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We denote by ||.. .|| the distance to the nearest integer. Let a and 0 be real. W. M.
Schmidt [5] proved that for e > 0 and N>c1(e) there is a natural number n such that

This extends a theorem of H. Heilbronn [4] and also sharpens a theorem of H. Davenport
[3].

In the present note I use the ideas of [5] to prove that for N>c2(e) there is a natural
number n such that

n^N, ||an2||<N-(1/4)+e, ||/3n||<iNr(1/4)+E. (1)

This sharpens a theorem of the author and J. Gajraj [2]. The other results of [2] can be
improved; this is discussed in [1].

We require several lemmas. We write e(x) = e2irix and M = N<1/4)~G. Let e1 = e/3.
Constants implied by ' « ' and ' » ' will depend at most on e.

LEMMA 1. LetN>c2(e). Suppose that there is no natural number n satisfying (1). Then
either

(i) there is a natural number r^MNe such that

||r/3||<N-1+e, (2)

or
(ii) we have

Z Z |Z
|u|<MN'i v = l

2

>N2-e'M~2. (3)

Moreover, in case (ii) there is a natural number q^M4NEi such that

| qa -p |<M 3 N- 2 + e
S (q,p) = l. (4)

Proof. See [2, pp. 329-331].

LEMMA 2. We have
N

Zx = l

2N

Zw = l

Proof. See [5, p. 822].

Glasgow Math. J. 22 (1981) 181-183.

https://doi.org/10.1017/S0017089500004651 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004651


182 R. C. BAKER

LEMMA 3. Suppose p, q are coprime, with l S q < N g H . Suppose that

Then for any real y,

H /NH H 1
£ min(N, ||«u + yV)«(log H)min ^

Proof. This is a straightforward extension of Lemma 5 of [5].

Proof that (1) is soluble. We suppose that there is no natural number n^N satisfying
(1), where N>c2(e). We shall obtain a contradiction.

Suppose first that alternative (i) takes place in Lemma 1. Let r be the natural number
defined there. By the theorem of Heilbronn [4] there is a natural number s ̂  hPN" such
that

. (5)

Let n = sr, then n^M3^2* <N, and

||n|3||gs ||r/3|| <M 2 N e . N"1

This together with (5) contradicts the insolubility of (1). Thus alternative (ii) must hold in
Lemma 1. Let q be the natural number defined there.

By combining (3) with Lemma 2 we find that
[MN'i] 2N

N2-e'M~2« I Z I mintN.ptauw + Mr1)
|u|<MN'i " = 1 w = 1

[4MN>*"i]

«Ne' X I minUVjax + Pyir1). (6)
|y|<2MN'i x = 1

For the last inequality we write x = 2vw, y - 2u and observe that for a given x there are
fewer than NBi possibilities for v, w. With an application of Lemma 3 to the sum over x, we
obtain

N 2 - 3 e l M - 2 < < £ m i n , ,,7—j, • (7

By Dirichlet's theorem there is a natural number f^4MNe' satisfying

"1, (t,z) = l. (8)

It is not difficult to see that

whenever \y\<2MNe* and t/^y. The contribution of these integers y to the right hand side
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of (7) is thus

*> £ min(2r,
|y|<2MN'i

e'\^-+l)(2t + t log t)

by a standard argument. Since Ai2N1+3Ei = o(N2~3e>M~2), we must have

As the number of terms in the last sum is «MNBi/t, it is easy to see that

N-2-"', t \\aq\\)« M3^2^'. (9)

Now we get a contradiction by combining (8) and (9) to show that n = qt solves (1). This
completes the proof that (1) is soluble.
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