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THE STABILITY OF LU-DECOMPOSITIONS
OF BLOCK TRIDIAGONAL MATRICES

R.M.M, MATTHEIJ

An investigation is made of the stability of block LU-

decomposition of matrices A arising from boundary value

problems of differential equations, in particular of ordinary

differential equations with separated boundary conditions. It is

shown that for such matrices the pivotal growth can be bounded by

constants of the order of ||A|| and, if the solution space is

dichotomic, often by constants of order one. Furthermore a

method to estimate the growth of the pivotal blocks is given. A

number of examples support the analysis.

1. Introduction

Block tridiagonal systems of linear equations occur in a wide variety

of problems, in particular in discretized differential equations. Roughly

speaking, one may distinguish between systems where the block structure is

induced by the ordering of the gridpoints, as in finite difference or

finite element methods for partial differential equations, and systems

where a block partitioning is employed just for computational reasons,

usually in boundary value methods for ordinary differential equations. In

the latter case the off diagonal blocks then systematically have a number

Received 17 October 1983- This work was supported in part by the
Netherlands Organization for the Advancement of Pure Research (ZWO) and the
Niels Stensen Stichting.

Copyright Clearance Centre, Inc. Serial-fee code: O0Ol*-9727/8U
$A2.00 + 0.00.

177

https://doi.org/10.1017/S0004972700021432 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021432


178 R.M.M. Mattheij

of zero rows. In solving such a system one may prefer to employ block LU-

decomposition where the zero pattern is preserved. The existence and the

stability of such decompositions have been investigated in Keller [4],

Varah [ H , 72, 13]. For the first class of block tridiagonal matrices,

concepts reflecting certain analytical properties of the original partial

differential equations, like positivity, positive definiteness or diagonal

dominance are often sufficient in order to show this existence and

stability. For the second class the aforementioned concepts usually do not

make sense, because of the rather artificial partitioning. Therefore there

is a need for a theory that justifies the use of block LU-decomposition in

more general cases.

Although some of the estimation methods we give in this paper in

principle hold for general block tridiagonal matrices, we shall concentrate

most of our attention on matrices belonging to the second class. Such

matrices arise in ordinary differential equations where separated boundary

conditions are given and the discretization method can be described by a

one step recursion. We show that the partitioning is closely related to

the splitting of the fundamental solution of this ordinary differential

equation into nondecreasing and nonincreasing solutions. In this way the

LU-decomposition can be looked upon as a decoupling of these solutions. As

a result we can show that suitable pivoting strategies, that preserve the

zero pattern, lead to a stable block LU-decomposition.

In Section 2 we give an explicit formulation of the LU-decomposition.

In Section 3 we consider the special type of block tridiagonal matrices as

was indicated above. In Section 1* we give a number of estimation methods

applicable to both classes of matrices. Finally, a number of examples in

Section 5 support the theory.

2. LU-decomposition of block tridiagonal matrices

Consider the linear system

(2.1) Ax = b ,

where A is a block tridiagonal matrix with blocks of order n , that is,

A can be written as
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(2.2) A =

N-l

Let I (0 2 1 5 n) denote the number of first rows of the C. that are

systematically zero and k (0 < k 5 n) the number of last such rows of

the A. . We now look for block LU-decompositions that have as many

systematically zero rows in the off diagonal blocks as A has. This may

allow left and right multiplication of A by certain block diagonal

matrices D and E say, which do not disturb the zero row pattern. So

we investigate the factorization

(2.3) A := D A E = ILL) ,

where IL and U must have the form

' I
0

(2.U) IL : =

N

IU : =

N-l

U.
N

It can easily be checked that the proper zero pattern is preserved if

Assumption 2.5 is satisfied.

ASSUMPTION 2.5. Let k + I = n and D be a block diagonal matrix

of the form D = dlag^d^n-k) , D^ ..., D dN(k)~), where

Dp, ••-, D^ are nth order nonsingular matrices and dAn-k), dAk) are

(rc-fc)th order and feth order nonsingular matrices respectively. Let E

be a block diagonal matrix of the form E = diag(s , ..., £„) , where E.
X It J

is nonsingular and of order n .

If we partition A as A in (2.2) then we obtain (in an obvious

notation) from (2.3):
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180 R.M.M. M a t t h e i j

( a ) U^ = § 1 ,

( 2 . 6 ) ( b ) Ui = B i - AJjfJ^ , 2 < i 5 « ,

(c) h - W-i •
In the sequel we assume tha t ||*|| denotes a Holder norm. In order to

examine the s t a b i l i t y of t h i s LU-decomposition, we need bounds for ||IL||

and ||IJ|| , and in p a r t i c u l a r for ||L. || and \\U .\\ (of. Varah [77] ) . From
Is If

(2.6) we see that both ||L.|| and ||U.|| {i t 2) can be estimated if
Is If

min glb(i/.) = maxlyT1! i s known. The bound ||IL||||U|| may be used as
0 \ l_ II ^ 111 J

a s t a b i l i t y constant in a backward error analys is . However, the nice

bidiagonal form of IL and U may sometimes also make a forward error

analys is a t t r a c t i v e (of. Mattheij [S ] ) , in which case we may use estimates

for L. and U. d i r e c t l y . On account of t h i s we therefore focus our
Is Is

attention to finding estimates for the blocks in IL and U . The first

method we shall deal with, is based on comparing them to a special LU-

decomposition, namely,

(2.7) DAE = ILL

(with matrices like those in (2.3)). From (2.3) and (2.7) we obtain

(2.8) U E ^ E L T 1 = IL~1DID~17L .

The matrix on the left in (2.8) is block upper triangular (like U ) while

the matrix on the right is block lower triangular, but with a different

block structure in general (that is, like D ). In order to describe more

precisely their common form, let us use the following notation for blocks

(2.9) P =

pll plS

p21 -22
P is a k x k matrix.

P

For the matrix in (2.8) we can then write
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(2.10)

'•. KB-1

whore

(2.11)
H22 0 0

By consistently denoting blocks in L.t L. as

Li =

I22

•z.

_0

L21

i

0_
' ~Li =

If
_0

~L21

^

0

(2.12)

we obtain the following explicit expression for the matrix in (2.10).

PROPERTY 2 . 1 3 . Define

p?1 P22 , 2 < i < ff-i ,

:= 0 .

pL2 722 11 72 -2
i+1 i+1 i+1 ̂  ci+lui

21
/r12 - P 1 2ff. =

Proof. The relations above follow from simply writing out blocks in

IL D D £ , in which one should realize that only the first block

codiagonal of L is of interest; this in turn is equal to the block

codiagonal of L but for minus signs in front of the L. . Q

PROPERTY 2.14. U. = H.U.E.E'.1 .
i ^ ̂  x. ̂
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182 R.M.M Mattheij

3. One step recursions and tridiagonal systems

There exists an important class of block tridiagonal systems where

k + I = n , namely the equations resulting from solving ordinary

differential equations with separated boundary conditions. These equations

consist of the boundary conditions plus the one step recursions in the

multiple shooting method, the collocation relations or difference equations

(as in the Box scheme), {of. Ascher [J], de Boor [3], Keller [4, 5],

Russell [JO], Varah [II, 12, 13]). They can be written as follows:

(3-D

(3 .2) F.x. = G.x.

(3.3)

S an (n-fc) x n matrix, e. some (n-fc)

vector;

+ a.

n * n matrices of which we assume G. to be nonsingular;

1 < i < N-l , where F. and G. are
i t

= e S a k * n matrix, e some k vector.

Hence a matrix A is given by

(3.U) A =

N-l
-G
N-l

N

It can easily be seen that A in (3.1*) can indeed be partitioned as in

(2.2) and such that the C. have (n-k) zero rows and the A. have k

zero rows. In this section we would like to discuss the stability of block

LU-decompositions. This discussion is different from those in Varah [II,

12, 13], in that we try to relate pivotal growth to properties of the

originating boundary value problem. This relationship can best be seen

from a very special LU-decomposition, which we derive first.

In Mattheij [&, 9] a method was introduced to compute solutions

(a;-}-_T o f (3.1), (3-2) by using transformed versions of the incremental

matrices G. F. , with a (block) upper triangular form. The decoupling in
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these (block) upper triangular incremental matrices reflects the dichotomy

of the solution space (if present) and can be employed to compute the non-

increasing and nondecreasing components of the solution separately by using

an appropriate direction (that is, forward and backward, respectively). It

goes as follows.

Let Q be an orthogonal matrix such that

(3.5) «A - (• I Jf]
~22

where 5 is an (w-?c)th order (possibly upper triangular) matrix. Then

recursively compute sequences of orthogonal

upper triangular matrices \v.} such that

recursively compute sequences of orthogonal matrices {§.} and (block)

(3.6) Wi •
We use the partioned notation [of. (2.9))

(3.7) V. =

0 f

Apparently the sequence

(3.8)

a k x k matrix.

satisfies the decoupled recursion

^ i

'i := Q~iXi i n t o xwhere x. has kIf we partition the vectors

coordinates, then the decoupled form (3-8) can be employed to compute

xT^ first and then the sequence \x.} (for details see Mattheij

Under fairly relaxed conditions, moreover, this method is stable.

REMARK 3.9. Although it is outside the scope of this paper to

compare numerical methods with respect to efficiency, it seems that the

above described algorithm is not less efficient than other LU solvers and

certainly does not require any pivoting strategy.
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We now show that the above described algorithm is related to block

LU-decomposition. Define

(3.10) (b) SN = (sj1 | Sj2] := Sfa , S^1 a k x k matrix,

(c) d^n-k) = In_k , ~dNW = Ik .

Then we can form a b l o c k t r i d i a g o n a l m a t r i x A [of. ( 2 . 3 ) , Assumption 2 .5)

A := DAE =

0 - i 0

! -r
j.

vi1 vi2

I f an LU-decomposit ion of A e x i s t s , say A = ILU , t h e fo l lowing

e x p l i c i t e x p r e s s i o n s h o l d f o r t h e mat r i ces say U., L., C. (of. (2.1*),

( 2 . 6 ) ) :

(3.11) (a) C. =
0 0

-J 0
. ^

0

(3.11) (b) Ui =

- J

T, %

i [-iiT
1}

- i

2 < £ < iV-1 ;
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(3.11) (c)
"f

C-l

0 0.

(3.11) (d)

-l

ff

Sufficient conditions for this decomposition to exist are given in

PROPERTY 3.12. If rankfsj = n - k and if, for all i , F. is

nonsingular then the block lAS-deaomposition of A exists.

Proof, rank[S ) = rank(5 ) = n - k implies S is nonsingular.

Moreover P.- nonsingular implies V. nonsingular implies Vr non-

singular. Hence for i = 1, , tf-1 we find nonsingular U. . D

It can simply be seen from (3.11) that the decomposition A = ILIU is

stable, since we have

THEOREM 3.13. Let A be nonsingular. Then the decomposition

Sf \ = a ; then

' 3 5 i 5

2

+ 1 •

We now show that almost similar estimates hold for other block LU-

decompositions, provided a (restricted) partial pivoting strategy is used

(Keller [4]). We shall focus on an obvious (special) method. The basic
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idea is that one may use LU-decomposition to compute U. in (2.6).

However, to ensure its existence it may be necessary to permute rows of

F. . In particular, without these permutations B may be singular;

even if B is nonsingular we need special precautions to make the

restricted pivoting work at all. We shall describe three variants to do

this.

VARIANT I. Perform a "classical" LU-decomposition (with partial

pivoting) of 5 . Use the thus found pivotal rows also to produce zeros

in the first I columns of F Assuming this decomposition exists and

neglecting permutations this can be described as

'L1 I
1 0

I.3

i n-l
0 y3

1 2

where L is an Z- * Z unit lower triangular matrix, L is an

{n-l) x I matrix, L an I * I matrix, u an I x I upper triangular

matrix, u an I x {n-l) matrix and U an n x {n-l) matrix. After

this we perform an LU-decomposition (with partial pivoting) of £/ , say

(again omitting permutations)

(3-15)

where L is an {n-l) * {n-l) unit lower triangular matrix, L an

I x {n-l) matrix and U an {n-l) * {n-l) upper triangular matrix.

Combining (3.11*), (3.15) we obtain

(3.16)

s i

FX

'L1

L2

L 3

l
1

"T
1

1
1
1

0

7
z,5

y1 y2

3 v\
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It is important to realize that the possible permutations do not introduce

nonzero elements in the zero blocks in (3-l6). Obviously we should use the

factorized matrix

(3.17)

3 y_

to compute U in (2.6). Moreover we see that we can compute L in

(2.6) as

(3.18)

J L2 Lk

-1

This process can now be repeated to obtain an LU-factorization for the

next pivotal block £/ ; for this one should realize that CL can be

found from after permuting the rows of G in the same way as the

rows of F
.

The crucial point in Variant I is the existence of a nonsingular IT .

This existence is not assured in general. The next two variants deal with

this problem.

VARIANT II. Let Q be an orthogonal matrix such that

[3.19) : 0] ,

where IT is an 1*1 upper triangular matrix. As was shown in Mattheij

[S] the matrix <2, can be found as a product of I elementary hermitians.

This implies that multiplication of vectors with this matrix has a

complexity of 0(^(w -I )) only. Next compute

(3.20) Fl -

We can now proceed as in (3.1^), (3.15), by computing an LU-decomposition

of We thus obtain
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sl

_
- 1 -

l 1

L2 •
I
I

0

Lk
>

_0

0
(3.21)

If we allow for permutations in the rows of F we see that this

factorization always exists.

Quite often the matrices -G. are identity matrices (of. the matrix

A ). For simplicity we assume now that S.. has a corresponding form; so

let us assume (for Variant III)

(3.22)

We then obtain:

S± = [0 i = -In

VARIANT I I I . Let P be the permutation matrix

(3.23) Pl =

Ln-l

I

Then, identifying P with Q in (3-19), (3.20) we can find a

factorization like in Variant II, giving

(3.2U)

h

L2

I?

I
I
1
I
1
I
1

0

Lk
-h

Note that are just the first I columns of ~F->P-i • The next step

(that i s , in which we determine an LU-decomposition of £/„ ) is preceded

by permutation of the second block column of A as follows. Let P be

the permutation matrix arising from permuting the rows of F-,P-i • Then

P-.G (= P ) and F are post-multiplied by P f i r s t . After this we

https://doi.org/10.1017/S0004972700021432 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021432


Block tridiagonal matrices 89

have a similar form for as for 5

In order now to give estimates for the L. and U. we use

LEMMA 3.25. In (3-16), (3-21) and (3.2!*) the following estimates
hold:

|| [LXr\ 5 2U1 , II $ T \ ± 2n'1-1 , \\L\ 5 VTU^T) .

Proof. Since we used part ial pivoting we know that the multipliers in
1 1+ 5

L , L and L are bounded in modulus by 1 . Straightforward
computation reveals that

i - l i
2 ' . *.

2l~2 2* i" 1

whence

Likewise we find

^ M (ii&1r\ii&1r1L]*-21-1.

< 2n~l~1 . Trivially also ||L5||2 5 Vl(n-l) . D

THEOREM 3.26. (i) If in Variant I the permutation matrices in the

(restricted) pivoting are such that the block diagonal matrix IDD [cf.
(2.3), (2.7)) has the same block structure as E 3 that is, if for all i >
K. = 0 in (2.10)j we can guarantee stability; we then have {cf. Theorem

3.13), with, y = 0 ,

I|£2 I I 2 + y

11̂ 112 ^ l l ^ l l g + l l ^ l

\Wi\\2 ^ l l^ l l 2
 + I l ^

\WN\\2 s l l ^ | | 2 + I I V

, 2 5 i < N-l ,
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Y =

Y =

Hi) In Variant I I the estimates above hold with

(Hi) In Variant I I I the estimates above hold with

>n XVl{n-l) and CT = 1 .
II ^ II

Proof. (i) From Property 2.13 we see that

~ — 1 '"—l
S i n c e E.E. i s an o r t h o g o n a l m a t r i x , we have ff.ff.v % II •* *

a l l o r t h o g o n a l m a t r i c e s Z, Z* we have ||Z«Z*|| = II'IL •

= 1 . Also, for

Now

H.U. =
Ll ^11 p l l ^1
+1 t t+l ^

i > 2) .

Apparently

whereas P^2 S ||G. || . I f i = 1 the upper r ight block in V1

II "- Ho *"~J- ^

equals -P7 5 , which i s bounded in norm by ||S || . The estimates for

||J/.|L now follow immediately from Property 2.lU. The bound for L.
id i

follows from (2.10) , namely, from the relation

h - w£

(for i = 2 similarly). If we drop the assumption that K. = 0 , then
i

t h i s bound for ||L. |L does not hold. As we remarked before , Variant I may

not work, which in pa r t i cu l a r means tha t ||L.||O may be unbounded. Note

https://doi.org/10.1017/S0004972700021432 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021432


Block tridiagonal matrices

that \\L. 5 Y (see (3.8) and Lemma 3.25) but that L. may not exist.

For Variants II and III we obtain (of. Property 2.1*0

0

HiUi =

1 1 1

i+1 i i+X i i+l

Moreover P^2| | , P2-2 5 ||G. || , wh i l s t £ 2 1 | can be est imated from
II *• ll2 II * H2 " "2

( 3 . 1 8 ) , using Lemma 3.25. We find L 2 1 S Y ; the same

bound holds for . Again using the fact t h a t S.ffT1 = 1 the
Ho II *• '- l i p

II 22II
bounds for ||f.||o now follow simply. We next estimate £ . From

*• *- II ^ II2
. By(3.18) (with i 1 = I 7 ) we see tha t L2 2 = L3 - T? [L ]

construction we have ||I lr~|| 2 \\F \\ =» \\L \\ < ||F || /gib [u ) and l i k e -
d 1 d d \ d d

wise | |£2L 2 ll^JIp/glbgtf/1) . Hence using Lemma 3.25 we obtain

{r\
— IK-, IL/glbo \SZ [l+Y] . A s imilar estimate follows for

1 2 d{ ±)
2?

i f

we replace glbg S7 by
c

(Hi) if, in particular for all i- , G. = 1 , then we may replace

(7. by 1 in the estimates above. O

REMARK 3.27. The term Y in Theorem 3-26 (ii), (Hi) is usually a

n-l-X
severe overestimate. In fact 2 is the famllar upperbound for the

growth factor encountered in a classical backward LU-decomposition

analysis and is very likely to be a fairly small number; also the factor

Vl{n-l) is a result of taking a worst case.
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REMARK 3.28. Qualitatively the bounds in Theorem 3.26 show that

= °(||A||) • For the estimates of the ||L.|| are just moderate
1

numbers, more or less independent of the scaling. The estimates of the

A .

. || (and tr ivial ly of the ||C.|| ) are of the same order as the blocks in

As we noted in Section 2 we might as well consider a forward error

analysis necessitating us to find bounds for ||L.|| and \\U~. (or rather

for the solutions of the forward and backward recursion). As was shown in

[7] this can be done quite conveniently for the decomposition (2.7) with ID

and E as defined in (3.10). In particular, if the solution space of the

underlying ordinary differential equation is dichotomic i t follows that

I t follows then that ||A ^IL mainly depends on the proper "choice" of

II p22J~'''ll
5 and S~ (in particular 5 should not be large; of. Theorem

1 " III 1 _1 lip
3 .13 ) . Below we give a s o r t of reverse r e s u l t of t h i s : i f ||A |L i s not

l a r g e then we have a kind of dichotomy of the so lu t ion space. Theorem 3.29

can a l so be seen as an analogue to [2 ] for block t r i d i a g o n a l mat r ices .

THEOREM 3.29. Let \\S^\\2 = | |S^| |2 = 1 and, for all i , = 1 .

Define K := ||A | Then there exists a fundamental solution

of (3.2), that is F.$. = G.$. , i = 1, . . . , N-l , such that
"LI* It 7 + l

( 1 2 \
(i) for all i , *. = $. | $. with, for all i ,

k n-k

K and, for all i ,

(ii) max
i V

-1

S K
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Before proving this, we would like to remark that Theorem 3.29 d)

shows a kind of dichotomy of the solution space; it, for example, follows

that no solution in span($ J can "increase faster" than K ; that is,

<t> € s p a n $2[*=> 3v € ^~k s u c h t h a t V.<|>. = £v\ => V .||<j>.||o/||<(>J| 5 K .

The result in Theorem 3.29 (ii) precisely means that the condition number

of the boundary value problem, as was defined in [9], cannot exceed K .

Proof of Theorem 3.29. Consider the equation AZ = W , where Z and

W are block vectors (nN x n matrices) of which W is given by

W =
0 J.

n-

(0 0]
0 0

0 0

-I 1 ***oo

Since A is nonsingular it follows that the V. and also 57 and
i> 1

are nonsingular {of. (3-11) and Theorem 3.13J-

By substitution it can now be checked that

Z. =

N

where a product like \ I v. has to be understood as v. . . . VI ,

empty products are 1 and empty sums are 0 and where we have denoted for

short

and

4- i.
3=1 Ui

- i - l

Apparently {.Z.}̂ _ satisfies Z. n = V.Z. , i = 1, ..., tf-1 . Since

https://doi.org/10.1017/S0004972700021432 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021432


194 R.M.M. Matthei j

Z = A Hi , we obtain

= K .

Consider now the (obvious) partitioning for Z. :
1

We then have

( a )

We also have

Z . =

«?

^ 1 of order k

s -ff I < K .

I f we define $. := Q.Z. , then {*•}•_, clearly is a fundamental solution

of (3-2) and statement Theorem 3.29 fi-> directly follows from the unitary

invariance of ||*|U and gl^o and (a) and (b) above. Moreover, since

0
Z + Z = I , that is

0

*, + I

we see that

0

r0

V
[S

N

"1

=

2

f0

_ 1 0- _

- 1

S K

D

4. Pivot estimates for general block tridiagonal matrices

For some types of discretizations a priori knowledge about a possibly

dichotomic solution space and also about the conditioning of the discrete
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problem may not be available, so that the results of Section 3 may not be

directly applicable. Also if the tridiagonal matrix cannot be linked to a

one step system, as in (3.1) one must try to find other ways to establish

stability. In this section we therefore give some estimation methods which

complement results like the ones given in Varah [7 7, 72].

Inspired by (2.6) we shall use estimates based on the nonlinear

recursion

^ ui - Pi + ̂  •

In [6] it was shown how one can obtain (often sharp) estimates for the u.

in terms of the fixed points of the functions \\). , defined by

(U.2) ^(s) :=Pi + - ^ .

Obviously \p. has two fixed points, say a., $. with la. I > l$.| . We

have the following estimation results.

THEOREM 4.3. For all i l&t p. > 0 > q. and p. > -hq. [that is,
If % 1 * 1 * '

a. > 3. > 0 ). Assume min a. > max 3 • • If w7 5 a, for some I ,
v %• j . j l t+l

J d

then u. > min a. for all i > I .

Proof. Induction. One may, for example, use the relation

u. = a. + 3 . - a.&./u. . If u. > a. , then M. > a. and if
1, i, 1, % % 1f—x 1f—\. 1? If %

u. n S a. , t hen u. > u. n {of. a l s o [ 6 ] ) . D
%—_|_ % 1, If—I.

COROLLARY 4.4. For all i let p. > 1 - q. [that is a. > 1 ) . If

M7 > 1 for some I , then u. > 1 for all i > I .

COROLLARY 4 .5 . For all i let p. = 1 , -\ < q. < 0 [that is

a. = h[\+y/\+kq.) ) . If «7 > l for some I , then
if I* if

It is fairly straightforward that Theorem U.3, Corollaries h.k and U.5

still hold if instead of (U.l) we have the inequality
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(U.6) u. > p . + —=
^ i u.

Upperbounds for W- , tha t i s , lower bounds for glb(y.) may then be

found by subs t i tu t ing u- := glbfi/.) , u. := gib B. U.\ and
Is Is Is \ Is 1s \

u- := gib \U.B. ., respectively in the inequalities given in
7. \_ 1 V—L)

PROPERTY 4.7. (a) g l b ( y ) > glb(B ) - \\A \\\\C J | /g lbfy ) .
fs is Is U — X. ' ts—±.

(b) glbfsT1^] > 1 - I f c 1 ^ ! ^ 1 ^ ^
v,BM > I - b x c. B~X /gib y B

 x .

Is Is J I) Is fc'—±|| Jl Lr—X IS ^ ls—X ls~~J-l

P r o o f . P r o p e r t y U . 7 fa,) f o l l o w s d i r e c t l y f r o m ( 2 . 6 ) ( b ) . F r o m ( 2 . 6 )

( b ) w e a l s o d e r i v e

Bi i = I ~ BiAi\Bi-±Ui 1 Bi lCi 1 '

Taking norms and u s i n g a p p r o p r i a t e i n e q u a l i t i e s g ives P r o p e r t y U.7 (b).

-1
Similarly Property 1*.7 (a) follows from estimating U-B. . •

EXAMPLE 4.8. Let BT 1 ^ . BT1, C. J 5 \ , for 2 < i S tf . Since

gib B y = glb(I) = 1 , we deduce from Corollary U.5, (i+.6) and Property

U.7 (b) that gib B^y. > ̂  , whence glb(y.) > h glb(B.) , or

This result is similar to Varah [JJ,equivalently ,-1 S 2IIB-

Theorem 2.2]. The estimates in Property U.7 all are fairly rough. With

some extra effort we can sometimes give sharper results if we have a block

tridiagonal matrix arising from a one step recursion. Consider the

recursion [of. (2.6) (b))

(U.9)
~-i *• ~-i n ^-i i o- ~-i

.B. = J - A.B.\ \u. B.\ a. B. .
v % i t-l|^-l T'-^A 'z--l I

If the first n - k rows of C. n are zero then also those of C.
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*> 8 - 1Similarly we see that the last k rows of A.B. are zero. Denote

(it.10)

11 12
a. a.

21 22

n-k

We obtain then (e/. Varah [72, Lemma 3.1])

:= C. ,S. , y. := U.B.1 .

PROPERTY 4.11. Assume lu'f exists. Then U. is a block upper

triangular matrix of the form

Ui =

di

where \d.\._. and {e.}._. satisfy the recursions

Fllr, n-1 12]
e . = \ a - [ a . .\ e . . - a . \ a . . . e = 0 .^ |_^ n - l J ^-l t J ^-l J l

The proof follows from a simple induction argument (note U = J ) .

COROLLARY 4.12. If, for all i , e ? 1 is nonsingular then glb(d.)

can be estimated from below using

Consequently, \\e . \\ can be estimated from above using

' U2<2\\
«•*•'-

Once, for example, {glb^Oi^)} and are estimated, an estimate
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for \ll• i s given by

< max

Proof. I f a.1 i s nonsingular, then e. = (d.-j) e . 1 a2.2 . •
% 1 1 L^-Ll i-±

REMARK 4.13. Apparently we need n - k = k in Corollary U.12. This

corresponds to a boundary value problem where at each boundary point the

same number of relations for the solution are specified. We can also give

22
a corollary like Corollary U.12, now assuming c. is nonsingular (note

22 •»
a. is a square matrix). We then obtain a nonlinear recursive inequality
1

for |]e.|| which then can be used to estimate gib (d.) and so on.

The glb(d.) values may now be estimated using the method outlined in

the beginning of this section. In the next section we give an example of

this.

5. Exampies

In this section we give some examples where we shall estimate the

pivots.

EXAMPLE 5.1- Consider the selfadjoint ordinary differential equation

(5.2) (a) [At)y') ' - s(t)y= f(t) , 0 < t <, 1 ,

with r > 0 and s > 0 . Let the boundary conditions be given by

(5-3) ay(O) + gt/'(O) = gQ , yy(l) + 6t/'(l) = ̂  .

Suppose we want to solve this problem numerically by using the midpoint

rule applied to the system

y' = z/r ,
(5-2) (b)

2' = sy + / •

The recurrence relation then has the form {of. [J2, (2.2)]]
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(5.U)

-h/2r.

-hs./2
d

z .

1 h/2r.

hs./2 1 z .

where y. and z. are approximations for y[(j-l)h) and 3((j-l)7i)

respectively, r. and s. denote r((j-|)/i) and S((,/-|)7J) respectively
3 3 *

and h = l/(iV-l) for some N . We thus obtain a problem like (2.1) where

the unknowns are y^, zx, ..., y^, z^ :

(5-5)

a

1

hs2/2

0

*/(2iV,)

1

0

0

- 1

hs2/2

1

0

V (2r2)

- 1

*/f2r3)

Identifying A with A , we then find

2 1

A.B-.1 =
^ l

1 0

C. B'.1 =
i-l ̂

Now let ^ be such that

(5-6) min
^

-1

h2 si-l
k r .

0

1

1
1

1
1

h ,
2 I''i-l^i-21

0

, 2 Zi <N
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Then in the inequa l i ty glb(<2.1 > p . + q./gVoid. ) for i > 3 , where p .

and <7. are as in Corollary U.12, we have p . = 1 + m. + n . » <? . = -n . ,
"Ze 1r Is U ts Is

for some pos i t ive m. and n . ; that i s , p . > 1 - q. for i > 3 •

Using Corollary U.U t h i s then gives

(5.7) (a) glbfdj > 1 , i > 3 .

Also from Corollary U.12 we obtain

a-0(^/22.(0)) (h/2) ((l/rj
(5.7) (b) glb(d ) > 1 +

Hence

(5-8) 3/a <0 =* glb(d2) > 1 .

Consequently i f h is sufficiently small and 3/a < 0 , we see that, for

a l l i , gTbfd.) >1 (note gib (d) = 1 ) . I t is also fairly simple to

see that (of. Corollary U.12)

( 5 - 9 ) K l < | ^ _ x l - | K - i + s i - 2 ) . * * 3 .

So

and as a consequence we find the following estimate for the pivot U. :

EXAMPLE 5.12. Consider the same problem and the same scheme as in

Example 5.1. We would now like to investigate stability by using

properties of the one step recursion. Denote for short

(5.13) ^ ! = |^7-

Then
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zi-x
i (for some .f\ )

Assume s > 0 . Then we obtain, for the eigenvalues A., u. (A. > U-) of

the matrix in (5-11*),

(5-15) A. =

The corresponding eigenvectors, a. and h. respectively, are

(5.16) ffi = (i, v^iT)31 , ^ = (l, - - ^ i T ) 7 .

From Mattheij [6] it then follows that there exists a homogeneous solution

andt o ( 5 - l U ) , (j)1 := U].\ s a y , w i th (J)]" = g

n II || i ||
£ / O <

1̂1 II Jll

1
j > i , where a = 0(l) .

2
Similarly there exists a solution (J)

(5-18)

:= \§-\
2

say, with ())„ = h and

AT1 , for j < i .

We may as well normalize these <)> and <(> such that for $:=(<)> | <j> )

we have max II*. II = 1 . This gives a factor a' rather than a in the
i

estimates (5-17). Suppose we use the max norm, we than obtain

(a) \%X < e := a' exp -min AT1 a O(exp(-min/e./r.j) ,

|| -L (J j L *" J 1 % u '

(5.19)
= 1 ;

The estimates in (5-19) can now be used to find a bound for the condition
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number of the 'boundary value problem [of • (3.16)) . To this end define

(5-20) B : = •. +
10 0

0 0A N

0(6)

n

where B := B/**(0) , 6 := 6/r(l) and %, := (a,

The condition number is then given by

K := max "" ""1"

and n := (Y,

It is not restrictive to assume that max( |a|,

We then see

= max( = 1 .

(5.22) 3/a <0 and S/y > 0 «• |n| , \c,\ ~ 1 .

In this case therefore K = 0(l) . From Mattheij [9] it then follows that

" "2! gives 0(N) . In fact

..-1even \\U. = 0(1) holds from what has been remarked on page 192.

$. =
1

1

o

hi

1

EXAMPLE 5.23. In Varah [12] the problem in the previous example was

considered for the case v = 1 , s = 0 . We then do not have a

significantly dichotomic solution space. A fundamental solution is given

by

(5.2»O

Again, i f g/ct < 0 we can show that we have a well conditioned problem and

thus prove s tab i l i ty , as was also established in Varah [12]. I t is not

I -lllU. | as above,

namely #• » N is realistic now.
II II oo

EXAMPLE 5.2 5. Consider the Laplace equation on a rectangular two

dimensional region

(5-26) Aw = f , u = M(X, y) ,
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and let Dirichlet boundary conditions be given on three consecutive sides

and Neumann boundary conditions on the other side. If we use central

differences for discretization and the usual ("reading order") ordering of

grid points, we obtain a matrix A which typically has the form

(5-2 ) A =

21

T

0

0

•T 'I

I T

T =

1

-k' • 0

" - I t " '

1

1

-u
For matrices like A in (5-27) it is sometimes important to know whether

there exists an LU-decomposition, not for computational reasons (as there

exist much more efficient iterative methods) but for theoretical purposes;

in pa r t i cu la r we can then give a bound for , if we can bound the

/71
To find a bound for \\U. we use Property k.'J (a).IIL. and

We obtain

(5-28) glb2(T) > 2 .

Hence in particular

(5-29)

Since

(5.30)

we f i n d from C o r o l l a r y k.k t h a t , fo r a l l i ,

£ 2 - 2 / 2 =

(5-31) < 1 .

A similar r e su l t follows by applying Theorem 2.1 in Varah [ J 7 ] .
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