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UNIQUENESS OF COMPATIBLE QUASI-UNIFORMITIES 

BY 

CHARLES I. VOTAWC1) 

ABSTRACT. It is shown that a topological space has a unique 
compatible quasi-uniformity if its topology is finite. Examples are 
given to show the converse is false for 7\ and for normal second 
countable spaces. Two sufficient conditions are given for a topo
logical space to have a compatible quasi-uniformity strictly finer 
than the associated Csâszâr-Pervin quasi-uniformity. These con
ditions are used to show that a HausdorfF, semi-regular or first 
countable Tx space has a unique compatible quasi-uniformity if 
and only if its topology is finite. Csâszâr and Pervin described, in 
quite different ways, quasi-uniformities which induce a given 
topology. It is shown that, for a given topological space, Csâszâr 
and Pervin described the same quasi-uniformity. 

1. Introduction. Fletcher [2] showed that every finite topological space has a 
unique compatible quasi-uniformity (which he called a quasi-uniform structure) 
and conjectured that a topological space (X, T) has a unique compatible quasi-
uniformity if and only if the topology r is finite. In §2 of this paper it is shown that 
this conjecture is false, but that a finite topology does imply a unique compatible 
quasi-uniformity. 

A sufficient condition for (X, T) to have a compatible quasi-uniformity strictly 
finer than the Csâszâr-Pervin quasi-uniformity (see §5) is found in §3. This is used 
to show that Fletcher's conjecture holds for either Hausdorff or semiregular 
spaces. In §4, another such sufficient condition is found and is used to show that 
Fletcher's conjecture is true for first countable 2\ spaces. 

One rather obvious approach to the question of when a topological space has a 
unique compatible quasi-uniformity is to ask when the quasi-uniformities defined 
by Csâszâr [1] and Pervin [7] differ. In §5, it is shown that the Csâszâr and Pervin 
quasi-uniformities are always the same. Thus every topological space has a 
"canonical" compatible quasi-uniformity, which, in this paper, will be called the 
Csâszâr-Pervin quasi-uniformity. Csâszâr's description of this quasi-uniformity is 
used to show that a completely regular space (X, r) has a compatible uniformity 
strictly coarser than the Csâszâr-Pervin quasi-uniformity if and only if T is infinite. 
Finally, another sufficient condition for (X, r) to have a compatible quasi-
uniformity strictly coarser than the Csâszâr-Pervin quasi-uniformity is found in §6. 
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Notation in this paper will, in general, be that used in Murdeshwar and Nairn-
pally [5]. (X, r) will denote a topological space, P(r) will denote the associated 
Csâszâr-Pervin quasi-uniformity, and r(x) will denote the set {G e r | x e G}, for 
x e X. If U is a quasi-uniformity on a set X, the topology on X induced by U will 
be denoted by TQX). Hausdorff is not included in the terms regular or completely 
regular. The symbol "<=" means "is a proper subset of". N denotes the set of 
positive integers and R denotes the set of real numbers with its usual topology. 
Finally, note that the set {S(G) \ G e r} forms a subbasis for P(r) (see [7]), where 

S(A) = (AxA)U ((X\A) x X) 
for every A £ X. 

2. Some topological spaces with unique compatible quasi-uniformities. 

THEOREM 2.1. Ifr is finite, then (X, r) has a unique compatible quasi-uniformity. 

Proof. P(j) is compatible and has a finite subbasis, hence is the maximum com
patible quasi-uniformity, by [2, Theorem 3.3]. Now let U be a quasi-uniformity on 
X such that T(U)=T, and let GET. Let G(x)=f\ r(x), for each xeG. Then 
G(x)er and there exist x{eG, l<i<n, such that {G(x) \ x e G}={G(xi) \ 
1 <i<n}. There exist V, [ / { el l such that I7<[jtj c Gfo), l<i<n, and VoV^ 
PI {Ui | 1 <i<n}. Then F f o l ^ G f o ) , so that, for y e G, 

V[y] s F o F[x,] s £/,[*,] s G(x,) s G, 

for some y, l<j<n. Thus F s 5(G), so 5(G) G U. Hence H=P(r) . 
The following examples show that an infinite topology does not imply multiple 

compatible quasi-uniformities, even for 7\ or normal second countable spaces. 

EXAMPLE 2.2. Let X be an uncountable set and let r denote the cofinite topology 
on X, i.e., <j>j^B £ X implies B e r if and only if X\B is finite. Then (X, r) is Tl9 

T is infinite, and (X, r) has a unique compatible quasi-uniformity. 

Proof. Clearly, (X, r) is 7\ and T is infinite. Now let K be a compatible quasi-
uniformity. Note that W[x] G T, for every W G U and x G X. Let £/, F G U such 
that F o V © F ç t/, and let t̂ be a countably infinite subset of X. Now 

n { K M | a e ^ } 3 ^ , 

so let y G fl {V[à\ \aeA}. Then ,4 n V[v]**<f>9 for all » G V[y], hence 

F[y] Ç F o F o F M c [/[>]. 

Thus F[ j ]x F|>] s £/. Now let g = Z x Z i f F[y]=Xand let 

6 = n { 5 ( ( 7 M ) | X G Z \ F M } 

if V[y]^X. Then g n 5(Ffj]) c U and g n 5(F[j]) eP(r), hence UeP(r). 

Thus XI c p(T). 
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Now let GET, with G^<j> (note that S(cf))=XxXeU). For each xeG, there 
exist Ux, VxeU such that Ux[x] c G and VxoVx^ Ux. Let a G G and set F = Fa 

if F J a ] = G a n d 

if G 5̂  Ka[a]. Then V[y] s G for every j e ^ s o K g 5(G). Hence 5(G) G U, since 
F G « . Thus P ( T ) C U5 so U=P(r) . 

EXAMPLE 2.3. Let Z denote the set of all ordinal numbers less than or equal to 
the first infinite ordinal co0, and let 

r = {(/>} U {[a, co0] | a G X, a < co0}, 

where [a, co0] = {/? eX\ a</?<co0}. Then (X, r) is normal second countable, r is 

infinite, and (X, r) has a unique compatible quasi-uniformity. 

Proof. Clearly r is infinite and (X, r) is second countable, and it is easy to 
verify that (X, r) is normal. Now let H be a compatible quasi-uniformity. Note that 
[y, co0] c JF[y] for every y e X and PTG U. Let 17, F G U such that F o F g (7. 
Then there exists cue X such that oc<co0 and [a, œ0] Ç F[co0]. Then 

[a, œ0] c F o F[y] £ U[y] 

for every y G [a, co0], hence 

5([a, a>oD H ( fl {S(Uffl | 0 < /? < a}) £ I/. 

Thus [ / G P ( T ) , and so U <= P(r). 
Now let G G T with G ^ ^ ) = I X I G U ) , say G=[oc, co0]. There exist U, 

VeU such that J7[a] ç G a n d F o F g [ / , Then F[oc]=G, so 

F[y] <= V o F[a] c U[a] £ G 

for every yeG. Thus F ç 5(G), hence S(G) e U. This proves P(r) e U, hence 

U = P ( T ) . 

3. A sufficient condition for multiple compatible quasi-uniformities. Just as in the 
case of uniformities, the set of quasi-uniformities on a set X forms a complete 
lattice when partially ordered by set inclusion (see [5, p. 17] and use the fact that 
{ 1 x 1 } is a lower bound to get an infimum). The proof of the following proposi
tion is essentially a duplication of the proof of the analogous statement for uni
formities (see [8, p. 182, Theorem 20.21]), hence is omitted. 

PROPOSITION 3.1. Let U(a) be a quasi-uniformity on a set X,for each a G A, and 
let T(a) = T(U(a)). Then 

V M a ) | a G ^ } = r ( V { U ( a ) | a G ^ } ) . 
If H is a quasi-uniformity on X and T ( U ) = T , then r(P(r) V ! I ) = T , by the pre

ceding proposition. Thus (X, T) fails to have a unique compatible quasi-uniformity 
precisely when it has one which is either strictly coarser or strictly finer than P(T). 
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THEOREM 3.2. If r contains an infinite increasing sequence, then (X, r) has a 
compatible quasi-uniformity strictly finer than P(j). 

Proof. Let { G J / Î G N J Ç T such that Gn <= Gn +1, and let V= f) {S(Gn) \ n G N}. 
Then {V} forms a basis for a quasi-uniformity 93 on X (see [5, Theorem 1.10]) and 
T(93) Ç T. Then r(P(r) V 93)=r, by Proposition 3.1. 

Now suppose VeP(r). Then there exists nonempty finite 93 ^ T such that 
£/<= F, where t /= fl {S(J?) | Be 93}. Let *x G G1? * n + 1 e Gn+1\GW, and £ n = 
93 n r(xw), for n e N . Then there exist n,meN such that «<m and 23n=33m. But 
then 

so that xme U[xn] c F[xn] c Gn5 a contradiction. Thus V$P(r), so P(r) V 93 
is strictly finer than P(r). 

(Z, r) is an i?x 5pace if, for any x, y e X, {x}^{y} implies x and y have disjoint 
neighborhoods. The proof of the following proposition is similar to the analogous 
statement for infinite Hausdorff spaces (see [3, p. 5]), and is omitted. 

PROPOSITION 3.3. Let (X, r) be an R± space with r infinite. Then (X, r) contains 
an infinite discrete subspace. 

THEOREM 3.4. An R± space (X, r) has a unique compatible quasi-uniformity if 
and only if r is finite. 

Proof. Assume r is infinite. Then, by Proposition 3.3, there exist xne X and 
Gn G r, n e N, such that Gm n {xn \ n e N}={xm} and {xn | n e N} is infinite. Then 
(U {Gi I 1<*'<W); n E N) is an infinite increasing sequence in T, SO (X, r) has a 
compatible quasi-uniformity strictly finer than P(r), by Theorem 3.2, proving half 
the theorem. The other half follows from Theorem 2.1. 

Since either of regular or Hausdorff implies Rt, the following is immediate from 
Theorem 3.4. 

COROLLARY 3.5. A Hausdorff (regular) space (X, r) has a unique compatible 
quasi-uniformity if and only if X(j) is finite. 

(X, r) is semiregular if r contains a basis of regular-open sets, i.e., of sets G such 
that G=int (G). For any topological space (X, T), the set of regular-open sets forms 
a basis for a semiregular topology on X. This topology is denoted by rs and is 
called the semiregularization of r. These concepts lead to the results in the re
mainder of this section. 

PROPOSITION 3.6. If the set 93 of regular-open sets in (X, T) is infinite, then 93 
contains an infinite increasing sequence. 
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Proof. Assume that 33 is infinite, and let 33 be partially ordered by set inclusion. 
Suppose that 33 contains no infinite chain. Then 33 contains infinitely many 
maximal chains, each of which is finite. Now let (£ and D be maximal chains in 33, 
let C be the smallest element of &\{<f>} and let D be the smallest element of 
D\{<£}. Note that C and D exist since l e E a n d l G Î ) . Then <j> £ C n D ç C 
a n d ^ g C n D g i ) . Therefore, by the definition of C and D, C n !>=<£, 
since C n D e S3. Thus 33 contains an infinite subcollection of mutually disjoint 
sets. Let {Bn \ n e N} ç 33\{</>} such that Bn n Bm=<j> for w^ra. For each 
m G N, let Am=\J {Bn\ne N, w<m} and let Gm=int (Âm). Then Gm e 33 and 
Gm ç Gm+1, for raeN. Now let n, m e N with «<ra. Then £ w ç Gm, but 
Bm n Ân=(j), so Gmy£Gn. Thus 33 contains an infinite chain, in fact, an infinite 
increasing sequence, a contradiction of the supposition that 33 contains no infinite 
chain. Therefore, 33 contains an infinite chain, say § . 

Now for each H e § , either the collection of elements of $ which are subsets of 
H is infinite or the collection of elements of $ of which H is a subset is infinite. If 
the family of all elements H e g> with the former property is infinite, then § 
contains an infinite decreasing sequence; whereas, if the family of all elements 
H G § with the latter property is infinite, then § contains an infinite increasing 
sequence; and one of these two families must be infinite. But S3 contains an infinite 
increasing sequence if § does, so suppose $ contains an infinite decreasing sequence, 
say (Hn; neN). Since Hn is regular-open, for each n e N, (Hn; n e N) is also an 
infinite decreasing sequence. Hence ( I \ i î n ; n e N ) is an infinite increasing se
quence. But X\Hn G 33, for n e N. Thus 33 contains an infinite increasing sequence, 
whenever 33 is infinite. 

THEOREM 3.7. If the semiregularization rs ofr is infinite, then (X, r) has a com
patible quasi-uniformity strictly finer than P(r). 

Proof. This follows from Proposition 3.6 and Theorem 3.2. 
Since TS=T if (X, r) is semiregular, the following corollary is an immediate 

consequence of Theorems 3.7 and 2.1. 

COROLLARY 3.8. A semiregular space has a unique compatible quasi-uniformity if 
and only if its topology is finite. 

4. Another sufficient condition. Let X = N and let T={<£} U {Bn | n e N}, where 
Bn={x G XI n<x}. Then the singleton 

{ fi {S(Bn) J n G N}} = {(m, n) \ m, n e N, m ^ n} 

forms a basis for a quasi-uniformity 33 such that r(33)=r and P(r) <= p(T) v 33. 
But r contains no infinite increasing sequence, hence the condition of Theorem 3.2 
is not necessary for (X, T) to have a compatible quasi-uniformity strictly finer than 

8 
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P(r). This example is covered by the sufficient condition of the next theorem, whose 
proof uses the following purely set-theoretic lemma. The proof of the lemma is 
straightforward and is omitted. 

LEMMA 4.1. Let 23 be a nonempty collection of subsets of a set X. Then, with 

D {S(B) | B e 33} = U {((Pi M ( U St))x(f) §>) | § O R = </>,§> U t t = » } . 

THEOREM 4.2. If T contains an infinite decreasing sequence with open intersection, 
then (X, r) has a compatible quasi-uniformity strictly finer than P(r). 

Proof. Let {Gn \ n G N} C T such that Gn+1 c G„ and GET, where G = 
f| {Gn | « G N}. Let G0=X and let 

F = (G x G) u (U {(X\Gn) X G. . ! | n e N}). 

Then {F} is a basis for a quasi-uniformity 35 on Xsuch that r(9S) ç <-» c T. Then 
r(P(r) v 93)=r, by Proposition 3.1. 

Now suppose V e P(r). Then there exists a nonempty finite subset 23 £ T such 
that fi (SOB) | JJ e 23} <= F. Now Z = U {(f) S)\(U A) | S n #=t£ , $ u 51=»} 
and Gn\Gn+l9^<l>, so, for each « G N, there is a partition {§n , iln} of 23 such that 

(Gw\Gn+1) n ((PI $ J \ ( U 5ln)) ^ <£, 

where fl ^=A r. Since fl {£(£) | # e »} Ç F, Lemma 4.1 implies that 

((nsj\(Uftj)x(nsj£ ^ 
for each n e N . Thus (Gn+1 x(Gn\G„+1)) n F ^ , if Gn+1 n ((fl $»)\(U « J ) * 
<£. But (G n + 1x(G.\G n + 1 ) )n F=<£, by definition of V, so Gn+1 n ((f) §>„)\ 
(U ^n))=<£> f° r e a c h « e N . Since » is finite, there exist m,neN such that 
n<m and ^= .5™. But then the choice of {$m , 5tw} implies that Gw n 
((D $n)\(U ^ n ) ) ^ ^ a contradiction since Gm ^ Gn+1. Thus V£P(r), so 
P ( T ) v 93 is strictly finer than P ( T ) . 

COROLLARY 4.3. //* r contains an infinite decreasing sequence with closed inter
section, then (X, r) has a compatible quasi-uniformity strictly finer than P(r). 

Proof. Let { G W | « G N } Ç T such that Gn+1 c Gn and F = n {Gn | n e N} is 
closed. Then {Gn\F | « G N} defines an infinite decreasing sequence with empty, 
hence open, intersection. The corollary now follows from Theorem 4.2. 

(X, T) is an R0 space if, for every x, y eX, {x}j^{y} implies {x} n {y}=<f>. This 
concept leads to the following. 

COROLLARY 4.4. Let (X, r) be an R0 space such that {x} is a Gô set for each 
xeX. Then (X, r) has a unique compatible quasi-uniformity if and only ifr is finite. 
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Proof. By taking successive intersections, it is easy to show that {x} is the inter
section of a decreasing sequence of open sets. Thus, either there is an x e X such 
that {x} is the intersection of an infinite decreasing sequence, or {x} e r for every 
x £ X. The remainder of the proof is straightforward, using Corollary 4.3 and 
Theorem 2.1. 

Since 7\ implies R0, the following is an easy consequence of Corollary 4.4. 

COROLLARY 4.5. A first countable 7\ space has a unique compatible quasi-
uniformity if and only if it is finite, 

5. The Csâszâr and Pervin quasi-uniformities. Csâszâr, as part of a more general 
theory, showed that every topological space has a compatible quasi-uniformity 
[1, 1st éd., p. 171, 2nd éd., p. 193]. Divested of the terminology and constructions 
not necessary for this particular case, the Csâszâr quasi-uniformity is constructed 
as follows. 

Let (X, r) be a topological space. Let G denote the set of all bounded functions 
f:X-+R such that for every r e R and every £>0, there exists GET with 

f-\]-co, r])^G^ rW-co, r+e[). 

For e a c h / e a and each e>0 , define 

U(f, e) = {(x, y) G X X X | f(y)-f(x) < e}. 

Then the set {U(fi s) \fe a, e>0} forms a subbasis for a quasi-uniformity 33 on 
X. But 

U(f,e)[x] = {yeX\Ky)-f(x)<e} 

= r\]-^f(x)+8[)Er9 

for each x e X, so r(33) Ç r. On the other hand, £(X\G) e cr, where f (Z\G) is 
the characteristic function of Z\G, and 

l/(|(X\G), l)[x] = G 

for all xeG. Thus r c T(93), so r=r(33). 
Note that U(Ç(X\G)9 1)=5(G), so that P(r) c 33. The following theorem 

shows that equality holds in this latter relation. 

THEOREM 5.1. Let 33 denote the Csâszâr quasi-uniformity associated with (X, r). 
Then 33=P(r). 

Proof. As already observed, P(T) C 33. Now l e t / e a, where c is as indicated 
above, and let e>0 . Without loss of generality, assume/(X) c [0, 1]. Let n e N 
such that \\n<e. It is easy to verify that 

fi { S ( / _ 1 ( [ 0 ' ^ [ ) ) J 1 < m < n} s [/(/,s). 

Thus U(f, e)eP(r), since/^([O, m/n[) e T. Hence 93=.P(T). 
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It is rather easy to verify that a, as defined above, is precisely the set of bounded 
real-valued upper semicontinuous functions defined on (X, r). T h e n / e a implies 
—/ is a bounded real-valued lower semi-continuous function defined on (X, r) 
and f(y)—/(*) = (—f)(x)—(—f)(y). Thus the "natural" quasi-uniformity recently 
described by Nielsen and Sloyer [6] is simply the Csâszâr quasi-uniformity, hence 
is precisely the Pervin quasi-uniformity. This latter fact was noted by Hunsaker 
and Lindgren [4]. 

Let y denote the set of all bounded continuous functions / : (X, T) ->R. Then 
/ , — / G a, where a is defined as above, and, with U(f e) defined as above, 
U(f e) n U(-f, e)=V(f e), where V(f s)={(x,y) eXxX\ \f(x)-f(y)\<e}. 
But it is a standard result that the set {V(f s) \fe y, s>0} forms a subbasis for a 
uniformity U such that r(U) = r, if (X, r) is completely regular (see [8, p. 181, 
Theorem 20.20]). These considerations lead to the next theorem whose proof will 
use the following lemma. The proof of the lemma is straight-forward and is 
omitted. 

LEMMA 5.2. Let 23 be a subbasis for a topology r on a set X. Then the set {S(B) \ 
B G 23} forms a subbasis for a quasi-uniformity VL <= P(j) such that T(U)=T. If 2} is 
complemented (i.e., if B G S implies X\B G S ) , then H is a uniformity and U also 
has the set {S(B) n S{X\B) \Be<&) as a subbasis. 

THEOREM 5.3. A completely regular space (X, r) has a compatible quasi-uni
formity (strictly) coarser than P(r) (if and only if V is infinite). 

Proof. It is clear from the discussion preceding Lemma 5.2 that (X, r) has a 
compatible uniformity XI coarser than P(r). Then Xt is strictly coarser than P(r) 
unless JP(T) is a uniformity. From Theorem 2.1, VL is strictly coarser than P(r) 
only if T is infinite. 

Now assume that T is infinite and that P(r) is a uniformity. Then, for GET, 

S(X\G) = (X\G)x(X\G) U(GxX) 

= (Xx (X\G)) U (G x G) = S(G)-1 G P(r). 

Thus GET implies X\G e r, so {x} e r for every xeX. Then the set {{x} | x G X} 
is an infinite partition of X and forms a basis for r, so the set {S({x}) n *S({x})_11 
xeX) forms a subbasis for a uniformity U on X such that r (U)=r , by Lemma 5.2, 
and U is strictly coarser than P(r). Thus the theorem is proved. 

6. One more sufficient condition. 

THEOREM 6.1. Let r be a topology on a set X such that r has a basis 5B?£T with 
X G 93 and S closed under finite intersections and unions. Then the set {S(B) | B G S} 
forms a subbasis for a compatible quasi-uniformity VL strictly coarser than P(r). 
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PROOF By Lemma 5.2, all that remains to be proved is that P(r ) \H^^. Let 

G e T\95. Note that G^</>. If f) {S(B{) \ \<i<n} c S(G), then 

G = U { fi {Bi | 1 < i < n, x e Bt) | x e G}. 

But this is a finite union of finite intersections, hence Bm$%5, for some m, 

l<m<n, by definition of G. Thus S(G) eP(T)\U. 

Note that if (X, r) satisfies the conditions of Theorem 6.1, then T contains an 

infinite increasing sequence, so that (Z, r) also has a compatible quasi-uniformity 

strictly finer than P(r), by Theorem 3.2. 
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