A commutativity theorem for rings

Steve Ligh and Anthony Richoux

Let R be a ring with an identity and for each x, y in R, $(x y)^{k}=x^{k} y^{k}$ for three consecutive positive integers k. It is shown in this note that R is a commutative ring.

It is well known that each of the following conditions on any group G insures that G is commutative:
(i) for each x, y in $G,(x y)^{2}=x^{2} y^{2}$;
(ii) for each x, y in $G,(x y)^{k}=x^{k} y^{k}$ for three consecutive positive integers k.

Several authors have considered the ring-theoretic analogues of the above group-theoretic results [1, 2, 3, 4, 5, 6, 7]. Johnsen, Outcalt and Yaqub have shown in [5] that if R is any nonassociative ring with 1 such that $(x y)^{2}=x^{2} y^{2}$ for all x, y in R, then R is commutative. Furthermore, they provided examples showing that for any integer $k>2$, there exists a noncommutative ring R with l satisfying the identity $(x y)^{k}=x^{k} y^{k}$ for all x, y in R. For the ring-theoretic analogue of (ii), a partial solution was given by Luh [6]. He showed that any primary ring having the condition $(x y)^{k}=x^{k} y^{k}$ for three consecutive positive integers k is commutative. The purpose of this note is to furnish a complete, but elementary, solution of the ring-theoretic analogue of (ii).

THEOREM. If R is a ring with 1 which satisfies the identities $(x y)^{k}=x^{k} y^{k}, k=n, n+1, n+2$, where n is a positive integer, then R is commutative.

Received 26 August 1976.

Proof. Let x, y be in R. From $x^{n+1} y^{n+1}=x^{n} y^{n} x y$, it follows that
(1)

$$
x^{n}\left(x y^{n}-y^{n} x\right) y=0
$$

Since (1) holds for all x, y in R, substitute $(x+1)$ for x and simplify, to get

$$
\begin{equation*}
(x+1)^{n}\left(x y^{n}-y^{n} x\right) y=0 \tag{2}
\end{equation*}
$$

Multiply (2) on the left by x^{n-1} and expand $(x+1)^{n}$ by the binomial theorem, keeping in mind the identity (1); it follows that

$$
\begin{equation*}
x^{n-1}\left(x y^{n}-y^{n} x\right) y=0 \tag{3}
\end{equation*}
$$

Since (3) is valid for each x, y in R, continue the above process, that is, replace x by $(x+1)$ and multiply (3) on the left by x^{n-2} eventually one gets

$$
\begin{equation*}
x\left(x y^{n}-y^{n} x\right) y=0 \tag{4}
\end{equation*}
$$

Again substitute $(x+1)$ for x and use (4), to get

$$
\begin{equation*}
\left(x y^{n}-y^{n} x\right) y=0 \tag{5}
\end{equation*}
$$

Now from the identity $x^{n+2} y^{n+2}=x^{n+1} y^{n+1} x y$, we have

$$
\begin{equation*}
x^{n+1}\left(x y^{n+1}-y^{n+1} x\right) y=0 \tag{6}
\end{equation*}
$$

Employing the same technique used to get (5) from (1), one obtains

$$
\begin{equation*}
\left(x y^{n+1}-y^{n+1} x\right) y=0 \tag{7}
\end{equation*}
$$

Multiply both sides of (5) on the left by y, to get

$$
\begin{equation*}
y x y^{n+1}=y^{n+1} x y \tag{8}
\end{equation*}
$$

From (7) and (8) we have

$$
\begin{equation*}
(x y-y x) y^{n+1}=0 \tag{9}
\end{equation*}
$$

Now apply the same technique used to get (5) from (1), this time substituting $(y+1)$ for y; we then have

$$
\begin{equation*}
(x y-y x) y=0 \tag{10}
\end{equation*}
$$

Finally replace y by $(y+1)$ and use (10), to obtain $x y-y x=0$. Thus R is commutative.

References

[1] Howard E. Bell, "On a commutativity theorem of Herstein", Arch. Math. (Basel) 21 (1970), 265-267.
[2] Howard E. Bell, "On some commutativity theorems of Herstein", Arch. Math. (Basel) 24 (1973), 34-38.
[3] A.H. Boers, "A note on a theorem on commutativity of rings", K. Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 121-122.
[4] I.N. Herstein, "Power maps in rings", Michigan Math. J. 8 (1961), 29-32.
[5] E.C. Johnsen, D.L. Outcalt and Adil Yaqub, "An elementary commutativity theorem for rings", Amer. Math. Monthly 75 (1968), 288-289.
[6] J. Luh, "A commutativity theorem for primary rings", Acta Math. Acad. Sci. Hungar. 22 (1971), 211-213.
[7] Walter Streb, "Über die Potenzgesetze", Enseignement Math. (2) 20 (1974), 223-225.

Department of Mathematics,
University of Southwestern Louisiana, Lafayette, Louisiana, USA.

