ALGORITHMS FOR GENERALIZED STABILITY
NUMBERS OF TREE GRAPHS

D. E. DAYKIN AND C. P. NG
(Received 2 April 1965)

1. Introduction

In this paper we give some algorithms for determining o*(T’) and §*(T),
the generalized internal and external stability numbers respectively, of a
finite directed tree graph T whose nodes are weighted by a function w.
We define «*(T’) and p¥(T) in section 2. When w gives every node of T the
weight 1 then «*(T) = «(T) and g°(T) = B(T) where «(T) and (T are the
usual stability numbers.

K. Maghout has given [2] an exceedingly elegant technique for eva-
luating «(G) and (G) for any finite graph G. However in applications his
method requires a considerable number of Boolean operations. It was this
fact which led us to look for new ways of evaluating «(T'), (T’) and we feel
that our results are exceedingly simple to apply to tree graphs. Also if a
graph G can be reduced to a family of trees by the removal of a small number
of nodes, then our methods evaluate «*(G) and $°(G) more simply than K.
Maghout’s evaluates «(G) and B(G).

2. Definitions

This section is devoted to explaining the notation used in our algorithms.
Once this notation is understood one can use the algorithms without reading
their proofs.

The letters G and T will stand for a general graph and a tree graph res-
pectively. Both will be finite and directed, and any node of T will be taken
as its root p. A subset S of G is said to be internally stable if no two nodes
of S are adjacent. We will write #(G) for the family of all internally stable
subsets of G. The internal stability number (or the coefficient of internal
stability [1], or the independence number [3]) of G is the maximum number
of elements of an internally stable set, i.e.,

(1) «(G) = max {|S[; S e F(G)}.

We say that a graph G is weighted if with each node » € G, there is
associated a non-negative real number w(v), and we write

89

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

90 D. E. Daykin and C. P. Ng (2]

w(S) = > w(») for SCG.
veS
Then we define the generalized internal stability number «*(G) of G to be
the maximum of the weights of the internally stable sets of G, i.e.,

2) a¥(G) = max {w(S); S e £(G)}.

We write (v, 4) € G to mean that », x4 are nodes of G joined by an edge
directed from » to u. This edge is directed both ways if (v, u), (4, 7) €G. A
subset S of G is said to be externally stable if for every node » ¢ S there is a
node u € S such that (v, u) e G. We will write &(G) for the family of all ex-
ternally stable subsets of G. The external stability number (or the coeffi-
cient of external stability [1], or the domination number [3]) of G is the
minimum number of elements of an externally stable set, i.e.,

®3) B(G) = min {|S|; S e £(G)}.

We define the generalized external stability number *(G) of G to be the
minimum of the weights of the externally stable sets of G, i.e.,

(4) p*(G) = min {w(S); S e £(G)}.

There may be several sets S such that w(S) = «¥(G), however any
such set will be maximal, i.e. SC R, S # R implies R ¢ #(G). Maghout’s
method produces simultaneously all maximal sets of #(G), and once
these are known one can clearly determine «*(G). Similar remarks apply
to f*(G). Clearly if w(») = 1 for all » € G then «*(G) = «(G) and g*(G)
= B(G).

For each » € T, we write d(») for the (undirected) distance of » from the
root p. Also we let B(v) denote the subgraph of T which is that branch of
T with » as root, i.e., the set B(v) consists of all g of T such that d(u)—d(»)
= 0, and that any undirected path joining u to p passes through ». Clearly
B(») is itself a tree. We define A4 (») to be the set of nodes u of T immediately
above v, 1.e., such that d(u) = d(»)4-1 and u is adjacent to ». Further we let
A} (v) denote the set of nodes u of A (v) such that (v, u) e T (upwards) or
(v, n), (u,v) € T (symmetric). In symmetric trees 44 (») = A(v). We de-
note by »' the node immediately below », i.e., such that d(v') = d(»)—1
and »" is adjacent to ».

Finally, we specify a tree as follows. We number the nodes in any
way, 1, 2, - - -, n = |T|, and then prepare a table by writing the numbers,
1,2, -, non the top row, and 4 () under the number :. This specification
of a tree is different from the one given in [4]. It does not indicate the direct-
ing of the tree and will only be used in section 3.

Our work splits naturally into two parts dealing with internal and
external stability respectively.

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

(3] Algorithms for generalized stability numbers of tree graphs 91

PART I. INTERNAL STABILITY

3. Algorithms for a(T)

Using the specification of a tree given above one can find aset S € #(T')
such that «(T) = |S| by

ALGORITHM 1. Find an unprimed number i in the top row such that A (i)
= ¢. Then give this number i a prime. Further for each |, such that i € A(f)
delete § from every set A (k) in which it occurs, and delete | from the top row, and
delete A (f) from the table. Repeat the operation as many times as possible. If S
1s the set of primed numbers remaining in the top row then |S| = «(T) and
SeJs(T).

We do not prove this algorithm as it is merely a reformulation of

ALGORITHM 2. Given T, instially put R = S = ¢. Then (i) adjoin nodes
of valency 1(except the root p if it is also of valency 1) of T—R to S, or adjoin
pto S if T—R consists of p only, and (ii) adjoin to R the nodes of S and those
nodes of T adjacent to S. Repeat the operation (i), (ii) untii R = T when
IS} = «(T) and S e #(T).

Notice that in algorithm 1 the number 7 with 4(¢) = ¢ specifies a
node of valency 0 or 1 and we adjoin the node to S by giving ¢ a prime.
This is equivalent to operation (i) in algorithm 2. Also we remove the nodes
¢ and the nodes § adjacent to i by deleting the numbers A4 (f) and § from the
table in algorithm 1. This is equivalent to operation (ii) in algorithm 2.

PROOF OF ALGORITHM 2. If two nodes of T are adjacent, and one of
them is adjoined to S at some stage of the construction, then if the other is
not already in R it is immediately adjoined to R. Hence both of them cannot
be in S. This proves that S is internally stable.

Suppose now we have reached some stage of the construction of S. Let
v be a node of T— R of valency 0 or 1. In the latter case let 4 be the node
of T—R adjacent to ». We cannot now do better than adjoin » to S, for at
most one of », 4 can be in S, and if we adjoin g to S this may prevent not
only » but other nodes of T—R from being adjoined to S. Since this is true
at each stage of the construction the result follows.

4. The generalized internal stability number

In this section we discuss some properties of «¥(G). Our first result
concerns sums and products of weighting functions.

THEOREM 1. If v, w are weighting functions defined on a graph G,
then

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

92 D. E. Daykin and C. P. Ng (4]

(i) «**(G) = o«*(G)+a(G),
and
(i) a®(G) < «*(G)x*(G).

ProoF. By definition (2), there are sets P, Q, R, S € #(G) such that
«*(G) =v(P); «°(G)=w(Q);
a®**(G) = (v+w)(R) and a™(G) = vw(S),
where, for example,

v(P) = X v(v) and (v+w»)(R) =%’![v(")+W(V)]-

veP
Hence

o™(G) = v(R)+w(R) < v(P)+w(Q) = «*(G)+«*(G),
and
«*(G) =p62;9 [v()w()] =< v(S)w(S) = v(P)e(Q)
= a’(G)a¥(G).
A simple result which is very useful in practice is given in

THEOREM 2. If C is a complete subgraph of G with |C| = r+1, and if »
is a node of C of valency r in G such that w(v) = w(u) for all p € C, then

o¥(G) = w(v)+a*(G—C).
Proor. If S € #(G) then, since C is complete, at most one node of C
is in S. Moreover if S N C = ¢ then S+v € #(G). Hence
«”(G) = max {w(S); Se F(G), S n C # ¢}
= w(v)+max {w(S); S e £F(G—-C)}
= w(v)+a*(G—C),
and the theorem is proved.

It should be noted that we have restricted our attention to non-negative
weighting function w. The reason for this is that if there was a node » such
that w(v) =< 0 then we would get the following simplification:

«*(G) = max {w(S); S € #(G)} = max {w(S); S e F(G), v ¢S}
= max {w(S); S € £(G—»)} = a¥(G—).
Similar remarks apply to 8*(G).

5. Algorithms for tree graphs

We first give the algorithm for evaluating «*(T), for a given tree T
with weighting function », as

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

5] Algorithms for generalized stability numbers of tree graphs 93

ALGORITHM 3. For each v € T, starting with terminal nodes and working
progressively towards the root, define a pair (m(v), n(v)) of real numbers by
the recursive relations

(5) m(v) = wlv)+ 3 n(p),
ped(y)

and

(6) n(v) = Eg:(y)max {m(u), n(p)}-

Then *

(7) «*(T) = max {m(p), n(p)}.

When » is a terminal node, then 4 () = ¢ and the sums in (5), (6) are zero.

Once the pairs (m(»), #(v)) have all been defined, we can immediately
find an internally stable set S for which «¥(T) = w(S). The idea of the
method is to decide which nodes are to be in S, by working node by node
up the tree from the root. The method is given as

ALGORITHM 4. A set S € £ (T) with a®(T) = w(S) can be selected recursively
as follows. If u = p or if pe A(v) and v ¢ S, then we decide whether pe S or
p ¢S by means of relations (8) below. If ve S, then u ¢S for all pe A(v).

If m(p) > n(u) then pueS;
(8) if m(p) <n(n) then uésS;
if m(u) =n(u) then ueS or u¢S arbitrarily.
One can obtain all sets S with «¥(7T') = w(S) by taking both of the
choices, u€S and u ¢S, separately in (8) whenever m(u) = n(u). If
m(v) # n(v) for all » € T then S is unique.

PrOOF OF ALGORITHM 3. We simply show that the pairs of numbers
(m(»), n(v)) constructed by the algorithm have the property

©) m(v) = max {w(S); Se F(B®)),ve S}

and n(») = max {w(S); Se £ (B(»)),» ¢S}

Trivially (9) holds for terminal nodes ». To prove recursively that

(9) holds for all» € T, we now suppose that 7 is.a non-terminal node and that

(9) holds for all nodes » € B(z), » # t. Now by construction (5) we have
mir) =)+ 3 nu)

peA(T)

=w(r)+ ;()max {w(S); Se F(B(u)), n ¢S}, by (9)
seA(r

= w(r)+ max AZ(){w(S): SeF(B(p), p ¢S}

= w(r)+ max {w(S); Se F(B(r)), Ax) n S =¢,1¢S}
= max {w(S); S e F(B(v)), T € S},

} for veT.

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

94 D. E. Daykin and C. P. Ng (6]

and n(r)= Y max {m(u), n(u)}

peA(r)

= 2 o“(B(n))

peA(r)

= Y max {w(S); Se S (B(u)}
ped(r)

= max {©w(S); SeSf(B(r)), ¢S}
and the algorithm is established.

PROOF OF ALGORITHM 4. First we obtain expressions for «*(T') in each of
three cases.

Case 1. m(p) > n(p). Here p is in every set S constructed by the al-
gorithm, and, using in turn (7), (8), (5), (6) and (7), we have

«*(T) = max {m(p), n(p)} = m(p) = w(p)+ 3 nu)

pedlp)

(10) =w(p)+ T { 3 max {m(r), n(r)}}

peAlp) T1eA(p)

=wlp)+ > { 3 «*(B(r))}, peS.

BEA(p) TeAlp)

Case 2. m(p) < n(p). In this case p is not in any set S constructed by
the algorithm. Moreover, using (7), (8), (6) and (7) in turn, we get

«?(T) = max {m(p), n(p)} = n(p) =’e§’)max {m(u), n(p)}
~ 3 a(B). ¢S

ped(p)

(1)

Case 3. m(p) = n(p). We can choose at will to have p in or not in the
set S we construct by the algorithm, and (10) or (11) holds accordingly.
Now if we let the height £(T) of a tree T be given by

h(T) = max {d(v); ve T},

then the construction given in the algorithm is trivially valid for trees T
with A(T) = 0. Suppose as an induction hypothesis that T has height 4 > 0,
and that the method is valid for all trees of height < k. Then for each
u€A(p) by using the method we can obtain a set S, such that a*(B(x))
= w(S,). Hence if (11) holds the union of sets S, e #(B(u)) gives a choice of
S. Similarly if (10) holds then for each u € 4(p) and 7 € 4 (u) we can con-
struct a set S,,e#(B(r)) such that «*(B(r)) =w(S,,), and the union of
the sets S,, and p gives a choice of S. Since no node u € 4 (p) belongs to S
when (10) holds, this establishes the algorithm.

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

(7] Algorithms for generalized stability numbers of tree graphs 95

6. Remarks on evaluating a"(QG)

We can always remove from G a set R of nodes such that G— R is a fami-
ly of trees, and the following remarks are of value when |R| is small. Now

«*(G) = max {w(S); S e F(G)}
= max {w(Q)+max {w(S);SeF(G—R—1(Q))}}
QS R, Qes(Q)
= max_ {w(@)+«(G—R—i(Q)},
QS R, Qes(@) :
where 7(Q) is the set of nodes of G—R adjacent to Q in G. Clearly the sets
G—R—4(Q) are families of trees. If |R| is small there will be few choices for
Q. Hence in this case it may be convenient to evaluate «*(G) by using our
algorithms to evaluate «*(G—R—4(Q)) for each Q in the equation above.

PART 2. EXTERNAL STABILITY

7. An algorithm for 3(T)

Given a tree graph T, to evaluate §(T) we may use

ALGORITHM 5. A set S € &(T) such that B(T) = |S| may be constructed
by initially putting R = S = ¢, and then proceeding as follows,

(i) #f v is a terminal node of T—R and u is the node adjacent to v in
T—R adjoin pto S if (v, u) € T—R, otherwise adjoin v to S;

(ii) adjoin all pairs p, v to R for which (u,v) e T—RandveS;

(iii) ¢f v € T—R, and the valency of v is 0 in T —R adjoin v to S.
Repeat the operation (i), (ii), (iii) until R = T when |S| = B(T) and S € &(T).

Proor. Trivially S is externally stable by (ii), {iii). Now suppose that
we are at some stage of the construction, and v, u are as defined in (i).
Then at least one of », x must be adjoined to S. If (v, #) € T—R the natural
choice is u, for then u will take care of » and possibly some other nodes of
the tree. Since this is true at each stage of the construction the result follows.

The table specification of a tree is useful for the external stability of
only symmetric trees, so we do not discuss it here.

8. Algorithms for B*(T)

In this section we show how to evaluate °(T") and to find a set S € &(T)
such that w(S) = p*(T’). The method for finding g*(T) is given as

ALGORITHM 6. For each node v € T, starting with terminal nodes and

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

96 D. E. Daykin and C. P. Ng (8]

working progressively towards the root p, define a triple (p(v), ¢(v), r(v)) of
real numbers by the recursive relations,

(12) p0) = W(V)+‘e§'(v)min (), 9(w), r(1)},

3 (= (if A4 0) = 9),
(14) ”“H,E?}(,,mi" {p(n), g(u)} (otherwise),
BHEA
T L G (4, ¥) # T),
(16) ,,e%,,min (), ¢(0)} (otherwise),
where A is a node of Ak (v) such that p(A) —q(A) < p(u)—q(u) forallp e A 4 (v).
Then
(17) °(T) = min {p(p), ¢(p)}-

Notice that 7(p) = oo because (p, p’) ¢ T. When » is a terminal node
then A(») = A4 (v) = ¢ so that the sums in (12) and (18) are empty.
Therefore p(») = w(v), g(») = o0, and »(») is 0 or co for terminal nodes ».
Also when (v, ¥') e T, A} (v) # ¢, and there is a A€ A4 } (v) such that p(4)
=< ¢q(A) then ¢(») = r(»). We always have either 7(») = o or r(v) < q(»).

Once the triples (p(x), ¢(4), 7(x)) have been defined we can then find
a set S e &(T) such that w(S) = f°(T) by working up the tree from the
root. The method corresponds to that of algorithm 4 and is given as

ALGORITHM 7. One set S € &(T) with w(S) = po(T) is determined by the
following recursive rules:

() First, peS iff plp) < qlp)-

(i) If veS and pe A(s), then peS iff pu) < q(u), 7(p)

(i) If v ¢S, 7(v) < p(»), gv) and p € A(v), then p € S iff p(u) = q(m)-

(iv) If v¢ S and r(v) « p(v), ¢(»), choose a node Ae Ak (v) such that
P(A)—q(A) S p(u)—q(u) forallue AL (v). Then A€ S, whilst if ne A(v), p #4,
then e S if plu) = q(u).

PROOF OF ALGORITHM 6. We simply show that for each » € T the numbers
2(»), ¢(»), r(v) constructed by the algorithm have the properties,
p(v) = min {w(S);ve S, S e &(B())}
(18) g(») = min {w(S);»¢ S, Se &(B{))},
7(v) = min {w(S);»¢ S, S+ € &(B()+v'), (,¥') € T}.
Thus, corresponding to m(») and #(») in (9), the numbers p(v) and ¢(»)

are the minimum of the weights of the externally stable sets of the branch
B(v) which do and do not respectively contain ». The number 7(v) is similar

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

9] Algorithms for generalized stability numbers of tree graphs 97

in nature to g(»), except that it anticipates that when we consider the branch
B(y') we will be able to let »' take care of ».

Trivially (18) hold for terminal nodes ». To prove recursively that (18)
hold for all » € T', we suppose that 7 is a non-terminal node and that (18) hold
for all nodes » € B(z), v # 7. Then we have

(19) min {p(u), g(s)} = min {w(S); S € &(B())} for we B(x), p # .

Using our induction hypothesis on (18), and its consequence (19}, in defini-
tion (12) we obtain

p() = w(v)+”§-mmin [min {w(S); S e &(B(r))},

min {w(S); u¢S, S+re&(B(u)+v), (v, v)eT}].

Let u be any one of the nodes of 4 (»). If S € &(B(u)) then S+ve &(B(u)+v)
and so

(20)

min {(S); S € €(B(x))} = min {w(S); S+» € &(B(u)++)}.

On the other hand, if S+»e &(B(u)+») but S ¢ &(B(x)) then » must have
been taking care of u, and so ¢S, (u,v) eT. It follows from (20) by
this argument that
p(v) = w()+ 2)mm {w(S); S+v e &(B(u)+»)}
peA(»

= min {w(S); S € £(B()), v S}

If A4 (v) = ¢ then there is no set Se&(B(r)) with » ¢ S. We indicate
the impossibility of obtaining such a set by putting ¢(») = oo in (13).
If A4 (») # ¢, then

q(») = p(A)+ 2 min {p(x), ¢(u)}, by (14),

pe (»)
P#A

= min [p(n)—}- z Imn{p(,u g(u#)}], by definition of 2,
7€ Af()
p#’!

= min [min {w(S); S € &(B(n)), n € S}
yediy)
+ 3 min {w(S); Se&(B(u))}], by (18), (19),

»EA(r)
I 2ok J

= min [min {w(S); Se &(B()),»¢ S, neS}]
ne A (»)

= min {w(S); S € &(B()), » ¢ S}.

Finally we show that r(») also satisfies (18). When (», »') ¢ T we indicate
the impossibility of obtaining a set S of the type required in (18) by putting
r(») = oo in (15). On the other hand, if (»,') e T, then

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

98 D. E. Daykin and C. P. Ng (10)

r(v) =,.e§(,,min {p(n), ¢(»)}, by (16),
=”e§(‘v)min {w(S); S e &(B(u))}, by (19),

= min {w(S); S € &(B(»)—v)}
= min {w(S); S+»' € &(B(»)++'), » ¢ S}, since (»,»") e T,
and this completes the proof of algorithm 6.

PRrROOF OF ALGORITHM 7. Trivially the algorithm is valid for trees of
height 0. Suppose as an induction hypothesis that T has height 4 and that
the algorithm is valid for all trees of height < 4. Also let S be the subset
of T constructed by the rules (i)— (iv) of the algorithm. In each of the two
cases below, we show that S has the desired properties, namely, that Se &(T)
and w(S) = g*(T).

Case 1. q(p) < p(p). Here p ¢ S by rule (i), and since r(p) = co the
nodes u of A (p) belong, or do not belong, to S according to rule (iv). Since
g(p) < p(p) we have g(p) # co and so (13) shows that 44 (p) = ¢. Hence
the A described in rule (iv) does exist and thus 4 is in S by rule (iv).

For ue A(p), u # A, by rule (iv) we have u € S iff p(u) < ¢(1), and
7(u) is not needed. The rules (i)—(iv) will then determine a subset S, of
B(u), and since y is the root of B(u), by our induction hypothesis S, € &
(B(x)) and 0(S,) = °(B(u)).

If p(2) > ¢q(4) and we follow the rules (i)— (iv) treating B(4) as a tree
with 4 as root we will obtain a subset of B(4) which does not contain 4.
This fact would prevent us from using our induction hypothesis. We over-
come the difficulty as follows. Whatever the relative values of $(4) and ¢(4),
and solely for the purpose of proving the algorithm, we let B*(4) denote the
tree obtained from B(4) by changing the weight of the node 4 to 0. Also we
will use a star * to denote the effect of changing from B(4) to B*(4). Then
wh(u) = w(y), p*() = p(u), ¢* () = g(u), 7*(u) = 7(u) for all pe B()
except that w*(1) = 0, p*(1) = p(4)—w(A). Moreover comparision of (12)
and (13) shows that p*(1) < ¢*(4) since w*(4) = 0. The rules (i) — (iv) enable
us to construct a set S¥ of B*(1) with 1 e S¥. By our induction hypothesis
Sxe &(B*(A)) and w*(S}) = f*°(B*(4)). Now by inspection of rules
(i)— (iv) it can be seen that S¥ is precisely that subset S, of S which is
contained in B(A). Since &(B* (1)) = &(B(4)) we have S, e £(B(4)). More-
over since 4 € S, it follows that w(S,) = w(d)+w*(S,).

Now let S = ,c(5)S,- Forall ped(p) wehave S, e &(B(u)), and so
if n € B(u) then either €S, C S or there is a 7€ S, such that (5,7)eT.
Also (p,A) e T, and so Se &(T).

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

[nn Algorithms for generalized stability numbers of tree graphs 99

Now

B*(T) = q(p), by (17),
=p(A)+ 3 min{p(u),q(u)}, by (14),
r:i(f‘)

w(A)+p*(A)+ z p°(B(x)), by definition of *(4) and (17),
peA(p)
B#EA

= w(1)+ﬁ""(3*(1))+‘3:(p)iv(5ﬁ)
pEA

= w(d)+w*(S))+ O w(S,)
peA(p)
BFEA

=w(S)+ X ©(S,)
peA(p)
B#EA

= 3 w(S,) = w(S),

peA(p)
and so we have shown that S e &(T') and w(S) = p¥(T) as required.

Case 2. p(p) = q(p). Here p e S by rule (i), and the nodes u of A(p)
belong, or do not belong, to S according to rule (ii). It will be convenient to
let (i) P, (ii) Q, and (iii) R be the sets of nodes u € 4 (p) with (i) p(u) < q(u),
7). (i) g(x) < p(w), q(u) < 7(u), and (iii) 7(4) < p(u), g(u) respectively.
Notice that P, Q, R are disjoint sets with union 4 (p), for if p(u) £ ¢(u),
r(u), we have either q(u) =< r(u) or r(u) < q(u).

For ue P, we have ue S by rule (ii). The rules (i)—(iv) will then
construct a subset S, of B(u) with u€S,, and since u is the root of B(u),
by induction hypothesis S, € &(B(u)) and w(S,) = p(B(u)).

For u e Q, we have u ¢ S by rule (ii). As already proved in Case 1 the
rules (i)— (iv) allow us to construct a subset S, of B(u) such that u¢S,,
S,e &(B(u)) and w(S,) = p*(B(u)).

Finally, for n € R, we have n ¢ S by rule (ii). Since () < p(u), ¢(u)
definitions (15), (16) show that (5, p) e T. Now let € A(n). We haver € S
iff p(r) = ¢(r) and r(z) is not needed. Again the rules (i) — (iv) will construct
a subset S,, of B(r). By our induction hypothesis, since v is the root of B(r)
we have S,, € &(B(r)) and w(S,,) = p*(B(r)).

Now let

S={}v {US,‘} v{U{ U S}

neR reA(y)

For all pe P,Q and ne R, 1€ A(n), we have S,e&(B(¢)) and S,, €&
(B(r)). Hence to show that Se&(T) we need only consider the nodes
n € R. For each 5 e R, since (5,p) €T and p € S the node 7 is taken care
of by p and this shows that S e &(T).

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

100 D. E. Daykin and C. P. Ng [12)

In conclusion

8°(T) = p(p), by (17),
= W(P)+“§(P)min (), ¢(u), r()}, by (12),

=w(p)+ é, P+ EZ"? 9(u)+ ”g'! 7(n), by definition of P, Q, R,
= W(P)+pe§0min {(n), g(e)}+ ZR 2 min {p(z), ¢(v)}

1eR 71eA(y)

=we)+ 3 F(BE+ 3 3 F(BE)

peP,

= w(p)+ EQW(S,.H- > 2 w(S,)

#e neR reAl(y)

= wphtel{ Y SH+e UL U sl
= w(S), |

and the proof is complete.

References

(1] C. Berge, The Theory of Graphs (London, 1962).

[2] K. Maghout, ““Sur la détermination des nombres de stabilité et du nombre chromatique
d’un graphe’” C. R. Acad. Sci. Paris 248 (1959), 3522—3.

[8] O. Ore, Theory of Graphs (Amer. Math. Soc. Coll. Pub. Vol XXXVIII, 1962).

[4] H. 1. Scoins, “The number of trees with nodes of alternate parity”, Proc. Cambridge
Philos. Soc. 58 (1962), 12—16.

Department of Mathematics

University of Malaya
Kuala Lumpur, Malaysia

https://doi.org/10.1017/51446788700004031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004031

