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This work addresses one-dimensional evolution of a collisionless plasma next to a solid
surface that is immersed into the plasma instantaneously. In particular, we consider
how the self-similar rarefaction wave (Allen & Andrews, J. Plasma Phys., vol. 4, 1970,
pp. 187–194) establishes dynamically and how the electron reflection from the surface
modifies the structure of the rarefaction wave and the Debye sheath. We demonstrate that
a sufficiently strong reflection eliminates the Debye sheath and changes the wall potential
and the plasma flow parameters significantly. The paper presents numerical results that
illustrate the developed analytical theory.
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1. Introduction

The problem of sheath formation at the plasma boundary is one of the oldest in plasma
physics (Tonks & Langmuir 1929; Bohm 1949). It, nevertheless, still attracts considerable
attention and reveals new twists (Campanell & Umansky 2016). The conventional set-up
is for a finite or semi-infinite plasma region (see, e.g., reviews by Riemann 1991, 2008;
Franklin 2003). In applications, the boundary of this region can be a probe’s surface
(Hutchinson 2002), a divertor plate (Stangeby 2000) or an anode of a discharge tube
(Lieberman & Lichtenberg 1994). We further call this boundary a wall. The plasma
electrons can charge the wall surface rapidly with plasma ions remaining virtually
immobile in the process. A negative potential will thus build up at the wall long before the
ion motion begins. This potential lowers the electron flux to the wall and attracts the ions.
The wall potential eventually establishes a balance between the electron and ion fluxes. A
sheath forms near the wall as a result with a positive space charge within several Debye
lengths λD.

This simple picture, however, veils an issue that was initially highlighted by Bohm
(see Bohm 1949): a stationary sheath exists only if the ions enter the sheath with a finite
velocity equal to or greater than the ion sound speed (Stangeby & Allen 1970). This implies
that there is a plasma region (presheath) where the ions accelerate. The presheath width
L can depend on the ion mean free path, the ionization length, or the geometry of the
system. The boundary plasma models (Riemann 1991) typically involve a scale separation
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between the sheath and the presheath: L � λD. It is then allowable to treat the sheath and
the quasi-neutral presheath separately and match the solutions subsequently (Riemann
et al. 2005). However, this approach often implies a steady flow and does not explain how
the sheath and presheath form dynamically.

A dynamic problem arises when a solid object enters the plasma instantaneously.
This problem is an essential part of the time-dependent probe theory (see, e.g., Widner
et al. 1970). The initial state has neither sheath nor presheath. Over time the length
scale separation establishes naturally as the presheath stretches from the sheath into the
plasma bulk (Braithwaite & Wickens 1983). Allen & Andrews (1970) postulates the Bohm
condition (Bohm 1949) in describing evolution of the presheath. In a later work (Cipolla &
Silevitch 1981), the Bohm criterion for a time-dependent problem came out asymptotically
in time as a result of the analysis so that the long-time behaviour of the presheath coincides
with that of Allen & Andrews (1970).

In this paper, we present an explicit analytical solution to the transient problem of sheath
formation. The constructed solution does not restrict the ions to have any particular initial
velocity at the sheath–presheath interface, i.e. the initial ion velocity can be either subsonic
or supersonic. In both cases, the Bohm criterion at the interface establishes asymptotically.
The asymptotic behaviour of the presented solution matches that of Allen & Andrews
(1970) and Cipolla & Silevitch (1981). We then generalize the results of Allen & Andrews
(1970) and Cipolla & Silevitch (1981) by considering electron reflection from the wall. We
show that, in the limit of strong reflection, the sheath weakens, and the ion flow differs
significantly from that predicted in Allen & Andrews (1970) and Cipolla & Silevitch
(1981).

2. Basic equations

We consider a one-dimensional plasma half-space (x > 0) in contact with a solid wall at
x = 0. The ions are cold and initially immobile, and the electrons are initially Maxwellian.
The wall mimics the surface of a solid object placed abruptly into the plasma. We assume
that the wall absorbs the incident plasma electrons with a probability ε and reflects them
with a probability p ≡ 1 − ε. We consider a simple case of incomplete specular and
energy-conserving electron reflection. Consequently, the wall charging rate vanishes when
p = 1 and is maximal at p = 0. This assumption presents a significant simplification of
the actual electron reflection process, which indeed cannot be parameterized by a single
parameter p. However, we believe that this idealization is adequate to illustrate the effect
of electron reflection on the plasma sheath and presheath and to highlight the robust trend
for sheath weakening. We also assume that there is no secondary electron emission from
the wall. This implies that the wall temperature and the wall potential are significantly
lower than the work function of the wall material.

The negative surface charge at the wall and the related electrostatic potential control
the electron flux. The bulk electrons need to overcome the wall potential to reach the wall
surface. The ion flux to the wall becomes significant only after several ion plasma periods
ω−1

pi = √
M/(4πn∞e2), where n∞ is the ambient plasma density, |e| is the unit charge and

M is the ion mass. Over this timescale, the electron flux to the wall can already build a
repelling potential that admits only the high-energy tail of the electron distribution to the
wall surface. After that, the density of the flux-carrying tail electrons is a small fraction
of the total electron density. Most electrons (the thermal electron bulk) do not reach the
wall and remain quasi-static for t � ω−1

pi with their density determined by the Boltzmann
formula. Note that electron reflection from the wall itself also facilitates the use of the
Boltzmann expression.
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Plasma sheath and presheath development 3

In the transient problem of sheath formation, the ions are immobile at t = 0 everywhere
throughout the system, and they remain immobile at the spatial infinity at any time. The
ion flow in this system starts near the wall and spreads into the unperturbed plasma. We
herein neglect the ion thermal motion and use fluid equations to describe the ion flow:

∂n
∂τ

+ ∂

∂ξ
(nu) = 0, (2.1)

∂u
∂τ

+ u
∂

∂ξ
u = ∂ψ

∂ξ
, (2.2)

where n is the ion density (normalized to n∞), u is the ion velocity (normalized to
√

Te/M),
τ = tωpi � 0 is the normalized time, ξ = x/λD is the space coordinate measured in the
units of the Debye length λD = √

Te/(4πn∞e2) and Te is the constant electron temperature.
The normalized electrostatic potential ψ = −|e|ϕ/Te satisfies the Poisson equation,

∂2ψ

∂ξ 2
= n − exp (−ψ) , (2.3)

with the Boltzmann expression for the electron density. We assume that the electrostatic
potential vanishes at infinity. A difference between the electron and the ion fluxes to the
wall determines how the electric field builds up at ξ = 0:

d
dτ
∂ψ

∂ξ
= −nu −Δ exp (−ψ) . (2.4)

The two terms on the right-hand side of (2.4) are the ion and the electron fluxes,
respectively, at ξ = 0,Δ = ε

√
M/(2πm) is the normalized electron absorption probability

and m is the electron mass. There are two additional conditions for (2.1)–(2.3).

(i) The plasma remains unperturbed far away from the wall, i.e.

n (ξ → ∞, τ ) = 1, u (ξ → ∞, τ ) = 0,
∂ψ

∂ξ
(ξ → ∞, τ ) = 0. (2.5a–c)

(ii) The plasma is unperturbed initially:

n (ξ, τ = 0) = 1, u (ξ, τ = 0) = 0, ψ (ξ, τ = 0) = 0. (2.6a–c)

In a steady state, equation (2.4) determines a floating potential ψ0 that balances the ion
and the electron fluxes,

ψ0 = − ln [n0 |u0|] + lnΔ, (2.7)

where n0 and u0 are the ion density and the ion velocity at the wall, respectively.
The initial condition (2.6a–c) means that the solid wall is introduced instantaneously

at τ = 0 and ξ = 0, which would generally require to resolve an extremely short
electron timescale, ω−1

pe = √
m/Mω−1

pi . This timescale is already sufficient to accumulate
a significant negative charge on the surface unless the wall is strongly reflective (see
§ 7). The electron distribution deviates substantially from the Maxwellian during this
short time, and, as already indicated in Cipolla & Silevitch (1981), the electrons must
be treated kinetically. It is, however, appropriate to use the Boltzmann distribution in
(2.3) and (2.4) on the ion timescale of our interest when the electron flux to the wall is
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already small. The initial (t ∼ ω−1
pe ) inconsistency caused by the unjustified Boltzmann

assumption becomes asymptotically insignificant (see also Cipolla & Silevitch 1981).
Keeping this remark in mind, we use (2.6a–c) in our numerical studies to describe the
long-time evolution of the system. Our analytical studies also ignore this inconsistency,
except for the linear theory in § 7 that does not require such a caveat.

3. A quasi-stationary sheath

The ion time of flight through the Debye sheath near the wall is roughly ω−1
pi . A sheath

that evolves on a much longer timescale can thus be viewed as quasi-stationary. The long
timescale of our interest here characterizes propagation of the rarefaction wave from the
sheath into the unperturbed plasma. In this case, one can neglect the time derivatives in
the ion equation of motion (2.2) and the continuity equation (2.1) and integrate them over
ξ to find the ion energy and the ion flux in the sheath:

nu = nbub,

u2

2
− ψ = u2

b

2
− ψb,

⎫⎬
⎭ (3.1)

where ψb(τ ), nb(τ ) and ub(τ ) are the values of ψ , n and u at an interface between the
sheath and the adjacent rarefaction wave. With (2.3) and (3.1), we obtain the well-known
(see, e.g., Bellan 2008) equation:

∂2ψ

∂ξ 2
= nb

(
1 + 2 (ψ − ψb)

u2
b

)−1/2

− exp (−ψ) . (3.2)

Integration of (3.2) over ξ twice gives the following implicit expression for the electrostatic
potential: ∫ ψ0(τ )

ψ

dψ√
D (ψ, τ)

= ξ, (3.3)

where

1
2

D (ψ, τ) = 1
2

(
∂ψb

∂ξ

)2

+ nbu2
b

[(
1 + 2 (ψ − ψb)

u2
b

)1/2

− 1

]

+ [
exp (−ψ)− exp (−ψb)

]
, (3.4)

and ψ0 is the electrostatic potential at the surface of the wall. Note that (3.3) determines
the sheath width 
(τ ) as a function of time:


 (τ) =
∫ ψ0(τ )

ψb(τ )

dψ√
D (ψ, τ)

. (3.5)

The ion velocity ub, the ion density nb, the electrostatic potential ψb and the electric
field ∂ψb/∂ξ at the interface need to match their values in the rarefaction wave that we
describe next.

4. The rarefaction wave

Once placed into the plasma, the wall creates a wave that propagates outward. The
perturbed region between the wall and the wavefront involves an ion flow toward the wall.
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In this section, we consider such flow as a stand-alone building block. We assume that
the length of the perturbed region exceeds the Debye length substantially. In this case,
the plasma must be quasi-neutral far away from the wall, which simplifies the Poisson
equation (2.3) to

n = exp (−ψ) . (4.1)

The flows of our interest connect the unperturbed immobile plasma to the wall and satisfy
the following requirements:

(i) the ion velocity, the electrostatic potential and density perturbations must all vanish
far away from the wall;

(ii) the wall acts as a plasma sink;
(iii) the ultimate solution, of which the quasi-neutral flow is a part, must satisfy the

boundary conditions at the wall.

It is important to point out that the quasi-neutral flow itself does not have to satisfy
the boundary condition (2.4). It may, instead, match the sheath solution (3.1) and (3.3).
In the spirit of Allen & Andrews (1970), we first consider the quasi-neutral flow adjacent
to the quasi-static sheath.

To proceed further, we seek a particular solution of (2.1), (2.2) and (4.1) keeping in
mind the listed requirements. To construct such solution, we use the following ad hoc
expressions:

u = u1 (τ ) (ξ − L (τ )) ,

ψ = −ψ1 (τ ) (ξ − L (τ )) ,

}
(4.2)

where L(τ ), u1(τ ) and ψ1(τ ) are yet unknown functions of time. The function L(τ )
determines the interface between the rarefaction wave and the unperturbed plasma so that
the velocity and the electrostatic potential vanish simultaneously at ξ = L(τ ). Substitution
of (4.1) and (4.2) into the system (2.1) and (2.2) gives the following solution for u1(τ ),
ψ1(τ ) and L(τ ):

ψ1 (τ ) = u1 (τ ) = 1
τ + τ∗

,

L (τ ) = L∗ + τ + τ∗,

⎫⎬
⎭ (4.3)

where τ∗ and L∗ are the integration constants. The resulting expressions for the ion
velocity, the ion density and the electrostatic potential in the rarefaction wave are

u = −ψ =
(

−1 + ξ − L∗
τ + τ∗

)
θ (L∗ − ξ + τ + τ∗) ,

n = exp
[(

−1 + ξ − L∗
τ + τ∗

)
θ (L∗ − ξ + τ + τ∗)

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

where θ is the Heaviside step function and ξ > 0.
It turns out that the quasi-static sheath is not always required to match the quasi-neutral

ion flow to the wall (see § 7 for further details). We also note that an interval of spatially
uniform (ballistic) quasi-neutral flow between the wall and L−(τ ) < L(τ ) would satisfy
(2.1), (2.2) and (4.1). The rarefaction wave (4.4) can be connected continuously to such
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flow by choosing
L− (τ ) = L∗ + (1 − δu) (τ + τ∗) ,

u = −ψ = −δuθ (L− (τ )− ξ) ,

n = exp
[−δuθ (L− (τ )− ξ)

]
.

⎫⎪⎬
⎪⎭ (4.5)

The boundary condition (2.4) can then determine a constant velocity 0 < δu < 1 of the
ballistic flow. In §§ 5–7, we discuss the matching procedure and the conditions under
which either the quasi-static sheath or the ballistic flow can be established near the wall.

Except for the integration constants τ∗ and L∗, equation (4.4) replicates the self-similar
solution described in Allen & Andrews (1970) where all dependent variables were
assumed to be functions of ξ/τ only. These two constants help to illustrate how the
self-similar solution of Allen & Andrews (1970) establishes dynamically. Their values
can, in principle, be found from a more general treatment of the quasi-neutral flow via the
method of characteristics used in Cipolla & Silevitch (1981). However, to do that one needs
a dynamical description of the sheath edge, which would necessarily involve numerical
simulation of the sheath. On the other hand, the key features of the flow can already be
understood from the rough physics constraints on τ∗ and L∗, as discussed in § 5.

Equation (4.4) and Cipolla & Silevitch (1981) reveal that the Bohm condition u → 1
establishes asymptotically in time at the edge of the sheath. In this case, the sheath edge is
not necessarily immobile but rather moves slowly (see § 5).

Note that the electric field is spatially uniform within the rarefaction wave (4.4) and has
a jump at the leading edge of the wave where ξ = L(τ )

∂ψ

∂ξ
= − 1

τ + τ∗
θ (L∗ − ξ + τ + τ∗) . (4.6)

Consequently, there is a surface charge at the leading edge, i.e. the quasi-neutrality
condition (4.1) breaks down around the edge. However, the dispersive corrections
regularize this weak discontinuity in a way discussed in Gurevich & Pitaevskii (1975).

5. Sheath-dominated reflection

To match the sheath and the rarefaction wave, we have to specify the unknown constants
L∗ and τ∗ (see (4.4)). These constants are the only free parameters in our model. Note that
we treat the problem separately in the sheath and the outside region. This procedure is
justified when L(τ ) is much greater than the sheath width 
(τ). Up until that point, the
two regions are inseparable, which precludes simple matching. The constants L∗ and τ∗
need to be chosen accordingly.

The constants L∗ and τ∗ determine the initial (τ = 0) profiles of the plasma density,
velocity and electrostatic potential. As seen from (4.3) and (4.4), the initial presheath
length is L∗ + τ∗, and the initial ion velocity at the sheath–presheath interface is −1 −
L∗/τ∗. Since we treat the sheath and the presheath separately for any τ (including τ = 0),
the initial presheath length must be greater than unity (L∗ + τ∗ � 1). The initial ion
velocity at the interface can generally differ from −1 significantly. Different values of
the L∗/τ∗ ratio for L∗ + τ∗ � 1 give a set of possible initial two-scale plasma profiles
for (3.1), (3.3) and (4.4). In our problem, the constants L∗ and τ∗ carry memory about
the short transient stage during which all the length scales are of order unity. The ion
velocity at the wall can, in principle, be either subsonic or supersonic in the transient
regime because the L∗/τ∗ ratio is not necessarily positive. Our (3.1), (3.3) and (4.4) with
L∗ + τ∗ � 1 and −1 − L∗/τ∗ < 0 generalize the results of Cipolla & Silevitch (1981) and
Allen & Andrews (1970) while keeping the correct asymptotic behaviour first predicted in
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Allen & Andrews (1970). The self-similar solution of Allen & Andrews (1970) is recovered
in the limit of τ → ∞, or by simply setting L∗ = τ∗ = 0 in (4.4). This asymptotic solution
describes the actual ion flow to the lowest order in λD/L.

On the other hand, the key features of the flow can be assessed without exact knowledge
of τ∗ and L∗. Equation (4.4) suggests that the velocity at the interface between the
sheath and the rarefaction wave [ξ = 
(τ ) 	 L(τ )] is ub(τ ) = −1 − L∗/(τ + τ∗) whereas
the extension of the rarefaction wave is L(τ ) = L∗ + τ + τ∗. Let us first assume that
the velocity at the sheath-wave boundary exceeds the ion sound speed at some instant,
i.e. L∗/(τ + τ∗) > 0. In this case, ub(τ ) stays supersonic afterwards and approaches the
Bohm’s limit from above asymptotically. By matching the sheath (3.1), (3.3) and the
rarefaction wave (4.4) solutions, we find the following asymptotic behaviour of the wall
potential in this case:

ψ0 (τ ) = ψ0 (∞)+ 1
2

L2
∗

(τ + τ∗)
2 , (5.1)

whereψ0(∞) = 1 + lnΔ is the constant floating potential withΔ > 1. The corresponding
estimate for 
(τ ) from (3.5) is


 (τ ) =
√

exp (1)
2 |L∗|

√
τ + τ∗ ln

√
τ + τ∗, (5.2)

We note that the ratio 
(τ )/L(τ ) asymptotically vanishes as τ → ∞. This is consistent
with a scale separation assumed in §§ 3–5.

As follows from (4.4), the ion velocity at the boundary between the sheath and the
rarefaction wave approaches the ion sound speed at τ → ∞. It is, however, interesting
that this approach can be either monotonic or oscillatory in space, depending on whether
the instantaneous velocity is supersonic or subsonic. To examine this feature, we set ψ =
ψb(τ )+ δψ and expand the Poisson equation (3.2) in δψ in the vicinity of the interface
between the sheath and the rarefaction wave. We then obtain

∂2δψ

∂ξ 2
−

[
exp (−ψb)− nb

ub

]
δψ = nb − exp (−ψb) . (5.3)

The right-hand side of this equation vanishes because of the quasi-neutrality condition
(4.1), which reduces (5.3) to

∂2δψ

∂ξ 2
− nb

u2
b

(
u2

b − 1
)
δψ = 0. (5.4)

Note that (5.4), reminiscent of the Bohm’s analysis, describes spatial oscillations
of the electrostatic potential around its boundary value ψb(τ ) in the subsonic case
(|ub| < 1) as opposed to an exponential profile in the supersonic case (|ub| > 1). In the
conventional stationary sheath models (see, e.g., Riemann 1991), the oscillatory solutions
are considered unphysical because of a strong potential variation of order unity in the
presheath contradicting the assumed length scale ordering. However, these oscillations are
meaningful in the dynamics. They do occur transiently, but their spatial scale 
−2

∼ (τ ) ≡
nb(u2

b − 1)/u2
b (determined by the coefficient in front of δψ in (5.4)) grows in time.

Indeed, with (4.4), one finds that 
∼ ∝ (τ + τ∗)1/2 at τ → ∞ so that the oscillations
eventually smooth out. It is important to point out that our model does not resolve the short
initial time interval during which the sheath forms and the rarefaction wave establishes.
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FIGURE 1. Numerical solution of (2.1)–(2.3). The normalized electric field E = ∂ψ/∂ξ at the
surface of the wall is fixed in this case to be E0 = −0.015. (a) Snapshots of the electrostatic
potential (solid lines) and the ion velocity (dashed lines) for several times. (b) Snapshots of the
electric field normalized to its constant value at the surface of the wall E0.

Owing to this, the initial ion velocity at the interface between the sheath and the rarefaction
wave enters as an input parameter ub(0) = −1 − L∗/τ∗. If the ratio L∗/τ∗ is negative and
small, i.e. the initial velocity is slightly subsonic, then the length scale of the oscillations
can be much greater than unity. In this case, the oscillations near the merging point
are virtually irrelevant. On the other hand, if L∗/τ∗ is still negative but |L∗/τ∗| ∼ 1, the
oscillations can stay pronounced over long time. To find out which of the two cases
is more relevant for the system (2.1)–(2.3), one has to resolve the short initial phase,
during which the electrostatic sheath forms and the length-scale separation establishes.
It is straightforward to resolve this phase by integrating equations (2.1)–(2.3) numerically
using a scheme similar to (Widner et al. 1970). Our numerical solution of (2.1)–(2.3)
with the boundary condition given by (2.4) (and Δ > 1) shows fast establishment of
the floating potential (2.7) at the wall. The ion velocity at the sheath–wave interface is
either slightly supersonic or slightly subsonic by the end of the initial stage in this case.
This makes the rapidly decaying oscillations virtually unnoticeable. A boundary condition
different from (2.4) would result in a different initial stage and highlight the otherwise
negligible oscillations. To illustrate that and exhibit the oscillations, we artificially fix a
small but finite value of the electric field at the wall and plot the resulting snapshots of the
electrostatic potential, ion velocity and electric field in figure 1.

Figure 1(b) shows small spatial oscillations of the electric field at early times.
The amplitude of these oscillations decreases over time, while their period increases.
Figure 1(a) shows that the ion velocity at the wall approaches unity as the oscillations
decay.

6. Sheath disappearance

The two-scale solution (3.3), (4.4) with a sheath breaks down when the wall is strongly
reflective. To demonstrate that, we consider the charge balance condition (2.4) in the
limit of large τ , assuming that the potential ψ is static in the sheath so that the time
derivative vanishes on the left-hand side of (2.4). Equation (4.4), Allen & Andrews
(1970) and Cipolla & Silevitch (1981) show that the normalized ion flux in the sheath
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is nu = − exp(−1) at τ → ∞, which reduces (2.4) to

exp (−1) = Δ exp (−ψ0) , (6.1)

where ψ0 is the wall potential.
On the other hand, the electrostatic potential at the interface between the sheath and the

rarefaction wave approaches unity (see (4.4)) and the potential is monotonic in the sheath,
which means that

ψ0 � 1, (6.2)

at τ → ∞. Equations (6.1) and (6.2) are obviously incompatible whenΔ is less than unity.
Consequently, the asymptotic sheath solution (3.3) and (4.4) fails and needs to be revised
at Δ < 1, i.e. in the case of strongly reflective wall.

It is unlikely that the case of Δ < 1 is representative from an experimental standpoint
because it implies an extremely small value of the absorption coefficient ε. Yet, this case is
of theoretical interest as a caveat that the sheath not just weakens when ε is much smaller
than unity but may altogether disappear. Consequently, calculation of the wall potential
becomes non-trivial at ε 	 1 in general, not just at ε <

√
2πm/M. Near the critical point

Δ = 1, a marginal change of the absorption coefficient, as we will show, radically changes
the global structure of the flow: (i) the sheath does not form; (ii) the ions never reach the
sound speed; and (iii) the rarefaction wave involves a ballistic flow (4.5) between the wall
and the leading part of the wave (4.4). In the case of Δ < 1, the resulting wall potential is
proportional to Δ. It vanishes for a perfectly reflective wall (Δ = 0) because the plasma
is then at rest. If Δ exceeds unity by a small margin, i.e. Δ = 1 + δ with 0 < δ 	 1, the
sheath solution is still applicable and the wall potential approaches unity when δ goes to
zero.

To infer the listed results, we solve (2.1)–(2.3) with the boundary condition (2.4)
numerically for small positive and negative values of δ and compare the snapshots of the
electrostatic potential for large τ . Figure 2 reveals a transition from a small electrostatic
sheath near the wall (dashed curve) to the flat near-wall potential (solid curve). The flat
potential area represents the uniform ion flow to the wall. This flow connects to the leading
part of the rarefaction wave in which there is a constant electric field (the potential has a
constant slope). The rarefaction wave moves into the unperturbed plasma and leaves a
uniform ballistic flow of accelerated ions behind. Note that the presence of the ballistic
ion flow adjacent to the wall distinguishes the pattern from the conventional sheath model
of Allen & Andrews (1970). In the conventional case, the rarefaction wave accelerates the
ions to the sound speed, after which the sheath accelerates them further towards the wall.
In contrast, the strongly reflective wall precludes accumulation of the negative surface
charge and the sheath formation. Without a sheath, the ions remain subsonic and they
come to the wall directly from the rarefaction wave. We discuss this scenario in more
detail in § 7.

7. Wall-dominated reflection

We first assume that the entire ion flow is quasi-neutral and then generalize the picture
to include deviations from quasi-neutrality in the flow. The quasi-neutral ballistic ion flow
to the wall is subsonic and can be described by (4.5). Taken together, the quasi-neutrality
condition (4.1) and (2.7) determine the ion velocity at the wall:

u0 = −Δ. (7.1)

This velocity must match the self-similar solution (4.4) at a moving matching point ξ =
L−(τ ), which determines the plasma density and the electrostatic potential drop across the
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ψ

Δ = 1 − δ

Δ = 1 + δ

FIGURE 2. Numerical solution of (2.1)–(2.3). Snapshots of the electrostatic potential for
Δ = 1 − δ (solid line) and Δ = 1 + δ (dashed line) at τ = 375, where δ = 0.2.

rarefaction wave (see also Landau & Lifshitz 1954):

n0 = exp (−Δ) ,
ψ0 = Δ.

}
(7.2)

The leading edge of the rarefaction wave travels into the unperturbed plasma with the
sound speed, whereas the connection point L−(τ ) ∼ (1 −Δ)τ moves forward with a lower
speed so that both parts of the flow expand linearly with time. Equations (4.4) and (4.5)
can now be conveniently combined into

u = −ψ = −Δ [
θ (ξ/τ)− θ (ξ/τ − 1 +Δ)

]
,

+ (ξ/τ − 1)
[
θ (ξ/τ − 1 +Δ)− θ (ξ/τ − 1)

]
, (7.3)

where ξ > 0 and τ � 1.
It is instructive to compare (7.3) with a numerical solution of (2.1)–(2.3) without

enforcing quasi-neutrality. In solving (2.1)–(2.3), we use the dynamical boundary
condition (2.4) instead of the simplified floating condition (2.7). Figure 3 presents the
resulting snapshots of the electrostatic potential, ion velocity and ion density for two
different values of the wall absorption probabilities. In both cases, there are three distinct
regions in the snapshots: the static unperturbed plasma, the rarefaction wave with a
constant electric field and the ballistic flow of the accelerated ions to the wall. The values
of the potential, velocity and density across the rarefaction wave agree with the analytical
predictions (7.1) and (7.2).

Comparing the left and right panels in figure 3, we note that the velocity of the
connection point ξ = L−(τ ) of the rarefaction wave to the ballistic flow depends on the
wall absorption probability. The predicted velocities of both L−(τ ) and L(τ ) (see (7.3))
agree with their numerical estimates (see figure 4).

Still, the quasi-neutral solution does not capture the small oscillations of density,
potential and velocity behind the rarefaction wave. These oscillations result from
the discontinuity of the profile slope in the quasi-neutral solution (see Gurevich &
Meshcherkin 1984). Their amplitude decreases in time (Gurevich & Meshcherkin 1984)
as the region they occupy expands. In contrast, the slope discontinuity at the leading edge
of the rarefaction wave does not produce any oscillatory motion in its vicinity. There is
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FIGURE 3. Numerical solution of (2.1)–(2.3) for a strongly reflective wall. (a,b) Snapshots of
the electrostatic potential (solid lines), the ion velocity (dashed lines) and one minus the ion
density (dash-dotted line) for several times. The normalized wall absorption probability Δ is
marked in each panel.
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τ

0

100
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300

ξ

Δ = 0.35

0 100 200 300
τ

0

100

200

300

Δ = 0.7

L−(τ)

L(τ)
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FIGURE 4. Time traces of the left (solid line and discs) and right (dashed line and circles)
boundaries of the rarefaction wave. The solid and dashed lines in each panel represent our
analytical solution (see (7.3)), dots and circles represent the corresponding numerical estimate
(see also figure 3). The normalized wall absorption probabilityΔ is marked at the bottom of each
panel.

an essential difference between the discontinuities at L−(τ ) and L(τ ). The leading edge
moves into the unperturbed plasma with the sound velocity. Consequently, it does not
have a precursor. On the other hand, the ions that leave the wave at L−(τ ) can carry the
perturbation into the ballistic flow.

The oscillatory nature of the solution is most evident in the limit of Δ 	 1, in which
case it is allowable to linearize (2.1)–(2.3) while keeping the dispersive corrections in
the equations. Note that the case of Δ 	 1 implies an extremely low (and possibly
unrealistically low) absorption coefficient. Note also that additional factors such as, for
instance, the finite ion temperature Ti (Emmert et al. 1980) or the secondary electron
emission (Campanell & Umansky 2016) are likely to enter the game in the case
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of Δ ∼ Ti/Te. However, these factors are unlikely to change the dispersive features of the
solution that we will highlight, although they deserve an independent assessment, which
is beyond the limited scope of our paper. We then obtain the following linear equation for
the electrostatic potential

∂2ψ

∂ξ 2
− ψ = −

∫ τ

0

∫ s

0

∂2ψ

∂ξ 2
(ξ, σ ) dσ ds. (7.4)

The linearized condition (2.4) for this equation is

d
dτ
∂ψ

∂ξ
= −u −Δ. (7.5)

A straightforward Fourier transform of (7.4), and (7.5) returns the following solution for
the electrostatic potential:

ψ = Δ
2
π

∫ +∞

0

cos kξ√
1 + k2

sin
kτ√

1 + k2

dk
k
. (7.6)

In particular, we find that the electrostatic potential, the electric field and the ion velocity
at the wall (ξ = 0) are

ψ0 (τ ) = Δ

∫ τ

0
J0 (s) ds,

∂ψ

∂ξ
(0, τ ) = −Δ sin τ,

u0 (τ ) = −Δ(1 − cos τ) .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.7)

Appendix A provides a detailed derivation of (7.6) and (7.7). Note that the wall potential
oscillates, but the amplitude of these oscillations decays, and the potential asymptotically
converges to 〈ψ0〉 = Δ. The plasma velocity at the wall and the electric field at the
wall also oscillate but without any decay. The average values of the linearized plasma
parameters correspond to their nonlinear dispersionless estimates (see (7.1) and (7.2)).

Figure 5 presents the linearized electrostatic potential as a function of ξ for τ = 50
and τ = 500. We observe that the linearized treatment does indeed capture the oscillatory
behaviour of the nonlinear solution (see figure 3). Both boundaries of the rarefaction wave
move with the sound speed in the linearized case. The wave front, therefore, does not
broaden over time as opposed to the nonlinear case (compare figures 3 and 5).

8. Floating potential

The analysis presented in §§ 5–7 reveals an interesting aspect in the dependence
of the wall potential on reflective properties of the wall. In the case of Δ > 1, the
asymptotic value of the potential at τ → ∞ depends logarithmically on the normalized
wall absorption coefficient Δ (see (5.1)). On the other hand, in the case of Δ < 1, the
potential does not follow (5.1) anymore. Its dependence changes from the logarithmic to
linear (see (7.2) and (7.7)). We, thus, have

ψ0 =
{

1 + lnΔ, if Δ > 1,
Δ, if Δ � 1.

(8.1)

It is noteworthy that the transition is smooth in (8.1) as well as in our numerical results.
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FIGURE 5. Snapshots of the linearized electrostatic potential (see (7.6)) normalized to the
asymptotic wall potential 〈ψ0〉 = Δ for (a) τ = 50 and (b) τ = 500.
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Δ

ψ0 = 1 + lnΔ

FIGURE 6. The floating potential as a function of the normalized wall absorption probability
Δ = ε

√
M/(2πm). The solid and dashed curves represent the analytical expression (8.1). The

circles show the time-averaged electrostatic potential of the wall in numerical simulations.

9. Summary

This paper generalizes the pre-existing one-dimensional analysis (Allen & Andrews
1970; Cipolla & Silevitch 1981) of collisionless plasma flow to the sold surface. Our
analysis covers an intermediate evolution of the system, which takes place after fast
formation of the electrostatic sheath and the rarefaction wave and precedes the asymptotic
self-similar flow of Allen & Andrews (1970). The generalized solution is given by (3.1),
(3.3) and (4.4). The only input parameters in this solution are the initial extension of
the rarefaction wave and the initial ion velocity at the interface between the sheath and
the rarefaction wave. Equation (4.4) of the generalized solution describes how the Bohm
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criterion establishes asymptotically for both subsonic and supersonic initial velocities at
the sheath entrance. The long-time evolution of the plasma flow coincides with that of
Allen & Andrews (1970).

This paper also highlights the effect of electron reflection from the wall on the
electrostatic sheath formation. We find that a sufficiently strong reflection from the
wall precludes formation of the electrostatic sheath at the surface and makes the entire
ion flow subsonic. We characterize the role of reflection by a dimensional parameter
Δ = ε

√
M/(2πm) and determine a critical point (Δ = 1) at which a slight change of

the absorption coefficient changes the global structure of the flow significantly: the
electrostatic sheath disappears, the rarefaction wave detaches from the wall and a region of
ballistic flow near the wall emerges. The wall potential, in this case, exhibits an interesting
transition in its dependence on the wall reflectivity (as described by (8.1) and shown in
figure 6).
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Appendix A

This appendix provides a detailed derivation of (7.6) and (7.7). We first linearize
(2.1)–(2.3) and the boundary condition (2.4) to obtain

∂n
∂τ

+ ∂u
∂ξ

= 0,

∂u
∂τ

− ∂ψ

∂ξ
= 0,

∂2ψ

∂ξ 2
− ψ = n,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

and

d
dτ

∂ψ

∂ξ

∣∣∣∣
ξ=+0

= −u (+0, τ )−Δ, (A 2)

where n is the perturbed density. Equations (A 1) and (A 2) refer to positive values of ξ ,
i.e. to (0 < ξ < ∞), but it is convenient to extend the ξ -domain from −∞ to +∞. Note
that (A 1) remains unchanged under parity t, ξ, u → t,−ξ,−u. Consequently, we treat n
and ψ as even functions of ξ and u as an odd function. We also note that u and dψ/dξ
are generally discontinuous at ξ = 0. Taking this symmetry into account, we obtain the
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following Fourier image of the system (A 1):

dnk

dτ
+ ikuk = 2u (+0, τ ) ,

duk

dτ
− ikψk = 0,

ψk = − nk

1 + k2
− 2

1 + k2

∂ψ

∂ξ

∣∣∣∣
ξ=+0

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 3)

where

nk (τ ) = 2
∫ +∞

0
n (ξ, τ ) cos kξ dξ,

ψk (τ ) = 2
∫ +∞

0
ψ (ξ, τ ) cos kξ dξ,

uk (τ ) = −2i
∫ +∞

0
u (ξ, τ ) sin kξ dξ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 4)

Equations (A 3) reduce to the following equation for the Fourier image of the perturbed
density:

d2nk

dτ 2
+ k2

1 + k2
nk = 2

du
dτ
(+0, τ )− 2k2

1 + k2

∂ψ

∂ξ

∣∣∣∣
ξ=+0

. (A 5)

We next transform the right-hand side of (A 5). We use (A 1) and (A 2) evaluated at ξ =
+0 to obtain

d2u
dτ 2

(+0, τ )+ u (+0, τ ) = −Δ. (A 6)

The electric field and the ion velocity at the wall are initially zero. We, therefore, obtain
the following initial conditions from the second equation of (A 1):

du
dτ
(+0, 0) = u (+0, 0) = 0. (A 7)

We, thus, have
u (+0, τ ) = −Δ(1 − cos τ) . (A 8)

Equation (A 8) and the boundary condition (A 2) determine the electric field at the wall:

∂ψ

∂ξ

∣∣∣∣
ξ=+0

= −Δ sin τ. (A 9)

We now use (A 8) and (A 9) to rewrite (A 5) as

d2nk

dτ 2
+ k2

1 + k2
nk = −2Δ

sin τ
1 + k2

. (A 10)

We note that the ion density is not perturbed initially and use the first equation of (A 3) at
τ = 0 to impose the following initial conditions:

dnk

dτ
(0) = nk (0) = 0. (A 11)
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The resulting solution of (A 10) is

nk = −2Δ

√
1 + k2

k
sin

kτ√
1 + k2

+ 2Δ sin τ. (A 12)

The corresponding Fourier image of the electrostatic potential is (see (A 3))

ψk = 1
k

2Δ√
1 + k2

sin
kτ√

1 + k2
. (A 13)

The inverse Fourier transform of (A 13) gives the electrostatic potential as a function of ξ
and τ :

ψ (ξ, τ ) = Δ
2
π

∫ +∞

0

cos kξ√
1 + k2

sin
kτ√

1 + k2

dk
k
. (A 14)

At the wall surface (ξ = +0), this expression simplifies to

ψ (+0, τ ) = Δ

∫ τ

0
J0 (s) ds, (A 15)

where J0(s) is the zeroth-order Bessel function of the first kind.
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