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One of the most challenging stages in any microscopy workflow is the ability to transform images into 

rich digital models of segmented data. These models enable quantification of features of interest and 

power data-driven analysis. Frequently, the greyscale output from detectors carry both a variety of 

modality-specific artifacts and noise that cause, as resulting images become more complex, the failure of 

threshold-based segmentation approaches [1]. When visually inspecting such images, the brain acts to 

smooth out such noise and recognize patterns in the data to extract information through the artefacts, but 

such a process has frequently proved hard to automate and capture in a computational form. Instead, 

traditionally science has relied on the hard work of researchers to manually segment such artefact ridden 

images, however, as datasets grow larger, more complex and more multidimensional, such manual 

approaches become more and more challenging to scale. Also, if such imaging technologies are going to 

be used at an industrial scale, manual segmentation is unsustainable. 

 

The last 20 years has seen a transformation in a wide range of fields, widely grouped together under the 

umbrella of “Machine Learning”. While these technologies have transformed many areas of data science 

ranging from medical diagnosis to stock market analysis, frequently image analysis for microscopy 

(outside some specific areas of application) has lagged behind developments in other fields. The power 

of such algorithms, when applied to segmentation and classification problems in microscopy lie in their 

ability to create arbitrary classifiers which operate in much higher dimensional space than simply the 

image output from a specific microscope detector. These higher dimensional spaces may be (spatially 

and / or temporally correlated) images acquired in different imaging modalities (i.e. using different 

detectors, energies or techniques to extract different properties from the sample) or derivative images 

derived by applying a range of filters to the sample (e.g. gradient, smoothing or textural filters to extract 

different local and non-local features from the image). 

 

High dimensional feature extraction is often computationally expensive, we propose a solution that 

reduces significantly time-to-knowledge turnaround on commodity workstations. It overcomes these 

challenges by leveraging the success of widely adopted methods in the data science field with out-of-

core algorithms to achieve the much-needed performance in time sensitive analysis. In this paper, we 

show results enabled by the aforementioned solution for two applications in the geological analysis 

space, lithological classification of heterogeneous rocks and 3D mineralogy. In the first application we 

attempt to address one of the most challenging issues when analyzing subsurface geological samples 

using X-ray microscopy; that of heterogeneity [2]. Frequently the resolution required to image the 

fundamental pore structure of real rocks comes at the expense of a field of view representative of true 

subsurface heterogeneity. Multi-scale approaches must be used, first to characterize heterogeneity at low 

resolution before finally zooming to image specific locations based on the macroscopic map. As the 

microstructure is not explicitly resolved in the large field of view scan, each voxel represents some 

average of local pore and grain. Machine learning can be used to classify the rock into high and low 

porosity region based not only on local greyscale, but on non-local greyscale averages and gradients 
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(figure 1). This can be used to not only drive the downscaling locations for high resolution interior 

tomography, but also upscaling and creation of a computational composite model [3]. 

 

In the second application, we show how multimodal imaging can be used extend 2D mineralogical 

information into 3 dimensions on a multi-mineralogical sandstone sample. First a high resolution 3D X-

ray microscopy image was acquired of the top section of a sample, while a 2D mineral map was 

acquired of the top surface (using quantitative EDS mapping). These two datasets were then spatially 

correlated such that training regions could be defined across the top surface of the 3D volume using the 

2D mineralogical classifications. Machine learning was then used to generate generic classifiers for the 

3D volume so the mineralogical classifications could be extended into 3D (figure 2).  
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Figure 1.  Lithological classification of rock sample, using Machine Learning techniques. High porosity regions 

are shown in green, low porosity regions are shown in red and a fracture running through the sample shown in 

blue. 

 
Figure 2.  3D Mineralogical distribution found by classifying 3D XRM datasets, with training guided by 

correlated 2D mineralogical information. The red shows quartz regions, blue feldspar, green clay minerals and 

yellow pyrite. 
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