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The non-associative algebras arising in genetics (1), are rather isolated from
other branches of non-associative algebra (6). However, in a paper (5), in
which he studied these algebras in terms of their transformation algebras,
Schafer proved that the gametic and zygotic algebras for a single diploid
locus are Jordan algebras.

In this note I prove these results by methods which do not make use of
transformation algebras, and which therefore accommodate the multiallelic
case more easily, and in which the main object is to maximise the interplay
between the algebraic formalism and the genetic situation to which it
corresponds.

The gametic algebra <8 corresponding to «+ l alleles a0, ..., an at a locus
has multiplication table

afli = Hflt+aj)- 0)
n n

For a typical element x = £ apt, the weight w is denned by w(x) = £ txh

* ° °
and it follows by calculation using (1) that

x2 = w(x)x. (2)
Proposition 1 (Algebraic). Every element of unit weight in 'S is idempotent.
(Genetic). In the absence of selection, the gametic proportions remain constant

from generation to generation.
Proof. The algebraic result is immediate from (2), while the genetic

formulation is axiomatic.
As frequently happens, the algebraic result is more comprehensive, since

only those elements of unit weight for which all the a, are non-negative corres-
pond to populations. The non-associativity of genetic algebras corresponds
to the fact that if P, Q and R are populations, and if P and Q mate and the
offspring mate with R, the final result is in general different from that arising
from mating between P, and the offspring of mating between Q and R. The
two situations are shown in the diagram below.

P Q R P Q R

(3)

F2
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A Jordan algebra is one in which for any elements x, y
(x2y)x = x2(yx), xy = yx. (4)

Proposition 2 (Algebraic). ^ is a Jordan algebra.

(Genetic). In the mating schemes shown in (3), the populations Ft and F2 have
the same genetic proportions if P is the offspring of mating of R with itself.

Proof. Algebraically, (4) follows from (2) and (1). Genetically, the
condition implies that P and R contain the same gametic proportions.

The genetic algebra 2£ corresponding to proportions of zygotic types is
formed by duplicating ^ (see (1), (2)). Its basis elements are pairs (x, y) of
basis elements of 'S with the multiplication rule (x, y)(u, v) = (xy, uv). A
canonical basis may be taken in & by setting c0 = a0, cf = ao—ai(i + 0),
for which the multiplication table is

Co = c0 , coct = \ct, CiCj = 0, (i, j 4= 0).

Then on writing d{j = (ch Cj) the multiplication table for the duplicate 2£
can be written

^oo = <̂ oo> d0Od0i = ±dOi, dOidOJ = idu,

other products zero, (/, j 4= 0).
n n

The weight of a typical element x = £ £ «y^y 1$ w(x) ~ aoo-

Proposition 3 (Algebraic). Every element of the form y = x2 — w(x)x
annihilates 2£'.

(Genetic). The extent to which the zygotic proportions in a population
differ from the Hardy-Weinberg equilibrium state has no effect on the offspring
distribution produced by mating between this population and any other.

Proof. Algebraically, for x defined immediately above the statement,
computation using (5) gives

Using (5) again this element annihilates 2C. Again, the genetic formulation
is obvious on biological grounds and the relationship can be seen on noting
that since by the Hardy-Weinberg law equilibrium is attained after a single
generation of mating, x2 — x represents the amount of departure from equilibrium
when x is an element of 2£ representing a population.

Proposition 4. Proposition 2 holds for 2£.

Proof. In algebraic terms, let u = x2 — w(x)x. Then since any product
involving u is zero, use of the distributive and commutative laws gives

(x2y)x = (uy)x+{w(x)}(xy)x
= u(yx)+{w(x)}x(yx)
= x2(yx).
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Hence 2£ is a Jordan algebra. Genetically, P and R have the same gametic
proportions, and the result follows from the genetic formulation of Proposition 3.

Let s/ be an algebra in which multiplication (denoted by a dot) is associative.
Let sf+ be the algebra obtained by replacing multiplication by " Jordan
multiplication " (denoted by juxtaposition), defined by

xy = i(x-y+y-x).

s/+ is clearly commutative and (4) is easily verified (see (4), p. 152), hence
it is a Jordan algebra. Any algebra isomorphic to rf+ or a sub-algebra of
it is called a special Jordan algebra. Not all Jordan algebras however are
special Jordan algebras.

Consider the algebra sd whose basis elements are a0, ..., an, with multiplica-
tion table

at. aj = a,. (6)
This is clearly associative and stf+ is isomorphic to @. If it were possible to
know in advance that the genes of a given one of two populations mating
together would be transmitted to the offspring, it could be written first in the
product, and the system would correspond to the multiplication table (6).
The fact that 'S is a special Jordan algebra thus appears as a consequence of
inheritance being symmetric in the parents.

Schafer also proved in the diallelic case that SC is a special Jordan algebra
(5, p. 333), but I have been unable to find a biological parallel to this result.
It follows readily from Theorem 5 of (5) that a special train algebra can only
be a Jordan algebra if its train roots, as defined in (3, § 2) all have values among
1, i , 0, since they are the proper values of a transformation corresponding
to multiplication by the canonical basis element of unit weight (3, § 2), and
this corresponds in Schafer's equation 12, to the case where a = 0 and/ is the
identity function. This excludes the genetic algebras corresponding to poly-
ploidy or several loci. The appearance of Jordan algebras therefore seems
to be bound up with the property of attaining equilibrium after a single
generation of mating.

Finally, consider the case of two unlinked diallelic loci with alleles a0, au

b0, bl for which the multiplication table is

(aibj)(arbs) = i(aibj+aibs+arbj+arbs).
Let

i i i i
x = D Z dijatbj, y = E £ fijaibJ

i = 0 j = 0 1 = 07 = 0

be two population elements in the gametic algebra. Then by routine com-
putation

2

= x-i<xu, (say),

and after further calculation
uy = \u.

https://doi.org/10.1017/S0013091500011937 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500011937


294 P. HOLGATE

To see to what extent Proposition 2 fails in this case, consider the " associator "
x2, y and x,

(x2y)x-x2(yx) = ia{u(yx)-(uy)x}

It is thus a scalar multiple of a fixed element, is independent of y, and depends
on x only through a = gOo9n—9oi9io- This is, in genetic terminology, the
coefficient of linkage disequilibrium.

This work was done while the author was a member of the Biometrics
Section of the Nature Conservancy, London.
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