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Abstract

The cross-sectional distribution of government debt is often approximated by a lognormal distribution.
This note empirically demonstrates that government debt is more accurately characterized by the double
Pareto-lognormal (dPLN) distribution, which features a lognormal body with two Pareto tails. The dPLN
assuredly surpasses alternative parametric distributions and passes goodness-of-fit tests. With its analytical
tractability, flexibility, and parsimony, coupled with a theoretical foundation, the dPLN may be appealing
for different computational and empirical applications.
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1. Introduction

This note concerns the cross-country size distribution of government debt, commonly measured
as the debt-to-GDP ratio (in %). Traditionally, the size distribution of government debt has been
parameterized as lognormal. From a theoretical perspective, Barro (1979), constructing a model
of public debt for a large national government, states:

“The theory predicts that the level of debt or the debt-to-income ratio would be irrelevant
for current debt issue. [...] This result supports the surprising proposition of the theory

> »

that the debt-to-income ratio does not have a ‘target’ value but rather moves ‘randomly’.

From an empirical standpoint, Barro (1979) documents size-independent proportional growth
of the debt-to-GDP ratio by regressing the growth rate of public debt against the level of debt
and finding the estimated coefficient to be insignificantly different from zero. Much of the ensu-
ing literature has also treated the size of the debt-to-GDP ratio as a unit root process and hence
nonstationary (Bohn, 1998).

The above characterizations and empirical evidences for the size and growth rate of the debt-to-
GDP ratio are largely consistent with a process adhering to random multiplicative growth, more
commonly referred to as Gibrat’s law of proportionate random growth (Sutton, 1997; Gabaix,
2009). It is well known that random multiplicative growth, in its purest form, gives rise to a log-
normal distribution, which conceivably justifies the prevailing practice of adopting the lognormal
distribution for modeling the size distribution of government debt. However, Gibrat’s law can
similarly generate a power law (Pareto) distribution (Gabaix, 1999; Reed, 2001), and the double
Pareto-lognormal (dPLN) in particular, which is the product of independent double Pareto and
lognormal distributions (Reed, 2003; Reed and Jorgensen, 2004).

For power law, and dPLN, to arise as the stationary distribution, a random multiplicative
growth process needs some friction (Gabaix, 2009). Among several generative mechanisms of
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power law and dPLN (Reed, 2001, 2003; Toda, 2014, 2017; Beare et al. 2022; Beare and Toda,
2022), a random multiplicative growth process with random resets (Reed, 2001; Beare and Toda,
2022) stands out. The theory essentially posits that economic units experience random multiplica-
tive shocks to their size through time until stopped (perishing) at random and being replaced by a
new unit. For our empirical context, this would imply government debt evolves over time accord-
ing to random multiplicative growth and is occasionally reset, perhaps due to sovereign default.
This appears entirely reasonable since, as Barro (1979) pointed out:

“[TThere may be a wide range within which the debt-income ratio can vary essentially freely
[...] but there may be some eventual limits that come into play. A limit on the high side
would arise when the debt-income ratio rises sufficiently to affect the probability of the
government’s default.”

The plausibility of the random resetting mechanism in capturing the key features of the
empirical context positions it as a valid alternative to the conventionally adopted pure random
multiplicative growth process. This, in turn, raises the need for a thorough empirical examination
of the size distribution of government debt across the entire cross-section and its evolution over
time. If the debt-to-GDP ratio follows a dPLN distribution, it would provide indirect evidence
suggesting that debt-to-GDP obeys the generative mechanism of dPLN—a random resetting
mechanism. Conversely, if the debt-to-GDP ratio is lognormal, it would offer indirect evidence
in favor of a pure random multiplicative growth process. The present article seeks to address this
issue.

Our analysis demonstrates that the lognormal distribution tends to provide a reasonable fit
to the cross-sectional distribution of debt-to-GDP ratios for the period between 1980 and 2000.
However, significant departures from lognormality are observed in the post-2000 debt data. In
contrast, the dPLN fits the data remarkably well across all periods, whether in terms of model
fit criteria or goodness-of-fit tests. While the dPLN fits the data at least as well as the lognormal
during 1980-2000, it straightly outperforms the lognormal and other candidate distributions in
the post-2000 period.

Why does this finding matter? The finding has several noteworthy economic, econometric, and
social implications, as elaborated next.

First, it indicates that the debt-to-GDP ratio follows a ubiquitous empirical regularity, the
power law,! in both its upper and lower tails. For the upper tail, this means that the fraction of
units above size x is roughly proportional to x~, where a > 0 is the upper-tail power law expo-
nent. Similarly, for the lower tail, it implies that the fraction of units below size x is approximately
proportional to x#, where B > 0 is the lower-tail power law exponent. Several recent studies,
including those by Toda (2012) on income and Toda (2017) on consumption, have shown the
dPLN’s superiority in fitting size distributions previously described by lognormal or Pareto dis-
tributions. Methodologically, our work contributes to this literature by documenting the dPLN’s
robust fit to, and the power law behavior of, the size distribution of government debt.

Second, this empirical regularity is intriguing in its own right and warrants explanation. The
strong support we find for the dPLN provides indirect evidence for the hypothesis that the debt-
to-GDP is governed by a random multiplicative growth process with friction (random resets).
Moreover, it is important to note that under a pure random multiplicative growth mechanism,
the size distribution remains lognormal, with an ever-increasing log variance. However, empirical
evidence contradicts this, as we find the log variance of the debt-to-GDP ratio to be stable over
time. This further highlights the lack of support for the lognormal distribution and its theoretical
basis. Consequently, our work helps reconcile the empirical evidence with the underlying theory
of the size distribution of government debt.

Third, it suggests heavy-tailedness and tail risk in the debt-to-GDP ratio. Economically, this
indicates that the system’s behavior is strongly influenced by its largest units, with the power
law exponents «, 8 describing the extent of concentration (inequality) at the top and bottom
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of the distribution (Toda, 2012, 2014). Econometrically, this stresses the implausibility of thin-
tailed distributions (e.g., the normal) for the debt-to-GDP ratio, which dismiss extremequely
large cases as improbable. In fact, even some common heavy-tailed distributions (e.g., the log-
normal) are not adequate in this context. For sound and credible analysis, it is essential to
employ statistically rigorous methods that properly account for heavy-tailedness and tail risk
properties. Toward this end, the dPLN emerges as a reasonable choice both empirically and
theoretically.

Fourth, it provides insights into the existence of moments. Given that power-law distributed
variables possess only a finite number of moments, econometric techniques that assume the
existence of all moments may be invalid (Kocherlakota, 1997; Toda and Walsh, 2015). For the
debt-to-GDP ratio, we find that only the first and second moments (i.e., mean and variance,
respectively) generally exist. While higher-order sample moments (e.g., skewness and kurtosis)
can always be computed for the observed data, these moments are non-convergent. Therefore,
the distribution of the debt-to-GDP ratio cannot be characterized by higher-order moments
beyond the mean and variance. This is consequential for descriptive and econometric analysis
(e.g., Generalized Method of Moments (GMM)) of government debt.

Finally, the dPLN is as analytically tractable as the lognormal, with many of the lognormal’s
desirable properties generalizable to the dPLN (Reed, 2003; Reed and Jorgensen, 2004). Recent
techniques for solving heterogeneous-agent models frequently parameterize cross-sectional dis-
tributions in order to reduce computational complexity. Given the dPLN’s robust empirical fit,
the distribution may be especially suitable for calibrations and econometric applications because
it is analytically tractable, flexible, parsimonious, and grounded in theory. Accordingly, we rec-
ommend adopting the dPLN to more accurately specify the size distribution of government

debt.

2. Methods
2.1 Data

Similar to Reinhart and Rogoff (2011), government debt is defined as total gross central govern-
ment debt measured as a percentage of GDP.? Our sample covers the period from 1980 to 2020
and includes the entire IMF membership, which ranges from 117 to 175 countries, depending on
the year. Table 1 provides summary statistics for each year. Using yearly data on the debt-to-GDP
ratio, we fit each candidate distribution described below to each year separately by maximum
likelihood estimation (MLE).

2.2 Double Pareto-Lognormal (dPLN)

Let X represent a random variable for the debt-to-GDP ratio, with its outcome denoted by x,
where x > 0. The probability density function of the dPLN is given by

2.2 1 9

2 2 _ 2
+ 2P Lexp (-,3/4+'82(r )(l_q)(log(x) G,u—i—ﬂo ))],

where ®(-) is the cumulative distribution function of the standard normal distribution. The
dPLN has four parameters: i, 0 are the mean and standard deviation of the lognormal com-
ponent, and o, 8 > 0 are the power law (Pareto) exponents for the upper and lower tails,
respectively.’®

Similar to the Pareto distribution, the dPLN has finitely many moments, a feature of empirical
relevance (Kocherlakota, 1997; Toda and Walsh, 2015). Specifically, the rth moment about origin
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Table 1. Summary statistics for debt-to-GDP ratio (in %)

Year

Obs.

Mean

St. Dev.

Min

Pctl(25)

Pctl(75)

Max

1980

1981
1982

1983
1984

1985

1986

1987
1988

1989
1990

1991

1992
1993

1994

1995

1996
1997

1998
1999

2000

2001
2002

2003

2004

117
119

122

122
124

126

128

126
130

132

139
147

152

159

162
165

170

170

173

174

175

175

173

174
174

175

174

174

174

174
174
174

174

174

174
173

125
126

40.092

43.419
50.666

59.196
61.035

65.592

67.937

72.364
72.432

72.870

82.701
73.945

78.066
75.991

75.282

70.125

66.348
62.694

70.063
71.716

71.490

70.751
70.626

69.004

64.792

58.572

45.700

44.515

45.965

46.589

47.795

49.718

50.928
53.971

56.305

57.260
58.547

59.865
69.591

34.353
39.001

49.139

57.326
59.025

59.465

59.939
56.989

65.288

62.426
137.142

68.673

72.229

64.203

64.256

55.779
49.039
45.389

58.200
56.130

59.606

59.402
56.736

61.409

57.760
52.101

42.140
38.825

33.317
34.057

34.450

35.759

34.861

34.288

33.977
34.658

35.556

37.766
40.623

0.600
2.420

1.700

3.500
1.010

0.000

0.000

0.000
0.000

0.000

0.000
0.000

0.000
0.000

0.000

0.000

0.000
0.000

0.000

0.000
0.000

2.040
1.980

0.990

0.400

0.300

0.690

0.730

0.620

0.570

0.540

0.520

0.070
0.060

0.060

0.060
0.050

0.270
0.290

20.000

21.900
27.000

29.065
28.922

31.775

36.172

40.080
38.392

37.550

37.770
38.942

40.640
38.850

36.665

32.870

32.787
32.090

35.645

38.547
37.990

37.157
40.045

38.675

34.180
29.040

19.407
20.040

25.215

24.523

25.255

27.527

27.105
32.585

35.938

36.383
37.575

38.222
44.730

50.570

50.715
63.700

72.835
72.100

76.438

79.050

89.020
86.050

86.248

88.462
83.978

93.240
90.315

97.413

88.265

84.350
78.200

82.975
88.537

85.410

88.748
86.440

83.555

83.290
73.560

58.370

57.725

58.185

61.087

61.562

65.398
68.343

71.493
69.400

71.273

72.338
84.770

249.940

280.190
399,170
468.920
478.250
520.810
562.500

482.170
472,680
472210

1,472.050

614.780
557.960
489.530
412,880
350,890

324.750
318.300
438.070

384.520
435,320
432,620
431.170
558.120
505.370
454.270

341.140
250.250

205.560
219.190
226.150
229.710
233.540
228.450
232.560
231.420
232.600
237.950
266.180

Note: The number of observations corresponds to the number of countries in the IMF’s historical public debt database

(Ali Abbas et al. 2011).
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Figure 1. Relative quality of lognormal and dPLN in fitting the debt-to-GDP ratio, 1980-2020.

for the dPLN takes the following form:

%exp(ur—i—%ozrz) if —B<r<a

w, =EB(X") = ()

00 otherwise

This implies that 4. does not exist for r > «. For instance, the variance exists only if the upper-tail
power law exponent satisfies & > 2.

There are several features of the dPLN that make the distribution attractive for computational
works. First, similar to the lognormal and Pareto distributions, the dPLN is analytically tractable
(Reed, 2003; Reed and Jorgensen, 2004), as its moments generally have closed-form expressions.
Second, the dPLN is flexible, capturing the lognormal and double Pareto distributions as limiting
cases (for o, B — oo and o — 0, respectively). Third, the distribution is parsimonious, with only
three (o« = B) or four (« # B) parameters. Fourth, the dPLN allows for fat tails, making it con-
venient for modeling heavy-tailed data compared to other, more complex mixture distributions.
Fifth, since o, 8 describe the concentration at the top and bottom of the distribution, respec-
tively, they can be used in applied work to decompose inequality at the top and bottom of the size
distribution (Toda, 2012, 2014).

2.3 Diagnostics

To assess the relative quality of alternative models, we report the log-likelihood, Akaike informa-
tion criterion (AIC), and Bayesian information criterion (BIC). While both AIC and BIC account
for overfitting, BIC penalizes the number of model parameters more heavily than AIC. Generally,
the model with the lowest AIC or BIC is preferred.

To evaluate the goodness of fit of individual models, we also perform the Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) tests, and produce quantile-quantile (Q-Q) and distributional
plots. The KS and AD tests, commonly used in the size distribution literature (e.g., Toda, 2017),
compare the empirical distribution with that of a fitted model. The AD test is more robust than
the KS test to deviations in the tails, which makes it more relevant for the analysis of tail heaviness.
The KS and AD p-values formally test the null hypothesis that the sample is drawn from the fitted
distribution.
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Figure 2. Q-Q plots of fitted lognormal and dPLN: (a) lognormal fit for 1997; (b) lognormal fit for 2015; (c) dPLN fit for 1997;
(d) dPLN fit for 2015.

3. Results
3.1 Lognormal vs. dPLN

Figure 1 summarizes the relative quality of the lognormal and dPLN distributions in fitting the
debt-to-GDP ratio for the period between 1980 and 2020.* According to both AIC and, particu-
larly, BIC, the performances of the two distributions are largely comparable during 1980-2000,
though dPLN exhibits a slight edge over the lognormal. After 2000, however, the performances
diverge significantly, with dPLN starkly outperforming the lognormal.

The goodness-of-fit test results support the plausibility of dPLN. The KS and AD tests do not
reject dPLN at the 0.05 significance level in 40 and 41, respectively, out of 41 years, whereas the
lognormal is not rejected in 28 years, 20 of which are before 2000. This indicates that dPLN per-
forms at least as well as the lognormal before 2000, but post-2000, dPLN’s performance remains
strong while the lognormal’s performance deteriorates.
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Figure 3. Histogram of data and density plots of fitted lognormal and dPLN: (a) densities for 1997; (b) densities for 2015.

Visual evidence for this can be found in Figures 2 and 3, which compare the fits of the two
distributions to data from before and after 2000, using 1997 and 2015 as examples. From Q-Q
plots in Figure 2, it is apparent that the lognormal fit to 1997 data (panel (a)) is fairly good, with
only a small deviation in the upper tail. However, for the 2015 data (panel (b)), there are significant
departures in both the upper and lower quantiles of the fitted lognormal distribution. On the other
hand, dPLN’s quantiles align closely with the data in both years (panels (c) and (d)). Figure 3
further illuminates this with density plots, where again one observes the striking fit of dPLN to
the debt-to-GDP ratio.

Overall, both model fit criteria and goodness-of-fit tests strongly favor dPLN over the
lognormal.

Figure 4 shows the MLE estimates of the dPLN parameters for each year. Several salient obser-
vations come to light. First, the upper-tail power law exponent o hovers around 2.5, with an
average of 2.76 across all years. The lower-tail power law exponent 8 has an average of 1.63 across
all years.” Econometrically, this suggests the tail heaviness of government debt, which explains the
lognormal’s poor fit in figures 2 and 3. Economically, this suggests concentration at the top and
bottom of the distribution, which has implications for inequality and policy design. Second, for
o ~2.76 and r < «, only the first and second moments (i.e., mean and variance, respectively) exist
for the debt-to-GDP ratio. This is instructive for descriptive and empirical analysis (e.g., GMM) of
government debt. Third, the log variance parameter ¢ remains generally stable, with an average of
0.28 across all years. This further illustrates the implausibility of the lognormal distribution and its
theoretical basis, as under a pure random multiplicative growth mechanism, the size distribution
would be lognormal, with an increasing variance over time. For the debt-to-GDP ratio, we find a
lack of support for this to be the case.

3.2 Other Candidate Distributions

To compare the performance of dPLN within a broader class of parametric distributions, we
consider two additional flexible distributions with varying tail heaviness: first, generalized beta
IT (Toda, 2017), and second, Pareto-tails lognormal (PTLN) (Luckstead and Devadoss, 2017).
The generalized beta II is a four-parameter distribution that nests many common distributions,
including exponential, (generalized) gamma, lognormal, Weibull, chi-square, Lomax, Rayleigh,
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Figure 4. DPLN parameter estimates: (a) upper-tail power law exponent «; (b) lower-tail power law exponent g; (c) log
variance parametero.

Laplace, and log-logistic, among others. The PTLN is a close alternative to dPLN and shares many
of its attractive features but has six parameters: in addition to the four parameters of dPLN, PTLN
includes 7; and t,,, which are the transition (threshold) points from the lower tail Pareto to the
lognormal body and from the lognormal body to the upper tail Pareto, respectively. PTLN also
nests the lognormal-upper tail Pareto distribution of Ioannides and Skouras (2013) (for 77 = Xmin).

The relative quality of these distributions is presented in Figure 5. Evidently, both AIC and
BIC favor dPLN. The generalized beta I does not perform as well as the dPLN, with the KS and
AD tests failing to reject the distribution in 11 and 35, respectively, out of 41 years. Therefore,
dPLN remains dominant among a large class of parametric distributions. However, PTLN is a
close contender. The additional two parameters in PTLN improve its AIC performance compared
to dPLN, but not its BIC performance, as expected. The KS and AD tests do not reject PTLN for
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Figure 5. Relative quality of alternative distributions in fitting the debt-to-GDP ratio, 1980-2020.

any of the years analyzed, indicating that PTLN fits the government debt data quite well, though
it is less parsimonious and less tractable than dPLN.

Taken together, the analytical tractability, flexibility, and parsimony of dPLN, along with its
remarkable performance in terms of model fit criteria and goodness-of-fit tests, rightfully validate
the distribution as one of the benchmarks for fitting the debt-to-GDP ratio.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017
/81365100525000276.

Notes

1 Power laws are remarkably common in economics, finance, and social and natural sciences. See, for instance, Gabaix
(1999), Reed (2001), Gabaix (2009), Devadoss et al. (2016), Akhundjanov et al. (2017), Ahundjanov and Akhundjanov (2019),
Akhundjanov and Chamberlain (2019), Akhundjanov and Toda (2020), Ahundjanov et al. (2022), and Akhundjanov and
Drugova (2022).

2 See Ali Abbas et al. (2011) for further data information.

3 For the theory and properties of the dPLN, see Reed (2003) and Reed and Jorgensen (2004).

4 Detailed MLE and goodness-of-fit test results for the lognormal and dPLN are presented in Supplementary Materials.

5 In principle, one can obtain the implied power law exponent using an approach similar to that of Beare and Toda (2020),
exploiting the panel structure of the data to estimate the distribution of the debt-to-GDP growth rate and the resetting
(sovereign default) probability. However, the limited cross-sectional sample size and the rarity of sovereign defaults preclude
credible estimation and inference.

6 Detailed MLE and goodness-of-fit test results for the generalized beta II and PTLN are presented in Supplementary
Materials.
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