A NON SIMPLICITY CRITERION FOR FINITE GROUPS

NITA BRYCE

(Received 1 February 1967)

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that $C = C_G(t) \cong SL(2, q)$ and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and $C \cap A = \langle 1 \rangle$.

We can prove the following similar result:

THEOREM. Let G be a finite group of even order with the following property:

(a) G has an involution t such that the centralizer $C = C_G(t)$ is the central product of C_1 and C_2 where $C_i \cong SL(2, q_i)$ and q_i odd, i = 1, 2. Then G has an abelian odd order normal subgroup A such that G = CA and $C \cap A = \langle 1 \rangle$.

At first we give two definitions.

DEFINITION. A group G is called the central product of two subgroups H_1 and H_2 if $G = H_1H_2$ and $[H_1, H_2] = 1$, (i.e. H_1 and H_2 commute elementwise).

DEFINITION. Let α be an automorphism of a group G. Then α is called *fixed-point-free* if and only if α fixes only the unit element of G.

In the proof of the theorem we shall use the following result.

FRATTINI LEMMA [1]. Let N be a normal subgroup of a finite group G, and let K be a Sylow p-subgroup of N for some prime p. Then $G = NN_G(K)$.

THEOREM OF GLAUBERMAN [2]. Let t be an involution contained in a Sylow 2-subgroup S of a finite group G. If t is not conjugate in G to any other involution $t' \neq t$ of S, then $t \in Z(G \mod O_{2'}(G))$, where $O_{2'}(G)$ is the maximal normal odd order subgroup of G.

THEOREM OF ZASSENHAUS [4]. If a finite group G has a fixed-point-free automorphism of order 2, then G is an abelian group of odd order.

We now prove some preliminary results. The first lemma is well known.

LEMMA 1. An S_2 -subgroup of SL(2, q), q odd, is a generalized quaternion group.

359

Nita Bryce

LEMMA 2. Let Q_i be an S_2 -subgroup of C_i , i = 1, 2. Then $Q_1 \cap Q_2 = \langle t \rangle$ and $Q = Q_1 Q_2$ is an S_2 subgroup of C and hence of G.

PROOF. $Q_i = \langle a_i, b_i | a_i^{2^{n_i-2}} = b_i^2 = t, b_i^{-1}a_ib_i = a_i^{-1} \rangle$ is an S_2 -subgroup of C_i , i = 1, 2. Since $t \in Q_i$, i = 1, 2, then $\langle t \rangle \subseteq Q_1 \cap Q_2$. On the other hand, $Q_1 \cap Q_2 \subseteq C_1 \cap C_2 = \langle t \rangle$, so $\langle t \rangle = Q_1 \cap Q_2$. By consideration of the orders of C_i , $Q = Q_1Q_2$ is an S_2 -subgroup of C. Let T be an S_2 -subgroup of G containing Q. Since Q is an S_2 -subgroup of C then $T \cap C = Q$. Now $Z(T) \subseteq C = C_G(t)$ and so $Z(T) \subseteq Z(Q) = \langle t \rangle$. Thus $\langle t \rangle = Z(T)$ giving $T \subseteq C$ and hence T = Q.

LEMMA 3. Every involution $\tilde{t} \neq t$ of C is of the form $\tilde{t} = x_1 x_2$ where $x_i \in C_i$, i = 1, 2, is an element of order 4.

PROOF. Since $C = C_1 C_2$, every non-central involution \tilde{t} can be written as $t = x_1 x_2$ where $x_i \in C$, i = 1, 2. Because $\tilde{t}^2 = 1$, $\tilde{t}^2 = x_1^2 x_2^2 = 1$ and so $x_1^2 = (x_2^2)^{-1} \in C_1 \cap C_2 = t$. Thus either $x_i^2 = 1$ or $x_i^2 = t$. But $x_i^2 \neq 1$ since tis the only involution of C_i . Hence x_i is of order 4.

LEMMA 4. C has two conjugate classes of involutions with representatives t and

$$t_1 = a_1^{2^{n_1-3}} a_2^{2^{n_2-3}}.$$

PROOF. From the assumptions of our theorem $\langle t \rangle = Z(C)$ and so t forms a conjugate class of involutions of C. By Lemma 3, every non-central involution of C has the form x_1x_2 where x_i is an element of order 4 in C_i , i = 1, 2. However, all elements of order 4 in C_i (fixed i) are conjugate in C_i since $C_i/\langle t \rangle \cong PSL(2, q_i)$ which has only one class of involutions. Hence any non-central involution in C is conjugate to

$$t_1 = a_1^{2^{n_1-3}} a_2^{2^{n_2-3}}.$$

LEMMA 5. The whole group G has at most two conjugate classes of involutions.

PROOF. This follows from Lemma 2, Lemma 4 and the theorems of Sylow.

LEMMA 6. We have $Q = C_Q(t_1) = \langle a_1, a_2, t_2 \rangle$ and $(\tilde{Q})' = \langle a_1^2, a_2^2 \rangle$ where $t_2 = b_1 b_2$. Also \tilde{Q} is an S₂-subgroup of $C_C(t_1)$.

PROOF. By a straight forward computation $C_Q(t_1) = \langle a_1, a_2, t_2 \rangle = \tilde{Q}$, which is a non-abelian group of order

 $2^{n_1+n_2-2}$.

We may write $\tilde{Q} = \langle t_2 \rangle \langle a_1, a_2 \rangle$ where $\langle a_1, a_2 \rangle = H$ is abelian. Since $[a_1, t_2] = a_1^{-2}$ and $[a_2, t_2] = a_2^{-2}$, we get $K = a_1^2, a_2^2 \subseteq (\tilde{Q})'$. Now $\leq H$, since

H is abelian, and *K* remains invariant under the action of the involution t_2 . Thus $K \leq \tilde{Q}$. Consider \tilde{Q}/K . Since t_2 , a_1 , a_2 all commute modulo *K*, then $K \supseteq (\tilde{Q})'$. Hence $\langle a_1^2, a_2^2 \rangle = K = (\tilde{Q})'$. Let \tilde{T} be an S_2 -subgroup of $C_C(t_1)$. Suppose $\tilde{T} \supset \tilde{Q}$. Then \tilde{T} is conjugate to Q and so $Z(\tilde{T})$ is conjugate to Z(Q), that is, t_1 is conjugate to t, a contradiction. Hence $\tilde{T} = \tilde{Q}$.

LEMMA 7. The subgroup $\langle t \rangle$ is characteristic in $(\tilde{Q})'$ and hence $\langle t \rangle$ is characteristic in $C_Q(t_1)$.

PROOF. We note that K is abelian and consider the series

$$\Omega^1(K) \supseteq \Omega^2(K) \supseteq \ldots,$$

where $\Omega^{i}(K)$ is the subgroup of $K = (\tilde{Q})'$ generated by all the elements $x \in K$ such that $x = y^{2^{i}}$ for some $y \in K$. Clearly, $\Omega^{i}(K) \supseteq \Omega^{i+1}(K)$, $i \ge 1$. Let α be an automorphism of K and $x \in \Omega^{i}(K)$. Then

$$x^{\alpha} = (y^{2^{i}})^{\alpha} = (y^{\alpha})^{2^{i}} \in \Omega^{i}(K)$$

for some $y \in K$ and so $\Omega^i(K)$ is characteristic in K, $i \ge 1$.

Suppose $n_1 = n_2 = n$, then $|a_1| = |a_2| = 2^{n-1}$. We have $K = \langle a_1^2, a_2^2 \rangle$,

$$\Omega^{1}(K) = \langle a_{1}^{2^{2}}, a_{2}^{2^{2}} \rangle, \ldots, \Omega^{n-3}(K) = \langle a_{1}^{2^{n-2}}, a_{2}^{2^{n-2}} \rangle = \langle t \rangle.$$

So $\langle t \rangle$ is characteristic in $(\tilde{Q})'$ in this case.

Suppose $n_1 \neq n_2$. Without loss of generality we may take $n_1 > n_2$. Again

$$\Omega^{1}(K) = \langle a_{1}^{2^{2}}, a_{2}^{2^{2}} \rangle, \quad \Omega^{2}(K) = \langle a_{1}^{2^{3}}, a_{2}^{2^{3}} \rangle, \dots, \\ \Omega^{n_{2}-2}(K) = \langle a_{1}^{2^{n_{2}-1}}, a_{2}^{2^{n_{2}-1}} \rangle = \langle a_{1}^{2^{n_{2}-1}} \rangle, \dots.$$

Thus $\Omega^{n_2-2}(K)$ is cyclic, so $\langle t \rangle$ is characteristic in $\Omega^{n_2-2}(K)$ and hence $\langle t \rangle$ is characteristic in K.

LEMMA 8. The group G has precisely two conjugate classes of involutions with the representations t and t_1 .

PROOF. Suppose t is conjugate in G to t_1 . Then in particular,

$$C_G(t) = C \cong C_G(t_1).$$

We know that $C_Q(t_1) = \langle a_1, a_2, t_2 \rangle$ is an S_2 -subgroup of $C_C(t_1)$, and that $\langle t \rangle$ is characteristic in $C_Q(t_1)$. Let \tilde{T} be an S_2 -subgroup of $C_G(t_1)$ which contains $C_Q(t_1) = \tilde{Q}$. Then $|T: C_Q(t_1)| = 2$ and so $C_Q(t_1) \leq \tilde{T}$. Thus $\langle t \rangle \leq \tilde{T}$, so $\tilde{T} \subseteq C_G(t) = C$, a contradiction. Thus t is not conjugate in G to any involution $t_1 \neq t$ of Q.

PROOF OF THE THEOREM. We proceed by induction on the order of the group G. Denote by $O_{2'}(G)$ the maximal normal odd order subgroup of G.

Suppose $O_{2'}(G) \neq 1$. Put $\overline{G} = G/O_{2'}(G)$. Denote by \overline{S} the image in \overline{G} of any subset S of G, i.e.

$$\overline{S} = SO_{\mathbf{2}'}(G)/O_{\mathbf{2}'}(G).$$

Let $M = 0_{2'}(G)$. Clearly, $C_{\bar{G}}(t) = C^*/M$, for some subgroup C^* of G containing M and t. Write $\langle t \rangle M = N \subseteq C^*$. Then $N \trianglelefteq C^*$ since

$$N/M = \langle l \rangle \trianglelefteq C_{\bar{G}}(l) = C^*/M.$$

Clearly, $\langle t \rangle$ is an S_2 -subgroup of N. By the Frattini argument, $C^* = N_{C^*}(\langle t \rangle)N$. Since $\langle t \rangle$ is a group of order 2, $N_{C^*}(\langle t \rangle) = C_{C^*}(t)$. Thus

$$C^* = C_{C^*}(t)N = C_{C^*}(t)\langle t \rangle M = C_{C^*}(t)M.$$

Since $C = C_G(t) \subseteq C^*$, we get $C^* = CM$. From the structure of C we know that $O_{2'}(C) = \langle 1 \rangle$ so $C \cap M = \langle 1 \rangle$. We conclude that

$$C_{\bar{G}}(l) = C^*/M = CM/M \cong C.$$

Thus the group \tilde{G} satisfies the condition (a) of our Theorem, and $|\tilde{G}| < |G|$, so by induction the theorem is true for \tilde{G} . But $O_{2'}(\tilde{G}) = \langle 1 \rangle$ since $\tilde{G} = G/O_{2'}(G)$, hence $\tilde{G} = C_{\tilde{G}}(l)$ and so $G = CO_{2'}(G)$ and $C \cap O_{2'}(G) = \langle 1 \rangle$. Now the involution t acts fixed-point-free on $O_{2'}(G)$, so by the result of Zassenhaus [4], $O_{2'}(G)$ is abelian. Hence our theorem is true if $O_{2'}(G) \neq \langle 1 \rangle$.

We may assume now that $O_{2'}(G) = \langle 1 \rangle$. But then by the theorem of Glauberman [2], $t \in Z(G)$ and so $G = C_G(t) = C$. The theorem is proved.

REMARK. It was kindly pointed out by the referee that this paper in fact proves the following slightly stronger result:

If $C/O_{2'}(C)$ is isomorphic to the central product of C_1 and C_2 , then $G = CO_{2'}(G)$ and $C \cap O_{2'}(G) = O_{2'}(C)$.

Acknowledgement

The author is indebted to Professor Z. Janko who suggested and supervised this research, as part of the requirements for the degree of Master of Science.

References

- [1] R. Baer, 'Classes of finite groups and their properties', Illinois J. of Math. 1 (1957), 115-187.
- [2] G. Glauberman, 'Central elements in core-free groups'. J. of Algebra 4 (1966), 403-420.
- [3] M. Suzuki, 'On finite groups with cyclic Sylow subgroups for all odd primes', Amer. J. Math. 77 (1955), 657-691.
- [4] H. Zassenhaus, 'Kennzeichnung endlicher linearen Gruppen als Permutationsgruppen', Abh. Hamburg Math. Sem. 11 (1936), 17-40.

Monash University, Clayton, Victoria