Affine Actions of $U_{q}(s l(2))$ on Polynomial Rings

To Len Krop in honor of his retirement.

Jeffrey Bergen

Abstract. We classify the affine actions of $U_{q}(s l(2))$ on commutative polynomial rings in $m \geq 1$ variables. We show that, up to scalar multiplication, there are two possible actions. In addition, for each action, the subring of invariants is a polynomial ring in either m or $m-1$ variables, depending upon whether q is or is not a root of 1 .

Montgomery and Smith [3] examine the actions of the quantum group $U_{q}(s l(2))$ on a polynomial ring in one variable. A natural direction for generalization is to try to realize $U_{q}(s l(2))$, or more generally $U_{q}(s l(n))$, as differential operators on quantum n-space. For $U_{q}(s l(2))$, this was also done in [3]. In [2], this was done for $U_{q}(s l(n))$, for any n.

Another natural direction is to try to find all actions of $U_{q}(s l(2))$ on commutative polynomial rings in $m \geq 1$ variables and to then describe the invariants of these actions. The definition of $U_{q}(s l(2))$ has evolved slightly since the Montgomery-Smith paper, and we use the newer definition to determine all affine actions of $U_{q}(s l(2))$ on commutative polynomial rings. We will show, following a change of variables, that these actions are trivial on $m-1$ variables, and the behavior on the last variable is very similar to the situation described in [3]. The main result of this paper will be the following theorem.

Theorem 4 Consider an affine action of $U_{q}(s l(2))$ on the commutative polynomial ring $R=k\left[x_{1}, \ldots, x_{m}\right]$ such that $\sigma^{2} \neq 1$. Then there exist $y_{1}, \ldots, y_{m}, \in R$ such that
(i) R is the polynomial ring $k\left[y_{1}, \ldots, y_{m}\right]$;
(ii) $\sigma\left(y_{i}\right)=y_{i}$ and $\delta_{E}\left(y_{i}\right)=\delta_{F}\left(y_{i}\right)=0$, for $2 \leq i \leq m$,
where σ is an automorphism, δ_{E} is a $(\sigma, 1)$-skew derivation, and δ_{F} is a $\left(1, \sigma^{-1}\right)$-skew derivation. Furthermore, the only two possibilities, up to scalar multiplication, for the action of $U_{q}(s l(2))$ on $y_{1}{ }^{n}$, for $n \geq 1$, are
(i) $\quad \sigma\left(y_{1}{ }^{n}\right)=q^{2 n} y_{1}^{n}, \delta_{E}\left(y_{1}{ }^{n}\right)=\frac{q^{2 n}-1}{q^{2}-1} y_{1}^{n+1}, \delta_{F}\left(y_{1}{ }^{n}\right)=\frac{q^{-2 n}-1}{q^{-2}-1} y_{1}^{n-1}$;

$$
\begin{equation*}
\sigma\left(y_{1}^{n}\right)=q^{-2 n} y_{1}^{n}, \delta_{E}\left(y_{1}^{n}\right)=\frac{q^{-2 n}-1}{q^{-2}-1} y_{1}^{n-1}, \delta_{F}\left(y_{1}^{n}\right)=\frac{q^{2 n}-1}{q^{2}-1} y_{1}^{n+1} . \tag{ii}
\end{equation*}
$$

Using Theorem 4, we can easily describe the invariants of these actions.

[^0]Corollary $5 \quad$ Consider an affine action of $H=U_{q}(s l(2))$ on the commutative polynomial ring $R=k\left[x_{1}, \ldots, x_{m}\right]$ with $\sigma^{2} \neq 1$.
(i) If q is not a root of 1 , then the subring of invariants R^{H} is a commutative polynomial ring in $m-1$ variables.
(ii) If q is a root of 1 and t is the smallest positive integer such that $q^{2 t}=1$, then the subring of invariants R^{H} is a commutative polynomial ring in m variables and R is a free R^{H}-module of rank t.

We now introduce the terminology and notation that will be used throughout this paper. Additional background material on $U_{q}(s l(2))$ and Hopf algebras can be found in [1]. We will let k denote a field and $R=k\left[x_{1}, \ldots, x_{m}\right.$] will be the commutative polynomial ring over k. There will be no assumptions made about the characteristic of k, and we let $0 \neq q \in k$ be such that $q^{2} \neq 1$. It will not be important whether or not q is a root of 1 until Corollary 5 .

Next, we let $U_{q}(s l(2))$ be the k-algebra generated by K, K^{-1}, E, F subject to the relations

$$
K K^{-1}=K^{-1} K=1, \quad K E=q^{2} E K, \quad K F=q^{-2} F K, \quad E F-F E=\frac{K-K^{-1}}{q-q^{-1}} .
$$

Observe that these relations require that $q^{2} \neq 1$, and this guarantees that $U_{q}(s l(2))$ is not commutative.

Since $U_{q}(s l(2))$ is a Hopf algebra, we also need to examine its comultiplication, counit, and antipode. The comultiplication Δ in $U_{q}(s l(2))$ is given by

$$
\Delta(K)=K \otimes K, \quad \Delta(E)=E \otimes K+1 \otimes K, \quad \Delta(F)=F \otimes 1+K^{-1} \otimes F .
$$

Observe that $U_{q}(s l(2))$ is also not cocommutative. In addition, the counit ϵ and antipode S are given by

$$
\begin{array}{lll}
\epsilon(K)=1, & \epsilon(E)=0, & \epsilon(F)=0, \\
S(K)=K^{-1}, & S(E)=-E K^{-1}, & S(F)=-K F .
\end{array}
$$

If H is a Hopf algebra, then an algebra A is called an H-module algebra if A is a left H-module with the added properties that

$$
h(1)=\epsilon(h) 1 \quad \text { and } \quad h(a b)=\sum_{(h)} h_{(1)}(a) h_{(2)}(b)
$$

for all $a, b \in A$ and $h \in H$, where $\Delta(h)=\sum_{(h)} h_{(1)} \otimes h_{(2)}$ is comultiplication applied to h. When we refer to an action of $H=U_{q}(s l(2))$ on $R=k\left[x_{1}, \ldots, x_{m}\right]$ or say that H acts on R, we mean that R is an H-module algebra. If A is a commutative domain, we let $Q(A)$ denote its quotient field.

When $U_{q}(s l(2))$ acts on R, since $\Delta(K)=K \otimes K$ and K is invertible, K acts as an automorphism. We will let σ denote the automorphism of R induced by K. If g is an automorphism, a k-linear map d is called a $(g, 1)$-skew derivation if

$$
d(a b)=d(a) g(b)+a d(b)
$$

for all $a, b \in R$. Analogously, d is called a $(1, g)$-skew derivation if

$$
d(a b)=d(a) b+g(a) d(b)
$$

Since $\Delta(E)=E \otimes K+1 \otimes K$ and $\Delta(F)=F \otimes 1+K^{-1} \otimes F, E$ acts as a $(K, 1)$-skew derivation and F acts as a $\left(1, K^{-1}\right)$-skew derivation. We will let δ_{E} and δ_{F} denote the skew derivations of R induced, respectively, by E and F. It is important to note that we will always assume that $\sigma^{2} \neq 1$. Observe that if $\sigma^{2} \neq 1$ then $\delta_{E} \neq 0$ and $\delta_{F} \neq 0$, whereas if $\sigma^{2}=1$, then either $q^{4}=1$ or $\delta_{E}=\delta_{F}=0$.

The invariants of the action of H on R is the subalgebra

$$
R^{H}=\{a \in R \mid h(a)=\epsilon(h) a, \text { for all } h \in H\}
$$

In our situation, observe that

$$
R^{H}=\{a \in R \mid \sigma(a)=a\} \cap\left\{a \in R \mid \delta_{E}(a)=0\right\} \cap\left\{a \in R \mid \delta_{F}(a)=0\right\} .
$$

We say that the action of $U_{q}(s l(2))$ on $k\left[x_{1}, \ldots, x_{m}\right]$ is affine if $\sigma\left(x_{i}\right)$ has degree one, for $1 \leq i \leq m$. Certainly when $U_{q}(s l(2))$ acts on $k\left[x_{1}\right]$, as in [3], the action must be affine. However, in general, actions of $U_{q}(s l(2))$ on $k\left[x_{1}, \ldots, x_{m}\right]$ need not be affine.

We begin the work needed to prove Theorem 4 with the following lemma.
Lemma 1 Let $d \neq 0$ be either a $(g, 1)$ or $(1, g)$-skew derivation of a commutative domain A where $g \neq 1$. Then there exists $0 \neq \lambda \in Q(A)$ such that $d=\lambda(g-1)$.

Proof First, suppose d is a $(g, 1)$-skew derivation and let $a, b \in A$. Since A is commutative, if $a, b \in A$, we have

$$
d(a b)=d(b a)=d(b) g(a)+b d(a)=d(a) b+g(a) d(b)
$$

Therefore d is also a $(1, g)$-skew derivation, and it suffices to consider $(1, g)$-skew derivations.

Let $r \in A$; since $g \neq 1$, we can choose $a \in A$ such that $g(a) \neq a$. Since A is commutative, we have

$$
d(a) r+g(a) d(r)=d(a r)=d(r a)=d(r) a+g(r) d(a)
$$

If we subtract $d(a) r+d(r) a$ from the far left and far right of the previous equation, we obtain

$$
(g(a)-a) d(r)=d(a)(g(r)-r)
$$

Since $g(a) \neq a$, we can divide both sides of the previous equation by $g(a)-a$, and if we let $\lambda=(g(a)-a)^{-1} d(a)$, we obtain

$$
d(r)=\lambda(g(r)-r)
$$

Thus, $d=\lambda(g-1)$.
In light of Lemma 1, when $H=U_{q}(s l(2))$ acts on $R=k\left[x_{1}, \ldots, x_{m}\right]$, the fixed points of σ are the same as the kernel of both δ_{E} and δ_{F}. Therefore, when we examine R^{H}, it will suffice to study the fixed points of σ.

Lemma 2 Let A be a commutative domain with an automorphism σ such that $\sigma^{2} \neq 1$ and let $0 \neq e, f \in Q(A)$. If $\delta_{E}=e(\sigma-1)$ and $\delta_{F}=f\left(\sigma^{-1}-1\right)$, then $\sigma, \delta_{E}, \delta_{F}$ induce an action of $U_{q}(s l(2))$ on A if and only if
(i) $\quad \sigma(e)=q^{2} e, \sigma(f)=q^{-2} f$,
(ii) $e f=\frac{q^{3}}{\left(q^{2}-1\right)^{2}}$,
(iii) $\delta_{E}(A) \subseteq A, \delta_{F}(A) \subseteq A$.

Proof In order for $\sigma, \delta_{E}, \delta_{F}$ to induce an action of $U_{q}(s l(2))$ on A, they need to satisfy the same relations satisfied, respectively, by K, E, F, in $U_{q}(s l(2))$. Using the facts that A is commutative, σ is an automorphism, $\delta_{E}=e(\sigma-1)$, and $\delta_{F}=f\left(\sigma^{-1}-1\right)$, it is easy to see that

$$
\begin{gathered}
\sigma(a b)=\sigma(a) \sigma(b), \quad \delta_{E}(a b)=\delta_{E}(a) \sigma(b)+a \delta_{E}(b) \\
\delta_{F}(a b)=\delta_{F}(a) b+\sigma^{-1}(a) \delta_{F}(b)
\end{gathered}
$$

for all $a, b \in A$. Thus the actions of $\sigma, \delta_{E}, \delta_{F}$ on A are consistent with the comultiplication of K, E, F in $U_{q}(s l(2))$.

Next, we need to find necessary and sufficient conditions on e, f such that $\sigma, \delta_{E}, \delta_{F}$ satisfy the relations

$$
\sigma \delta_{E}=q^{2} \delta_{E} \sigma, \quad \sigma \delta_{F}=q^{-2} \delta_{F} \sigma, \quad \delta_{E} \delta_{F}-\delta_{F} \delta_{E}=\frac{\sigma-\sigma^{-1}}{q-q^{-1}}
$$

If $a \in A$, we have

$$
\begin{aligned}
\sigma\left(\delta_{E}(a)\right) & =\sigma(e \sigma(a)-e a)=\sigma(e)\left(\sigma^{2}(a)-\sigma(a)\right), \\
q^{2} \delta_{E}(\sigma(a)) & =q^{2}\left(e \sigma^{2}(a)-e \sigma(a)\right)=q^{2} e\left(\sigma^{2}(a)-\sigma(a)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma\left(\delta_{F}(a)\right)=\sigma\left(f \sigma^{-1}(a)-f a\right) \\
& q^{-2} \delta_{F}(\sigma(a))=q^{-2}(f a)(a-\sigma(a)), \\
&
\end{aligned}
$$

Since there exists $a \in A$ such that $\sigma(a) \neq a$, the above equations show that $\sigma \delta_{E}=$ $q^{2} \delta_{E} \sigma$ and $\sigma \delta_{F}=q^{-2} \delta_{F} \sigma$ if and only if $\sigma(e)=q^{2} e$ and $\sigma(f)=q^{-2} f$.

We will now compute $\delta_{E} \delta_{F}$ and $\delta_{F} \delta_{E}$. In light of the previous argument, we may assume that $\sigma(e)=q^{2} e$ and $\sigma(f)=q^{-2} f$. If $a \in A$, we have

$$
\begin{align*}
\delta_{E}\left(\delta_{F}(a)\right) & =e \sigma\left(f \sigma^{-1}(a)-f a\right)-e\left(f \sigma^{-1}(a)-f a\right) \tag{1}\\
& =e \sigma(f) a-e \sigma(f) \sigma(a)-e f \sigma^{-1}(a)+e f a \\
& =\left(1+q^{-2}\right) e f a-q^{-2} e f \sigma(a)-e f \sigma^{-1}(a)
\end{align*}
$$

and

$$
\begin{align*}
\delta_{F}\left(\delta_{E}(a)\right) & =f \sigma^{-1}(e \sigma(a)-e a)-f(e \sigma(a)-e a) \tag{2}\\
& =\sigma^{-1}(e) f a-\sigma^{-1}(e) f \sigma^{-1}(a)-e f \sigma(a)+e f a \\
& =\left(1+q^{-2}\right) e f a-e f \sigma(a)-q^{-2} e f \sigma^{-1}(a) .
\end{align*}
$$

Subtracting equation (2) from equation (1) gives us

$$
\left(\delta_{E} \delta_{F}-\delta_{F} \delta_{E}\right)(a)=\left(1-q^{-2}\right) e f\left(\sigma(a)-\sigma^{-1}(a)\right),
$$

therefore

$$
\delta_{E} \delta_{F}-\delta_{F} \delta_{E}=\left(1-q^{-2}\right) e f\left(\sigma-\sigma^{-1}\right) .
$$

Since there exists $a \in A$ such that $\sigma^{2}(a) \neq a$, the previous equation shows us that

$$
\delta_{E} \delta_{F}-\delta_{F} \delta_{E}=\frac{\sigma-\sigma^{-1}}{q-q^{-1}}
$$

if and only if

$$
\left(1-q^{-2}\right) e f=\frac{1}{q-q^{-1}}
$$

However, this is clearly equivalent to

$$
e f=\left(\frac{1}{1-q^{-2}}\right)\left(\frac{1}{q-q^{-1}}\right)=\frac{q^{3}}{\left(q^{2}-1\right)^{2}} .
$$

Finally, since e, f need not belong to A, in order to have an action of $U_{q}(s l(2))$ on A, we also need to add the conditions that $\delta_{E}(A) \subseteq A$ and $\delta_{F}(A) \subseteq A$.

The next lemma will exploit the fact that $k\left[x_{1}, \ldots, x_{m}\right]$ is a unique factorization domain.

Lemma 3 Let $R=k\left[x_{1}, \ldots, x_{m}\right]$, and suppose $y \in R$ has degree one and $0 \neq d \in$ $Q(R)$ such that $d y, \frac{y}{d} \in R$ with $d \notin k$. Then there exists $0 \neq \alpha \in k$ such that either $y=\alpha d$ or $y=\frac{\alpha}{d}$.

Proof One possibility is that either d or $\frac{1}{d}$ belongs to R, and we first consider the case where $d \in R$. Since R is a unique factorization domain and $d \notin k$, we have $d=p_{1} \cdots p_{s}$, where $s \geq 1$ and each p_{i} is an irreducible polynomial. However, y has degree one and

$$
\frac{y}{d}=\frac{y}{p_{1} \cdots p_{s}} \in R
$$

therefore it must be the case that $s=1$ and p_{1} has degree one. As a result, $d=p_{1}$ and $y=\alpha d$, for some $0 \neq \alpha \in k$. An identical argument then shows that if $\frac{1}{d} \in R$, then $y=\frac{\alpha}{d}$, for some $0 \neq \alpha \in k$.

In light of the previous argument, it suffices to show that either $d \in R$ or $\frac{1}{d} \in R$. Therefore, by way of contradiction, we will assume that neither d nor $\frac{1}{d}$ belong to R. Since R is a unique factorization domain, we can write

$$
d=\frac{p_{1} \cdots p_{s}}{q_{1} \cdots q_{t}}
$$

where $s, t \geq 1$ and every p_{i}, q_{j} is an irreducible polynomial such that no p_{i} is a multiple in R of any q_{j} Recall that

$$
d y=\left(\frac{p_{1} \cdots p_{s}}{q_{1} \cdots q_{t}}\right) y \quad \text { and } \quad \frac{y}{d}=\frac{q_{1} \cdots q_{t}}{p_{1} \cdots p_{s}} y
$$

both belong to R. Since $d y \in R$, we see that $p_{1} \cdots p_{s} y$ is a multiple in R of q_{1}, hence y is a multiple in R of q_{1}. Similarly, since $\frac{y}{d} \in R$, we know that $q_{1} \cdots q_{t} y$ is a multiple in R of p_{1}, hence y is also a multiple in R of p_{1}. However, y has degree one, therefore there exist $0 \neq \beta, \gamma \in k$ such that $y=\beta q_{1}$ and $y=\gamma p_{1}$. This immediately leads to the contradiction that p_{1} is a multiple in R of q_{1}, concluding the proof.

Suppose that δ_{1} is a $(\sigma, 1)$-skew derivation and δ_{2} is a $\left(1, \sigma^{-1}\right)$-skew derivation such that

$$
\begin{equation*}
\sigma \delta_{1}=q^{2} \delta_{1} \sigma, \quad \sigma \delta_{2}=q^{-2} \delta_{2} \sigma, \quad \delta_{1} \delta_{2}-\delta_{2} \delta_{1}=\alpha\left(\sigma-\sigma^{-1}\right) \tag{3}
\end{equation*}
$$

where $0 \neq \alpha \in k$. It is easy to see that, for any $0 \neq \beta \in k$, there exists a unique $0 \neq \beta^{\prime} \in k$ such that

$$
\begin{aligned}
\sigma\left(\beta \delta_{1}\right)=q^{2}\left(\beta \delta_{1}\right) \sigma, \quad \sigma\left(\beta^{\prime} \delta_{2}\right) & =q^{-2}\left(\beta^{\prime} \delta_{2}\right) \sigma \\
\left(\beta \delta_{1}\right)\left(\beta^{\prime} \delta_{2}\right)-\left(\beta^{\prime} \delta_{2}\right)\left(\beta \delta_{1}\right) & =\frac{\sigma-\sigma^{-1}}{q-q^{-1}}
\end{aligned}
$$

Therefore, for any $\sigma, \delta_{1}, \delta_{2}$ satisfying (3) and $0 \neq \beta \in k$, we see that $\sigma, \beta \delta_{1}, \beta^{\prime} \delta_{2}$ represent an action of $U_{q}(s l(2))$ on $k\left[x_{1}, \ldots, x_{m}\right]$. As a result, finding actions of $U_{q}(s l(2))$ on $k\left[x_{1}, \ldots, x_{m}\right]$ reduces to finding $\sigma, \delta_{1}, \delta_{2}$ satisfying (3) and if $0 \neq \gamma, \gamma^{\prime} \in$ K then $\sigma, \gamma \delta_{1}, \gamma^{\prime} \delta_{2}$ represents essentially the same action. In this situation, we say that $\sigma, \delta_{1}, \delta_{2}$ and $\sigma, \gamma \delta_{1}, \gamma^{\prime} \delta_{2}$ are scalar multiples. Thus, up to scalar multiplication, it suffices to find triples $\sigma, \delta_{1}, \delta_{2}$ satisfying (3).

Theorem 4 Consider an affine action of $U_{q}(s l(2))$ on the commutative polynomial $\operatorname{ring} R=k\left[x_{1}, \ldots, x_{m}\right]$ such that $\sigma^{2} \neq 1$. Then there exist $y_{1}, \ldots, y_{m}, \in R$ such that
(i) R is the polynomial ring $k\left[y_{1}, \ldots, y_{m}\right]$;
(ii) $\sigma\left(y_{i}\right)=y_{i}$ and $\delta_{E}\left(y_{i}\right)=\delta_{F}\left(y_{i}\right)=0$, for $2 \leq i \leq m$.

Furthermore, the only two possibilities, up to scalar multiplication, for the action of $U_{q}(s l(2))$ on $y_{1}{ }^{n}$, for $n \geq 1$, are
(i) $\sigma\left(y_{1}{ }^{n}\right)=q^{2 n} y_{1}{ }^{n}, \delta_{E}\left(y_{1}{ }^{n}\right)=\frac{q^{2 n}-1}{q^{2}-1} y_{1}{ }^{n+1}, \delta_{F}\left(y_{1}{ }^{n}\right)=\frac{q^{-2 n}-1}{q^{-2}-1} y_{1}{ }^{n-1}$;
(ii) $\sigma\left(y_{1}{ }^{n}\right)=q^{-2 n} y_{1}{ }^{n}, \delta_{E}\left(y_{1}{ }^{n}\right)=\frac{q^{-2 n}-1}{q^{-2}-1} y_{1}{ }^{n-1}, \delta_{F}\left(y_{1}{ }^{n}\right)=\frac{q^{2 n}-1}{q^{2}-1} y_{1}{ }^{n+1}$.

Proof Given an action of $U_{q}(s l(2))$ on $R=k\left[x_{1}, \ldots, x_{m}\right]$, Lemma 1 implies that there exist $0 \neq e, f \in Q(R)$ such that $\delta_{E}=e(\sigma-1)$ and $\delta_{F}=f\left(\sigma^{-1}-1\right)$. Recall that we only need to find δ_{E} and δ_{F} up to scalar multiplication. Therefore, given σ, Lemma 2 tells us that it suffices to find $0 \neq e \in Q(R)$ such that $\sigma(e)=q^{2} e$ and

$$
\begin{equation*}
e(\sigma(a)-a), \quad \frac{1}{e}\left(\sigma^{-1}(a)-a\right) \in R \tag{4}
\end{equation*}
$$

for all $a \in R$. Observe, in this situation, we are letting $f=\frac{1}{e}$ and it immediately follows that $\sigma(f)=q^{-2} f$.

Choose $1 \leq i \leq m$ and let $y=\sigma\left(x_{i}\right)-x_{i}$. If $y \neq 0$, then y has degree one and, from (4), it follows that

$$
e y=e\left(\sigma\left(x_{i}\right)-x_{i}\right) \in R \quad \text { and } \quad \frac{1}{e} y=-\frac{1}{e}\left(\sigma^{-1}\left(\sigma\left(x_{i}\right)\right)-\sigma\left(x_{i}\right)\right) \in R
$$

By Lemma 3, there exists $0 \neq \alpha \in k$ such that $y=\alpha e$ or $y=\frac{\alpha}{e}$. Thus, at least one of e or $\frac{1}{e}$ belongs to R. However, since σ is not the identity on e, we have $e \notin k$. Therefore, at most one of e or $\frac{1}{e}$ belongs to R.

It follows from the argument above that exactly one of e or $\frac{1}{e}$ belongs to R and we will let e^{\prime} denote the one that does. As a result, $y=\alpha e^{\prime}$ and e^{\prime} has degree one.

Thus, every nonzero element of the form $\sigma\left(x_{i}\right)-x_{i}$ is a scalar multiple of e^{\prime}. If we let $F=\sigma-1$, then F is a linear map from the vector space $k x_{1}+\cdots+k x_{m}$ to the vector space $k e^{\prime}$. Furthermore, since $\sigma \neq 1$, there is some i such that $\sigma\left(x_{i}\right) \neq x_{i}$. Hence, F is not the zero map; thus the image of F has dimension one and the kernel of F has dimension $m-1$.

We can let $y_{1}=e^{\prime}$ and then choose a basis $\left\{y_{2}, \ldots, y_{m}\right\}$ for the kernel of F. Since $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ consists of m linearly independent degree one polynomials, R is equal to the polynomial ring $k\left[y_{1}, \ldots, y_{m}\right]$. In addition, since $F=\sigma-1$, we immediately see that

$$
\sigma\left(y_{i}\right)=y_{i} \quad \text { and } \quad \delta_{E}\left(y_{i}\right)=\delta_{F}\left(y_{i}\right)=0
$$

for $2 \leq i \leq m$. At this point, all that remains is to examine the action of $\sigma, \delta_{E}, \delta_{F}$ on y_{1}.
Since $y_{1}=e^{\prime}$, we now have two cases to consider: either $y_{1}=e$ or $y_{1}=\frac{1}{e}$. If $y_{1}=e$, then since $\sigma(e)=q^{2} e$, we have

$$
\begin{aligned}
\sigma\left(y_{1}\right) & =q^{2} y_{1}, \quad \delta_{E}\left(y_{1}\right)=e\left(\sigma\left(y_{1}\right)-y_{1}\right)=y_{1}\left(q^{2} y_{1}-y_{1}\right)=\left(q^{2}-1\right) y_{1}^{2} \\
\delta_{F}\left(y_{1}\right) & =\frac{1}{e}\left(\sigma^{-1}\left(y_{1}\right)-y_{1}\right)=\frac{1}{y_{1}}\left(q^{-2} y_{1}-y_{1}\right)=\left(q^{-2}-1\right)
\end{aligned}
$$

However, we are finding δ_{E} and δ_{F} up to scalar multiplication. Therefore, without loss of generality, we may assume

$$
\sigma\left(y_{1}\right)=q^{2} y_{1}, \quad \delta_{E}\left(y_{1}\right)=y_{1}^{2}, \quad \delta_{F}\left(y_{1}\right)=1
$$

It now easily follows, by mathematical induction, that if $n \geq 1$, we have

$$
\sigma\left(y_{1}^{n}\right)=q^{2 n} y_{1}^{n} \quad \delta_{E}\left(y_{1}^{n}\right)=\frac{q^{2 n}-1}{q^{2}-1} y_{1}^{n+1}, \quad \delta_{F}\left(y_{1}^{n}\right)=\frac{q^{-2 n}-1}{q^{-2}-1} y_{1}^{n-1}
$$

The remaining possibility is that $y_{1}=\frac{1}{e}$. Since $\sigma(e)=q^{2} e$, we have $\sigma\left(\frac{1}{e}\right)=q^{-2} \frac{1}{e}$, therefore

$$
\begin{aligned}
\sigma\left(y_{1}\right) & =q^{-2} y_{1}, \quad \delta_{E}\left(y_{1}\right)=e\left(\sigma\left(y_{1}\right)-y_{1}\right)=\frac{1}{y_{1}}\left(q^{-2} y_{1}-y_{1}\right)=q^{-2}-1 \\
\delta_{F}\left(y_{1}\right) & =\frac{1}{e}\left(\sigma^{-1}\left(y_{1}\right)-y_{1}\right)=y_{1}\left(q^{2} y_{1}-y_{1}\right)=\left(q^{2}-1\right) y_{1}^{2} .
\end{aligned}
$$

Since we are finding δ_{E} and δ_{F} up to scalar multiplication, without loss of generality, we may assume that

$$
\sigma\left(y_{1}\right)=q^{-2} y_{1}, \quad \delta_{E}\left(y_{1}\right)=1, \quad \delta_{F}\left(y_{1}\right)=y_{1}^{2}
$$

Mathematical induction can now be used to show that, for $n \geq 1$,

$$
\sigma\left(y_{1}^{n}\right)=q^{-2 n} y_{1}^{n}, \quad \delta_{E}\left(y_{1}{ }^{n}\right)=\frac{q^{-2 n}-1}{q^{-2}-1} y_{1}^{n-1}, \quad \delta_{F}\left(y_{1}{ }^{n}\right)=\frac{q^{2 n}-1}{q^{2}-1} y_{1}{ }^{n+1}
$$

We conclude our paper with any easy application of Theorem 4.
Corollary 5 Consider an affine action of $H=U_{q}(s l(2))$ on the commutative polynomial ring $R=k\left[x_{1}, \ldots, x_{m}\right]$ with $\sigma^{2} \neq 1$.
(i) If q is not a root of 1 , then the subring of invariants R^{H} is a commutative polynomial ring in $m-1$ variables.
(ii) If q is a root of 1 and t is the smallest positive integer such that $q^{2 t}=1$, then the subring of invariants R^{H} is a commutative polynomial ring in m variables and R is a free R^{H}-module of rank t.

Proof Since $\sigma, \delta_{E}, \delta_{F}$ all have the same invariants, R^{H} is equal to the invariants of σ. By Theorem $4, R$ is the polynomial ring $k\left[y_{1}, \ldots, y_{m}\right], \sigma\left(y_{1}\right)=\alpha y_{1}$, where $\alpha=q^{2}$ or $\alpha=q^{-2}$, and $\sigma\left(y_{i}\right)=y_{i}$, for $2 \leq i \leq m$. If $r \in R$, we can express r uniquely as $r=\sum_{i=0}^{n} p_{i} y_{1}{ }^{i}$, where $n \geq 0$ and each $p_{i} \in k\left[y_{2}, \ldots, y_{m}\right]$. Applying σ, we have

$$
\begin{equation*}
\sigma(r)=\sigma\left(\sum_{i=0}^{n} p_{i} y_{1}{ }^{i}\right)=\sum_{i=0}^{n} \sigma\left(p_{i}\right) \sigma\left(y_{1}\right)^{i}=\sum_{i=0}^{n} p_{i} \alpha^{i} y_{1}{ }^{i} . \tag{5}
\end{equation*}
$$

In light of (5), $\sigma(r)=r$ if and only if $\alpha^{i} p_{i}=p_{i}$, for $0 \leq i \leq n$. If we are in the case where q is not a root of 1 , then α is not a root of 1 and we see that $\sigma(r)=r$ if and only if $p_{i}=0$, for $i \geq 1$. Thus, $r \in R^{H}$ if and only if $r=p_{0} \in k\left[y_{2}, \ldots, y_{m}\right]$. Therefore, in this case, $R^{H}=k\left[y_{2}, \ldots, y_{m}\right]$.

On the other hand, if q is a root of 1 , let t is the smallest positive integer such that $q^{2 t}=1$. Therefore t is the smallest positive integer such that $\alpha^{t}=1$ and it follows from (5) that $\sigma(r)=r$ if and only if $p_{i}=0$ whenever i is not a multiple of t. Therefore R^{H} is the polynomial ring $k\left[y_{1}{ }^{t}, y_{2}, \ldots, y_{m}\right]$ and, as a R^{H}-module, we have

$$
R=R^{H} \oplus R^{H} y_{1} \oplus \cdots \oplus R^{H} y_{1}{ }^{t-1} .
$$

References

[1] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups. Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002.
[2] N. Hu, Realization of quantized algebra of type A as Hopf algebra over quantum space. Comm. Algebra 29(2001), no. 2, 529-539. http://dx.doi.org/10.1081/AGB-100001522
[3] S. Montgomery and S. P. Smith, Skew derivations and $U_{q}(s l(2))$. Israel J. Math. 72(1990), no. 1-2, 158-166. http://dx.doi.org/10.1007/BF02764618

Department of Mathematics, DePaul University, 2320 N. Kenmore Avenue, Chicago, Illinois 60614, USA
e-mail: jbergen@depaul.edu

[^0]: Received by the editors June 20, 2014.
 Published electronically March 9, 2015.
 The author was supported by the DePaul University Office of Academic Affairs.
 AMS subject classification: 16T20, 17B37, 20 G 42.
 Keywords: skew derivation, quantum group, invariants.

