H/G (H is the hyperbolic plane) has genus 1 and a number
n = n(G) of cusps. Replace the n cusps in H/G by n simple closed geodesics of the same
length 12z such that the automorphism group of H/G is preserved; denote by RG(z) this
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surface with boundary. Let DG(z) be the double of RG(z), DG(z) is then a closed Riemann
surface. DG(z) is contained in a 2-parameter family AG of closed surfaces (AG corresponds
to the 2-dimensional family of (2, 2, 2, 3)-quadrilateral groups); one parameter is the length
z, the second parameter is provided by a simultaneous twist deformation along the n simple
closed geodesics of length 12z. In AG one finds an, up to isometry, unique closed surface
MG which has 10n systoles of length 12z. We shall see that MG is perfect, but not extremal.

At the end of the paper I add some remarks concerning possible generalizations of this
construction.

(c) The term “eutactic” (introduced by Coxeter [8]) for positive definite quadratic forms
(or for lattice sphere packings) is not easy to define. However, it has been shown by Ash [1]
that eutactic forms correspond to critical points of the packing function, which is a topo-
logical Morse function. I have shown in [20] (see also [21]) that also syst is a topological
Morse function for Riemann surfaces. Therefore, we can say that the above described ex-
amples are perfect Riemann surfaces which are not critical points of syst.

(d) Let G be the set of torsion-free normal subgroups of PSL(2,Z) of finite index and
of level 6. G can be interpreted in a Euclidean context. The elements of G correspond to
normal subgroups of the (2, 3, 6) triangle group (which uniformize Euclidean tori). Cox-
eter/Moser [9]) have classified all Euclidean tori which can be obtained by these subgroups
and I shall use their classification in the present context.

An element G ∈ G will be characterized by the number n of cusps of H/G (this is
however not a 1− 1 classification). For example, G contains the principal congruence sub-
group Γ(6) (which has index 72 in PSL(2,Z)) and H/Γ(6) has 12 cusps. G contains exactly
five elements with a smaller index in PSL(2,Z) than Γ(6), the corresponding surfaces have
1, 3, 4, 7, and 9 cusps, respectively. I further note that it follows by a result of Zograf [23]
and by the main result of Luo/Rudnick/Sarnak [12] that G ∈ G is not a congruence sub-
group (of PSL(2,Z)) for n ≥ 37 (this does not mean, of course, that all elements of G with
n ≤ 36 are congruence subgroups).

Acknowledgment I thank Jack Quine for helpful discussions.

2 Definition of Perfect Non-Extremal Surfaces

Definitions

(i) A surface M is a Riemann surface of constant curvature −1. If M is a surface with
boundary, then, by definition, the boundary components are simple closed geodesics,
called boundary geodesics. If M is compact without boundary, then M is called a closed
surface.

(ii) Denote by H the upper halfplane. For a complete surface M I also write M = H/Γ
where Γ is a Fuchsian group which uniformizes M.

(iii) A systole of a surface M is a shortest closed geodesic of M. S(M) denotes the set of
systoles of M.

(iv) Let M be a closed surface. Denote by T(M) the Teichmüller space of M. Denote by
syst the function

syst : T(M) −→ R
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which associates to every M ∈ T(M) the length of a systole of M. Let M0 ∈ T(M).
Then M0 is called an extremal surface if syst has a local maximum in M0.

(v) Let M be a closed surface. Let M0 ∈ T(M). Then M0 is called a perfect surface if the
following condition holds.

There exists an open neighborhood U of M0 in T(M) such that

a) the length functions of the elements of S(M0) parameterize U and
b) S(M0) �= S(M) for every M ∈ U \ {M0} (S(M) and S(M0) are understood as sets of

marked geodesics).

3 Construction of the Examples

Definitions

(i) Let G be the set of torsion-free normal subgroups of the modular group PSL(2,Z)
of finite index and of level 6 (the level is defined in the sense of Wohlfahrt, see for
example [14, p. 147]; see also the proof of Theorem 1 below for a geometric charac-
terization). Let G ∈ G. Then I write G = G(n) if H/G has n cusps.

(ii) Let N = {b2 + bc + c2 : b, c ∈ Z, b ≥ c ≥ 0, b + c > 0} = {1, 3, 4, 7, 9, 12, 13, . . .}.

Remark Compare the introduction for some comments on G.

Theorem 1

(i) Let G = G(n) ∈ G. Then H/G has genus 1 and n ∈ N.
(ii) Let n ∈ N. Then there exists G(n) ∈ G.

Proof Since G(n) has level 6, around each cusp of H/G, there are exactly 12 different tri-
angles of angles π/2, π/3, 0. It follows that the area of H/G is 2nπ which implies that H/G
has genus 1. Replace the triangles of angles π/2, π/3, 0 by triangles of angles π/2, π/3,
π/6. Thereby, H/G is transformed into an Euclidean torus. These Euclidean tori have been
classified in Coxeter/Moser [9] and the theorem follows by their classification.

Remark Let n ∈ N. Then G(n) is not unique if the representation n = b2 + bc + c2,
b ≥ c ≥ 0, is not unique. G(1) is however unique and H/G(1) is the so-called modular
torus.

Lemma 2 Let G ∈ G. Then G is a normal subgroup of G(1).

Proof Obvious since the automorphism group of H/G acts transitively on the cusps.

Definitions

(i) Let z ∈ R, z ≥ 0. Let Q(z) be a hyperbolic quadrilateral with three angles π/2 and one
angle π/3 such that one of the sides of the quadrilateral, which joins two angles π/2,
has length z.
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Figure 1: The modular torus with the canonical triangulation (thick lines), opposite sides have to be
identified. On the left hand side, a closed geodesic u with N(u) = 2, on the right hand side a closed
geodesic v with N(v) = 4.

(ii) Take six copies of Q(z) such that they form a right-angled hexagon, the latter is denoted
by H(z).

Remarks

(i) Q(z) is, up to isometry, uniquely determined for every non-negative real z. Note that
for z = 0 we obtain a hyperbolic triangle with angles π/2, π/3, 0, which is denoted by
Q(0).

(ii) H(0) is a triangle, its three angles being zero.

Definitions

(i) Let G ∈ G. Then H/G is triangulated into triangles of angles π/2, π/3, 0. This is called
the (2, 3, 6)-triangulation. This triangulation induces a new triangulation by triangles
of type H(0). It will be called the canonical triangulation. (The (2, 3, 6)-triangulation
is the (first) barycentric subdivision of the canonical triangulation.)

(ii) Let u be a closed geodesic of H/G. Then the canonical triangulation of H/G separates
u into a number of geodesic segments, denote by N(u) this number (see Figure 1 and
Figure 2 for examples).

(iii) The length of a closed geodesic u will be denoted by L(u).

Lemma 3 Let u be a closed geodesic in the modular torus H/G(1). If N(u) < 6, then

2 cosh
(
L(u)/2

)
∈ {3, 6, 7}.

Proof If u has self-intersections, then the component of H/G(1) \ u which contains the
cusp, is homeomorphic to a horodisc so that N(u) ≥ 6. Therefore, we can assume that
u is simple and passes through two fixed points of the hyperelliptic involution of H/G(1);
these fixed points are the centres of the sides of the triangles of the canonical triangula-
tion. It follows (compare Figure 1) that, up to isometry, there is a unique possibility for
N(u) = 2 and there are two possibilities for N(u) = 4 (one of them is the geodesic u
with N(u) = 2 passed twice). The lemma follows by an easy calculation (for formula of
hyperbolic trigonometry see for example [5]).
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Figure 2: The surface H/G(4) with the canonical triangulation (thick lines), opposite sides have to be
identified; u is a closed geodesic with N(u) = 4.

Corollary 4 Let G(n) ∈ G. Let u be a closed geodesic of H/G. If N(u) < 6, then n ∈
{1, 3, 4}.

Proof By Lemma 2, u is induced by a closed geodesic u0 of the modular torus and N(u0) ≤
N(u) < 6. We therefore can apply Lemma 3.

Assume that n > 4. Then H/G(n) contains an embedded part as in Figure 2 such
that the opposite sides (in Figure 2) are disjoint. It follows by Lemma 3 that N(u) < 6 is
impossible.

Definition (i) Let G ∈ G. Let z ∈ R, z > 0. Replace each triangle Q(0) of the (2, 3, 6)-
triangulation of H/G by a quadrilateral Q(z). Denote by RG(z) the corresponding surface
with boundary.

(ii) Denote by 2x the length of a boundary geodesic of RG(z) (note that x = 6z).
(iii) A common orthogonal of RG(z) is a simple geodesic which is a common orthogonal

of two boundary geodesics of RG(z).
(iv) Denote by τ the sum of the lengths of the two sides of Q(z) which enclose the angle

π/3 of Q(z). Let C be the sum of the lengths of the four sides of Q(z). Put t/2 = C − τ − z
(t/2 is the length of a side of Q(z)).

(v) Denote by T the set of the common orthogonals (of RG(z)) of length t , correspond-
ing to the sides of the hexagons H(z) (induced by the triangles H(0) of the canonical trian-
gulation of H/G).

Lemma 5 Let G(n) ∈ G and let RG(n)(z), z > 0, be the corresponding surface with boundary.

(i) The shortest common orthogonals in RG(n)(z) are the 3n elements of T.
(ii) Among all common orthogonals of RG(n)(z) which are not elements of T, let v be one of

shortest length. Then the length of v is 2τ .
(iii) Let w be a common orthogonal of RG(n)(z) which is strictly longer than 2τ . Then the

length of w is at least θ with cosh θ = cosh x sinh2 t − cosh2 t.
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Figure 3: A part of RG(z) with right-angled hexagons and common orthogonals of length t , 2τ and θ,
respectively. (The circles correspond to boundary geodesics of RG(z).)

Proof The canonical triangulation of H/G(n) induces a partition of RG(n)(z) into right-
angled hexagons. The lemma follows, compare Figure 3.

Definition Let G ∈ G, let RG(z) be the corresponding surface with boundary. Let DG(z)
be the double of RG(z). Denote by Z the set of simple closed geodesics of DG(z) which were
boundary geodesics of RG(z). (The double DG(z) of RG(z) is defined such that DG(z) has
an orientation reversing involution fixing pointwise the elements of Z.)

Remark By construction, DG(z) is a closed surface and the automorphism group of DG(z)
contains a subgroupΣ of a (2, 2, 2, 3)-quadrilateral group. Let TG be the Teichmüller space
of DG(z). Then TG contains a family, of two real parameters, of surfaces such that their
automorphism group contains Σ; one parameter of this family is z, the other parameter
is provided by a simultaneous twist deformation of the same amount (and in the same
direction) along all elements of Z.

Definition (i) Denote by AG the family of two real parameters in TG which is described in
the previous remark. Denote by Σ the subgroup of a (2, 2, 2, 3)-quadrilateral group which
characterizes the family A(G).

(ii) I now define a particular element MG in AG. Let q ∈ T; q joins two boundary
geodesics of RG(z) which are denoted by z1 and z2. Denote by Y (q) the unique embedded
pair of pants (a surface of genus zero with three boundary geodesics) of RG(z) which con-
tains z1, z2 and q. Let X(q) be the double of Y (q), embedded in DG(z); X(q) has genus 1 and
two boundary geodesics. Then MG is defined by the property that X(q) has five geodesics
of length 2x which are systoles of X(q).

Define X(T) = {X(q) : q ∈ T}.

Remark Up to isometry, MG is uniquely defined in AG, compare [18]. Note however that
the (common) sign of the twist deformations along the elements of Z is not well-defined.
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Lemma 6 Let G ∈ G and let MG be the corresponding closed surface. Then MG has three sets
of simple closed geodesics of length 2x which are invariant with respect to Σ, one of these sets is
Z. The two other sets have 3n and 6n elements, respectively.

Proof Σ acts transitively on the elements of X(T) (sinceΣ acts transitively on the elements
of T); by Lemma 5, X(T) has 3n elements. Let X(q) ∈ X(T). Then X(q) has five simple
closed geodesics of length 2x. One of them intersects all other four, this induces a set V of
3n simple closed geodesics of length 2x, invariant with respect to Σ. X(q) contains further
two elements of Z. The last two closed geodesics of length 2x of every X(q) ∈ X(T) are
contained in a set W of 6n elements, invariant with respect to Σ.

Definition Define the sets V and W of simple closed geodesics in MG of length 2x as in
the proof of Lemma 6.

Lemma 7 Let X(q) ∈ X(T). Let v ∈ V , w ∈ W , z ∈ Z be three simple closed geodesics of
length 2x in X(q). Let γ be defined by

cos γ =
cosh x

1 + cosh x
.

Then both w and z intersect v in the angle γ.

Proof This follows by a calculation (compare [18]).

Lemma 8 Let G ∈ G and let MG be the corresponding closed surface. Let θ be defined as in
Lemma 5. Then

(i) x ∼ 3.17575
(ii) t ∼ 1.6206
(iii) 2τ ∼ 3.5809
(iv) θ ∼ 4.8499.

Proof The lengths t , τ , and θ depend on x. The length x can be calculated using the iden-
tities

cosh t =
cosh(x/3)

cosh(x/3)− 1
,(1)

provided by the hexagons H(z), and

sinh(t/2) = sinh(x/2) sin γ,

provided by an analysis of an element of X(T); the latter identity, together with Lemma 7,
implies

cosh t =
cosh x(1 + 3 cosh x)

(1 + cosh x)2
(2)

and x is determined by (1) and (2).
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Theorem 9 Let G(n) ∈ G, n > 7, and let M = MG(n) be the corresponding closed surface.
Then M has exactly 10n systoles of length 2x.

Proof Let u be a systole of M. Assume that u does not intersect an element of Z. Then
u ∈ Z or u has the same length as a systole of RG(n)(z). Since n > 7, a systole of RG(n)(z)
intersects at least six right-angled hexagons H(z) (by Corollary 4) so that it is longer than
2x. Therefore, u ∈ Z.

Assume now that u intersects 2m > 0 elements of Z. Then L(u) ≥ 2mt by Lemma 5
which implies by Lemma 8 that m = 1 (since 2t > x). Therefore, u is separated by Z
into two parts u1 and u2, each one is homotopic to a common orthogonal in a copy of
RG(n)(z). By Lemma 5 and Lemma 8, one of them, u1 say, is homotopic to an element of T

(since 2τ > x), and u2 is then homotopic to a common orthogonal of length t or of length
2τ (since t + θ > 2x). The latter case is only possible for n ≤ 7 (which is excluded by
hypothesis). Therefore, u1 and u2 are both homotopic to an element of T. Since n > 7
it follows (compare the proof of Corollary 4) that in M, there exists a subsurface X(q)
containing u. This implies L(u) = 2x. We have therefore proved that the systoles of M have
length 2x. The number 10n follows by Lemma 6.

Theorem 10 Let G(n) ∈ G, n > 7, and let M = MG(n) be the corresponding closed surface.
Then M is a perfect closed surface which is not extremal.

Proof By Theorem 9, the systoles of M are identified. Let z ∈ Z. Then there are exactly six
elements of X(T) which contain z. The six elements of V in these six elements of X(T) are
the boundary geodesics of an embedded subsurface S of M of genus 1. In the interior, S has
13 systoles of M, namely z, six elements of V and six elements of W . The corresponding
length functions determine S, compare [17], [18]. It follows that M is perfect.

To prove that M is not extremal, requires some calculation. Let ξ be a vector in the
tangent space of M which is induced by a twist deformation of the same amount (and in
the same direction) along all elements of V . Denote by ξ(u) the real number obtained by
applying ξ to the length function of a simple closed geodesic u. Then, see for example [11],

ξ(u) =
∑

i

cos γi

where the sum is over all directed angles γi in the intersection points of u with the elements
of V . Since the elements of V are mutually disjoint, we have

ξ(v) = 0, ∀v ∈ V.

By Lemma 7 it follows that

ξ(z) = 6 cos γ > 0, ∀z ∈ Z

(we measure the angles clockwise (in Figure 4) from the elements of V to z). Let w ∈ W .
Then w is intersected by exactly six elements of V . It follows by Figure 4 (and by the
symmetry of M) that the six angles of the corresponding intersections are (recall that we
measure the angles clockwise) 2γ,−γ1,−γ2,−γ, −γ2,−γ1.
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Figure 4: An element w ∈ W intersects zi ∈ Z, i = 1, 2, and six elements of V , four of them (vk,
k = 1, . . . , 4) are drawn.

Again by Figure 4, we have, for j = 1, 2,

cos γ j = sin2 γ cosh( jx/3)− cos2 γ.

Since we know x and γ (by Lemma 8 and Lemma 7), we can calculate cos γ j , j = 1, 2. A
calculation then gives

ξ(w) = − cos γ − 2 cos γ2 − 2 cos γ1 + cos(2γ) ∼ 1.46, ∀w ∈W.

We have therefore shown that ξ(u) > 0, ∀u ∈ Z ∪W .

Let ζ be the vector in the tangent space of M which is induced by a twist deformation of
the same amount (and in the same direction) along all elements of Z such that

ζ(v) = 2 cos γ > 0, ∀v ∈ V

(this is possible by Lemma 7). It follows that the span of ξ and ζ (in the tangent space of
M) contains a vector η such that

η(u) > 0, ∀u ∈ Z ∪V ∪W.

This implies that M is not a local maximum for syst.

Corollary 11 Let m be any positive integer. Then there exists an integer g ≥ 2 such that
in the Teichmüller space Tg of closed surfaces of genus g, there exist more than m mutually
non-isometric surfaces which all are perfect, but not extremal. Moreover, these surfaces can be
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chosen such that the length of their systoles is the same and the number of their systoles is the
same.

Proof Take G(n) ∈ G such that n has more than m different representations n = b2+bc+c2,
b ≥ c ≥ 0, b, c integers. Each different representation gives a different surface MG(n). By
Theorem 10 they are all perfect, but not extremal.

Remark I add some remarks concerning possible generalizations of the construction of
perfect non-extremal surfaces given in this paper.

(i) Here is another idea for a possible proof of Corollary 11. Let G(n) ∈ G. In the defi-
nition of M = MG(n) we have seen that the (common) direction of the twist deformations
along the elements of Z is not well-defined, they can be all positive or all negative, say (but
the amount of the twist deformations is well-defined). Choose a subset Z ′ ⊂ Z. Construct
a new surface M(Z ′) by inverting the twist deformation along the elements of Z ′. Then
M(Z ′) has still 10n closed geodesics of length 2x and they are still the systoles since the
proof of Theorem 9 goes through. Also, M(Z ′) is still perfect by the argument in the proof
of Theorem 10. But M(Z ′) may be extremal.

(ii) Let G(N) be the set of the torsion-free normal subgroups of the modular group
of finite index and of level N (for a fixed integer N ≥ 7). As in the case N = 6, we
can also construct a closed surface MG for every G ∈ G(N). It is very probable that the
proofs of Theorem 9 and Theorem 10 also work in this case if we exclude those G ∈ G(N)
which produce only a few cusps; for example for big N , we have to exclude the principal
congruence subgroup Γ(N) (remember that in the case N = 6 we had to exclude n ≤ 7).

(iii) I finally note that we could also work with a torsion-free subgroupΓ of the modular
group of finite index which is not normal, but shares the property of normal subgroups that
around each cusp in H/Γ, there is the same number of triangles with angles π/2, π/3, 0.
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