ON THE FRACTIONAL PARTS OF αn^{2} AND βn

by R. C. BAKER

(Received 29 January, 1980)
We denote by $\|$. . . $\|$ the distance to the nearest integer. Let α and β be real. W. M. Schmidt [5] proved that for $\varepsilon>0$ and $N>c_{1}(\varepsilon)$ there is a natural number n such that

$$
n \leqq N, \quad\left\|\alpha n^{2}+\beta n\right\|<N^{-(1 / 2)+\varepsilon}
$$

This extends a theorem of H. Heilbronn [4] and also sharpens a theorem of H. Davenport [3].

In the present note I use the ideas of [5] to prove that for $N>c_{2}(\varepsilon)$ there is a natural number n such that

$$
\begin{equation*}
n \leqq N, \quad\left\|\alpha n^{2}\right\|<N^{-(1 / 4)+\varepsilon}, \quad\|\beta n\|<N^{-(1 / 4)+\varepsilon} . \tag{1}
\end{equation*}
$$

This sharpens a theorem of the author and J. Gajraj [2]. The other results of [2] can be improved; this is discussed in [1].

We require several lemmas. We write $e(x)=e^{2 \pi i x}$ and $M=N^{(1 / 4)-\varepsilon}$. Let $\varepsilon_{1}=\varepsilon / 3$. Constants implied by '《' and '》' will depend at most on ε.

Lemma 1. Let $N>c_{2}(\varepsilon)$. Suppose that there is no natural number n satisfying (1). Then either
(i) there is a natural number $r \leqq M N^{e}$ such that

$$
\begin{equation*}
\|r \beta\|<N^{-1+\varepsilon}, \tag{2}
\end{equation*}
$$

or
(ii) we have

$$
\begin{equation*}
\sum_{|u|<M N^{*},} \sum_{v=1}^{\left[M N^{*} \cdot\right]}\left|\sum_{x=1}^{N} e\left(v \alpha x^{2}+u \beta x\right)\right|^{2}>N^{2-\varepsilon} M^{-2} \tag{3}
\end{equation*}
$$

Moreover, in case (ii) there is a natural number $q \leqq M^{4} N^{\varepsilon_{1}}$ such that

$$
\begin{equation*}
|q \alpha-p|<M^{3} N^{-2+\varepsilon_{1}}, \quad(q, p)=1 . \tag{4}
\end{equation*}
$$

Proof. See [2, pp. 329-331].
Lemma 2. We have

$$
\left|\sum_{x=1}^{N} e\left(\alpha x^{2}+\beta x\right)\right|^{2} \ll \sum_{w=1}^{2 N} \min \left(N,\|2(\alpha w+\beta)\|^{-1}\right)
$$

Proof. See [5, p. 822].

Lemma 3. Suppose p, q are coprime, with $1 \leqq q<N \leqq H$. Suppose that

$$
\|\alpha q\|=|\alpha q-p|<(2 H)^{-1}
$$

Then for any real γ,

$$
\sum_{u=1}^{H} \min \left(N,\|\alpha u+\gamma\|^{-1}\right) \ll(\log H) \min \left(\frac{N H}{q}, \frac{H}{\|\gamma q\|}, \frac{1}{\|\alpha q\|}\right) .
$$

Proof. This is a straightforward extension of Lemma 5 of [5].
Proof that (1) is soluble. We suppose that there is no natural number $n \leqq N$ satisfying (1), where $N>c_{2}(\varepsilon)$. We shall obtain a contradiction.

Suppose first that alternative (i) takes place in Lemma 1. Let r be the natural number defined there. By the theorem of Heilbronn [4] there is a natural number $s \leqq M^{2} N^{\mathrm{E}}$ such that

$$
\begin{equation*}
\left\|s^{2} r^{2} \alpha\right\|<M^{-1} \tag{5}
\end{equation*}
$$

Let $n=s r$, then $n \leqq M^{3} N^{2 \varepsilon}<N$, and

$$
\|n \beta\| \leqq s\|r \beta\|<M^{2} N^{\varepsilon} . N^{-1+\varepsilon}<M^{-1}
$$

This together with (5) contradicts the insolubility of (1). Thus alternative (ii) must hold in Lemma 1. Let q be the natural number defined there.

By combining (3) with Lemma 2 we find that

$$
\begin{align*}
N^{2-\varepsilon_{1}} M^{-2} & \ll \sum_{|u|<M N^{\varepsilon_{1}}} \sum_{v=1}^{\left[M N^{\left.\varepsilon_{1}\right]}\right.} \sum_{w=1}^{2 N} \min \left(N,\|2(\alpha v w+\beta u)\|^{-1}\right) \\
& \ll N^{\varepsilon_{1}} \sum_{|y|<2 M N^{\varepsilon_{1}}} \sum_{x=1}^{\left[4 M N^{\left.1+\varepsilon_{1}\right]}\right.} \min \left(N,\|\alpha x+\beta y\|^{-1}\right) . \tag{6}
\end{align*}
$$

For the last inequality we write $x=2 v w, y=2 u$ and observe that for a given x there are fewer than $N^{\varepsilon_{1}}$ possibilities for v, w. With an application of Lemma 3 to the sum over x, we obtain

$$
\begin{equation*}
N^{2-3 \varepsilon_{1}} M^{-2} \lll \sum_{|y|<2 M N^{\varepsilon_{1}}} \min \left(\frac{M N^{2+\varepsilon_{1}}}{q}, \frac{M N^{1+\varepsilon_{1}}}{\|\beta q y\|}, \frac{1}{\|\alpha q\|}\right) . \tag{7}
\end{equation*}
$$

By Dirichlet's theorem there is a natural number $t \leqq 4 M N^{e_{1}}$ satisfying

$$
\begin{equation*}
|\beta q t-z|<\left(4 M N^{\varepsilon_{1}}\right)^{-1}, \quad(t, z)=1 \tag{8}
\end{equation*}
$$

It is not difficult to see that

$$
\|\beta q y\| \geqq(2 t)^{-1}
$$

whenever $|y|<2 M N^{e_{1}}$ and $t \nmid y$. The contribution of these integers y to the right hand side
of (7) is thus

$$
\begin{aligned}
& \leqq M N^{1+\varepsilon_{1}} \sum_{|y|<2 M N^{\varepsilon_{1}}} \min \left(2 t,\|\beta q y\|^{-1}\right) \\
& <M N^{1+\varepsilon_{1}}\left(\frac{M N^{\varepsilon_{1}}}{t}+1\right)(2 t+t \log t) \ll M^{2} N^{1+3 \varepsilon_{1}}
\end{aligned}
$$

by a standard argument. Since $M^{2} N^{1+3 \varepsilon_{1}}=o\left(N^{2-3 \varepsilon_{1}} M^{-2}\right)$, we must have

$$
N^{2-3 e_{1}} M^{-2} \ll \sum_{\substack{|y|<2 M N^{e_{1}} \\ t \mid y}} \min \left(\frac{M N^{2+\varepsilon_{2}}}{q}, \frac{1}{\|\alpha q\|}\right) .
$$

As the number of terms in the last sum is $\ll M N^{e_{1}} / t$, it is easy to see that

$$
\begin{equation*}
\max \left(q t M^{-1} N^{-2-e_{1}}, t\|\alpha q\|\right) \ll M^{3} N^{-2+4 \varepsilon_{1}} \tag{9}
\end{equation*}
$$

Now we get a contradiction by combining (8) and (9) to show that $n=q t$ solves (1). This completes the proof that (1) is soluble.

REFERENCES

1. R. C. Baker, Recent results on fractional parts of polynomials, Number theory, Carbondale 1979, Lecture Notes in Mathematics No. 751 (Springer-Verlag, 1979), 10-18.
2. R. C. Baker and J. Gajraj, Some non-linear Diophantine approximations. Acta Arith. 31 (1976), 325-341.
3. H. Davenport, On a theorem of Heilbronn, Quart. J. Math. Oxford Ser. 2, 18 (1967), 339-344.
4. H. Heilbronn, On the distribution of the sequence $n^{2} \theta(\bmod 1)$, Quart. J. Math. Oxford Ser. 1, 19 (1948), 249-256.
5. W. M. Schmidt, On the distribution modulo 1 of the sequence $\alpha n^{2}+\beta n$, Canad. J. Math. 29 (1977), 819-826.

Royal Holloway College
Egham
Surrey

