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1. Introduction and result. Suppose that m, is an integer, my=3, p = exp(2mi/m,),
K= Q(p, i), v denotes the degree of K, £ K has degree N over Q. The length

L) = Y |a;|, where P(z)= Z a;z’ is the (irreducible) minimal polynomial for ¢ with
=0 j=0

relatlvely prime integer coefficients. Feldman [2, p. 49] proved that there is an absolute
constant ¢,>0 such that

|7 — €| >exp{—c,v*(1+ N~'log L)}. (1)

From [2, p. 49, Notes 1 and 2] we know that v = ¢@(m,) or v=2¢(m,), and ¢(m,)=
¢yme(log log mg)™" (¢, >0 an absolute constant), where ¢(m,) denotes Euler’s function.

P. L. Cijsouw has developed some new refinements of the Gelfond-Baker method to
derive an improved approximation measure for 7 [1]. In this note we use these
refinements and two simple lemmas of [2] to prove the following result.

THeEOREM. There exists a positive absolute constant ¢, such that
| — &> exp{—c,v*(1+(Nlog v) ' log L)} )

for all algebraic numbers £ € K =Q(p, i), where v=2 denotes the degree of K, and N and L
the degree and the length of & respectively.

It is clear that (2) improves upon (1); the following proof is simpler than that in [2].

CoroLLary. If & has large degree, i.e. N> v, then

N
— —_ + .
log |m—¢&|» (N2 ] Vlog L)

2. Lemmas.

Lemma 1 [2, p. 49, Lemma 1]. Let C be a natural number and let a; be real numbers,
where

T
Y lag<A, i=1,...,rr<i

Then there exists a nontrivial collection of rational integers x, . . ., x; for which

X+ . .t ax] <2AC(C+1)"-2)71, i=1,...,r1
Ix|<C, j=1,..., &
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Lemma 2 [2, p. 50, Lemma 3]. Let p be a root of unity, v the degree of the field
K=Q(p, i) and n =n(§) the degree of & where £ K; further let T, L, M be non-negative
integers. If the rational integers A,,, satisfy the inequality

T L

M
Z Z Z |AtlmIsB’

t=01=0m=0
then either § =0 or

M

T L
8l=|2 2 L Auwmtip"|=B"LE™
t=01=0 0

m=

Lemma 3 [1, p. 96, Lemma 3]. Let F be an entire function, !et S and T be positive
integers, and let R and A be real numbers such that R=2S and A>2. Then

max |F(z)|<2(2/A)™ max |F(z)|+(9R/S)™ max |[F(s)|/1!,

jz|=R |z}< AR s,
where the last maximum is taken over all integers s, t with 0=<s<S§, 0=t<T.

In the following, let T and M denote fixed positive integers and define the polyno-
mials g, (z) (m=0,1,..., M~—1) as follows:

o(2)=1, g.(z)= ([%]!)_T]_Ijl (z+)) (m=1,2,..., M~1),

where T—1 is the highest order of the derivatives one has to use.
Lemma 4 [1, p. 96, Lemma 4]. Fort=0,1,...,T—1,
lg(2)|/t'<exp(|z|+2m+3m log T).

There exists a positive integer d such that all the numbers (d/t")g%(s)
(m=0,1,... M-1,t=0,1,...,T—-1,5§=0,1,2,...) are integers and

d=<exp(4Mlog T).

Lemma 5 [1, p. 96, Lemma 5)]. Let a be a non-zero complex number. Let F be the
exponential polynomial

K—-1M-1

F(z)= ) Y Cingn(2)e™,

k=0 m=0

where the C,,, are complex numbers and K, M positive integers. Put

C=max|C,,|, Q=max(1,(K-1)|al), o=min(1,|a]),
k,m

let ' be a positive integer and define E by
E =max [FO(s)|/t!,
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where s, t are integers with 0<s<S', 0=<t<T. If

TS'=2KM +15Q8’,

then
C=3(2e)™(6/(wK))™18™ E{max(6£), 3KM/(4S")}M.

3. Proof of the theorem. Put Y =log v+10§L and suppose that
( 2
=t <exp( -5 = ¥): ©

we shall show that (3) leads to a contradiction if x (an integer) is large enough. Choose the
following integers:

3 2_V 6_V
= = T=
K=[x»} S [x log v Y]’ [x log v]’
Y Y}].
ogv

K—1 M-
F(z)= ), Z ﬁ Ciim' 8 (2) €257,
k=0 m=0 i=0

Y], S’ =x2S, C= [exp {x7 I
Let

where the C,,,; are rational integers with |C,;| =< C, specified later.
a
In the following adopt the convention: ( b) =0 if b> a. For all non-negative integers

s,t we have

F9)=% L T Gon’ 3. ()a0o)@mitmey—kpt

define

;ZZ Ckm]p Z ( ) (‘r)(s)(zgl/mo)t—-rkt T ks

There are six steps in the proof.

1 2
@@ |7 - |<=T(@+1)7T |,,,_.glsexp<—§ X" lovg v Y>’

and for 0=t<T, 0=s5<§/,

1 ) 2
IF0) = dul < KM CUTIOT exp( 8+ 5Mlog T (2 )
14

12 V2
= —_ . 4
exp( X 1 g " Y) ( )
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@(my)—1

{(b) Let d be the integer introduced in Lemma 4 and put C,,, = Cimip’. Define
=0

]
- - [t ;
§u=dmZo, = dm3 ¥, G 3. ( V)e 0 eHmO k0"
k,m

=0

for s=0,1,...,8-1, t=0,1,..., T—1. Then Re 43,s, Im ¢, can be considered as a
system of linear forms of the 7= ¢(m,)KM parameters C,,,;. By Lemma 1 with r=2T§,
there exist rational integers, not all zero, such that |C,,,;|<C and

Re ¢, |+|Im | <4AC(C+1)" -2)7".

In our case we get
A=sdmI(M+1)QRT) (exp(S+5Mlog TH2K)T(1+m)T

sexp(xé(logzx) Y Y).

log v
Hence
- _— 3 ., v ) ( . v’ )
= Y- Y| —x"(1 Y], 5
Bul=enp(2x7 oo Y3 6" = ) <enp( #7008 0) 10 ®

since f/r=3xv.
&, is polynomial in &, i, p of degrees T, T, (K—1)(S—1)+¢(m,) — 1, respectively, and
with rational integer coefficients A,,,; satisfying

Z Z Z |Akmj|$exp{x6(log2 x)

k m j

v

Y+x'—2 Y}sexp(2x7 Y Y).
log v log v log v

Define B = exp(2x7 10; Y). Then, applying Lemma 2, we obtain either ¢, =0, or
14

- vT p?
|d>,s|>exp{ ((1 v)logB+NlogL)} exp{ ( x og

which contradicts (5) for x sufficiently large. Hence ¢, =0, ¢,, =0 and by (4)

2

14
log v

|F“’(s)|<exp(—x12 Y) O=t<T 0=<s<8). (6)

(c) Now we apply Lemma 3 to F(z) with R=S" and choose A comparatively large,
namely A =6wv. It follows, because

2
max |F(z)|<KMvCexp(6vS'+5Mlog T+24nS'K) < eXp(x’(log %) 101; Y),
|z|<6vS’ »

https://doi.org/10.1017/50017089500003979 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500003979

APPROXIMATION OF = 55
that, by (6),

max |F(z)|<2(1/3v)™ max |F(z)|+(9S'/S)™ max |[F(s)|/1!

|z|=<S’ |z|=6vS’

<ex {—lxs Y yi2 7(log x) v’ Y}
=eXP1T3 log v x 108 log v

2

+ {8(1 2 )< Y )2Y—x12 v Y}<ex (—1x8 d Y) (7
expxog X log » logv P\"% logv "/

Cauchy’s theorem implies that, for 0<t<T, 0=ss5<§,

1 v?
t) \TT ! F < (__ 8 Y)
|FO@s)|=T™S I12111;1;(\ (z)|<exp X log s
Using (4) and d <exp(4M log T) (with Lemma 3), we obtain

2

. __]; s V )
dl<exp( - x Y ®)

for 0<t<T, 0=ss<§'.
(d) Applying Lemma 2 for 0<t<T, 0=s5s<S§', we see by similar considerations to
those in (b) with S’ replacing S that either ¢,, =0 or

2
b |= —x7(1 Y )
| em( x(ogx)long,

a contradiction to (8) for x large. Hence ¢, =0 and by (4)

¢ < _ 12 v?
|F"(s)|\exp( x long> %)

for 0=t<T, 0<s<S".
(e} We can now apply Lemma 5 with a =2#i/m,. We have

Q=max(1,(K-1)|a)) <1+ QnK/my) <x>log x.
Hence
TS =2KM+15Q8'.

Further from

— < =
log log m, cap(mo)<c,v

with c;, ¢, absolute constants, we obtain m,=< xv*, Also

o =min(1, |a|) = min(1, 27/mg) = (xv?) !
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and so

1
wK= —2-x3v(xvz)_1 =2v) L

Hence

2
KM KM ° 4
(6/wK)*M = (12v) sexp(x (log x) log » Y).

Therefore, by (9), it follows that

2

2
~<exp]x¥(l S Y+x° " Y+ X1 (”)Y
C exp{x (ogx)logzv X (logx)logVY x'°(log x) Tog v
+x° ((10 2x)< d )210 v) yoxiz 2 Y}
g log v & log v
11 v? 10
< - .
exp( * long> (10)

(f) Finally, the C,,, are polynomials in p with rational integer coefficients; hence we
have G, =0 or, by Lemma 2,

V2
|G| = (@(m)C)' ™ 2exP(—x’(log x) Tog v Y),

which contradicts (10) for x sufficiently large. So

Cm=0 (k=0,1,...,K-1, m=0,1,...,M~—1).
But p is an algebraic number of degree ¢(m,); hence

Cmi=0 (0=<k<K, 0=sm<M, 0sj<¢(my—1),

which gives a contradiction to the choice of the integers C,,,;. Thus (3) is impossible for x
large enough and the theorem is proved.

I am very grateful to the referee for helpful suggestions.
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