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Affine Actions of Uq(sl(2)) on Polynomial
Rings
To Len Krop in honor of his retirement.

Jeòrey Bergen

Abstract. We classify the aõne actions of Uq(sl(2)) on commutative polynomial rings in m ≥ 1
variables. We show that, up to scalar multiplication, there are two possible actions. In addition, for
each action, the subring of invariants is a polynomial ring in either m or m− 1 variables, depending
upon whether q is or is not a root of 1.

Montgomery and Smith [3] examine the actions of the quantum group Uq(sl(2))
on a polynomial ring in one variable. A natural direction for generalization is to try to
realizeUq(sl(2)), ormore generallyUq(sl(n)), as diòerential operators on quantum
n-space. ForUq(sl(2)), thiswas also done in [3]. In [2], thiswas done forUq(sl(n)),
for any n.
Another natural direction is to try to ûnd all actions ofUq(sl(2)) on commutative

polynomial rings in m ≥ 1 variables and to then describe the invariants of these ac-
tions. _e deûnition of Uq(sl(2)) has evolved slightly since theMontgomery–Smith
paper, and we use the newer deûnition to determine all aõne actions of Uq(sl(2))
on commutative polynomial rings. Wewill show, following a change of variables, that
these actions are trivial on m − 1 variables, and the behavior on the last variable is
very similar to the situation described in [3]. _emain result of this paper will be the
following theorem.

_eorem 4 Consider an aõne action of Uq(sl(2)) on the commutative polynomial
ring R = k[x1 , . . . , xm] such that σ 2 /= 1. _en there exist y1 , . . . , ym , ∈ R such that
(i) R is the polynomial ring k[y1 , . . . , ym];
(ii) σ(y i) = y i and δE(y i) = δF(y i) = 0, for 2 ≤ i ≤ m,
where σ is an automorphism, δE is a (σ , 1)-skew derivation, and δF is a (1, σ−1)-skew
derivation. Furthermore, the only two possibilities, up to scalar multiplication, for the
action of Uq(sl(2)) on y1

n , for n ≥ 1, are

(i) σ(y1
n) = q2n y1

n , δE(y1
n) = q2n

−1
q2−1 y1

n+1, δF(y1
n) = q−2n−1

q−2−1 y1
n−1;

(ii) σ(y1
n) = q−2n y1

n , δE(y1
n) = q−2n−1

q−2−1 y1
n−1, δF(y1

n) = q2n
−1

q2−1 y1
n+1.

Using _eorem 4, we can easily describe the invariants of these actions.
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234 J. Bergen

Corollary 5 Consider an aõne action of H = Uq(sl(2)) on the commutative poly-
nomial ring R = k[x1 , . . . , xm] with σ 2 /= 1.
(i) If q isnot a root of 1, then the subring of invariants RH is a commutative polynomial

ring in m − 1 variables.
(ii) If q is a root of 1 and t is the smallest positive integer such that q2t = 1, then the

subring of invariants RH is a commutative polynomial ring in m variables and R
is a free RH-module of rank t.

We now introduce the terminology and notation that will be used throughout this
paper. Additional backgroundmaterial onUq(sl(2)) andHopf algebras can be found
in [1]. We will let k denote a ûeld and R = k[x1 , . . . , xm] will be the commutative
polynomial ring over k. _ere will be no assumptions made about the characteristic
of k, and we let 0 /= q ∈ k be such that q2 /= 1. It will not be important whether or not
q is a root of 1 until Corollary 5.

Next, we let Uq(sl(2)) be the k-algebra generated by K ,K−1 , E , F subject to the
relations

KK−1 = K−1K = 1, KE = q2EK , KF = q−2FK , EF − FE = K − K−1

q − q−1 .

Observe that these relations require that q2 /= 1, and this guarantees that Uq(sl(2)) is
not commutative.

Since Uq(sl(2)) is a Hopf algebra, we also need to examine its comultiplication,
counit, and antipode. _e comultiplication ∆ in Uq(sl(2)) is given by

∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1⊗ K , ∆(F) = F ⊗ 1 + K−1 ⊗ F .
Observe that Uq(sl(2)) is also not cocommutative. In addition, the counit є and
antipode S are given by

є(K) = 1, є(E) = 0, є(F) = 0,

S(K) = K−1 , S(E) = −EK−1 , S(F) = −KF .
IfH is aHopf algebra, then an algebra A is called an H-module algebra if A is a le�

H-module with the added properties that

h(1) = є(h)1 and h(ab) = ∑
(h)

h(1)(a)h(2)(b),

for all a, b ∈ A and h ∈ H, where ∆(h) = ∑(h) h(1) ⊗ h(2) is comultiplication applied
to h. When we refer to an action of H = Uq(sl(2)) on R = k[x1 , . . . , xm] or say that
H acts on R, wemean that R is an H-module algebra. If A is a commutative domain,
we let Q(A) denote its quotient ûeld.

When Uq(sl(2)) acts on R, since ∆(K) = K ⊗ K and K is invertible, K acts as an
automorphism. We will let σ denote the automorphism of R induced by K. If g is an
automorphism, a k-linear map d is called a (g , 1)-skew derivation if

d(ab) = d(a)g(b) + ad(b),
for all a, b ∈ R. Analogously, d is called a (1, g)-skew derivation if

d(ab) = d(a)b + g(a)d(b).

https://doi.org/10.4153/CMB-2015-012-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-012-5


Aõne Actions of Uq(sl(2)) on Polynomial Rings 235

Since ∆(E) = E ⊗ K + 1 ⊗ K and ∆(F) = F ⊗ 1 + K−1 ⊗ F, E acts as a (K , 1)-skew
derivation and F acts as a (1,K−1)-skew derivation. We will let δE and δF denote the
skew derivations of R induced, respectively, by E and F. It is important to note that
we will always assume that σ 2 /= 1. Observe that if σ 2 /= 1 then δE /= 0 and δF /= 0,
whereas if σ 2 = 1, then either q4 = 1 or δE = δF = 0.

_e invariants of the action of H on R is the subalgebra

RH = {a ∈ R ∣ h(a) = є(h)a, for all h ∈ H}.
In our situation, observe that

RH = {a ∈ R ∣ σ(a) = a} ∩ {a ∈ R ∣ δE(a) = 0} ∩ {a ∈ R ∣ δF(a) = 0}.
We say that the action of Uq(sl(2)) on k[x1 , . . . , xm] is aõne if σ(x i) has degree

one, for 1 ≤ i ≤ m. Certainly when Uq(sl(2)) acts on k[x1], as in [3], the action must
be aõne. However, in general, actions of Uq(sl(2)) on k[x1 , . . . , xm] need not be
aõne.

We begin the work needed to prove_eorem 4 with the following lemma.

Lemma 1 Let d /= 0 be either a (g , 1) or (1, g)-skew derivation of a commutative
domain Awhere g /= 1. _en there exists 0 /= λ ∈ Q(A) such that d = λ(g − 1).

Proof First, suppose d is a (g , 1)-skew derivation and let a, b ∈ A. Since A is com-
mutative, if a, b ∈ A, we have

d(ab) = d(ba) = d(b)g(a) + bd(a) = d(a)b + g(a)d(b).
_erefore d is also a (1, g)-skew derivation, and it suõces to consider (1, g)-skew
derivations.

Let r ∈ A; since g /= 1, we can choose a ∈ A such that g(a) /= a. Since A is
commutative, we have

d(a)r + g(a)d(r) = d(ar) = d(ra) = d(r)a + g(r)d(a).
If we subtract d(a)r + d(r)a from the far le� and far right of the previous equation,
we obtain

(g(a) − a)d(r) = d(a)(g(r) − r).
Since g(a) /= a, we can divide both sides of the previous equation by g(a) − a, and if
we let λ = (g(a) − a)−1d(a), we obtain

d(r) = λ(g(r) − r).
_us, d = λ(g − 1).

In light of Lemma 1, when H = Uq(sl(2)) acts on R = k[x1 , . . . , xm], the ûxed
points of σ are the same as the kernel of both δE and δF . _erefore,whenwe examine
RH , it will suõce to study the ûxed points of σ .

Lemma 2 Let Abe a commutative domainwith an automorphism σ such that σ 2 /= 1
and let 0 /= e , f ∈ Q(A). If δE = e(σ − 1) and δF = f (σ−1 − 1), then σ , δE , δF induce
an action of Uq(sl(2)) on A if and only if
(i) σ(e) = q2e, σ( f ) = q−2 f ,
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(ii) e f = q3

(q2−1)2 ,
(iii) δE(A) ⊆ A, δF(A) ⊆ A.

Proof In order for σ , δE , δF to induce an action of Uq(sl(2)) on A, they need to
satisfy the same relations satisûed, respectively, by K , E , F, in Uq(sl(2)). Using the
facts thatA is commutative, σ is an automorphism, δE = e(σ−1), and δF = f (σ−1 − 1),
it is easy to see that

σ(ab) = σ(a)σ(b), δE(ab) = δE(a)σ(b) + aδE(b),
δF(ab) = δF(a)b + σ−1(a)δF(b),

for all a, b ∈ A. _us the actions of σ , δE , δF on A are consistent with the comultipli-
cation of K , E , F in Uq(sl(2)).

Next,we need to ûnd necessary and suõcient conditions on e , f such that σ , δE , δF
satisfy the relations

σδE = q2δEσ , σδF = q−2δFσ , δEδF − δFδE =
σ − σ−1

q − q−1 .

If a ∈ A, we have
σ(δE(a)) = σ( eσ(a) − ea) = σ(e)(σ 2(a) − σ(a)) ,

q2δE(σ(a)) = q2( eσ 2(a) − eσ(a)) = q2e(σ 2(a) − σ(a))
and

σ(δF(a)) = σ( f σ−1(a) − f a) = σ( f )( a − σ(a)) ,
q−2δF(σ(a)) = q−2( f a − f σ(a)) = q−2 f ( a − σ(a)) .

Since there exists a ∈ A such that σ(a) /= a, the above equations show that σδE =
q2δEσ and σδF = q−2δFσ if and only if σ(e) = q2e and σ( f ) = q−2 f .

We will now compute δEδF and δFδE . In light of the previous argument, wemay
assume that σ(e) = q2e and σ( f ) = q−2 f . If a ∈ A, we have

δE(δF(a)) = eσ( f σ−1(a) − f a) − e( f σ−1(a) − f a)
= eσ( f )a − eσ( f )σ(a) − e f σ−1(a) + e f a
= (1 + q−2)e f a − q−2e f σ(a) − e f σ−1(a)

(1)

and

δF(δE(a)) = f σ−1( eσ(a) − ea) − f ( eσ(a) − ea)
= σ−1(e) f a − σ−1(e) f σ−1(a) − e f σ(a) + e f a
= (1 + q−2)e f a − e f σ(a) − q−2e f σ−1(a).

(2)

Subtracting equation (2) from equation (1) gives us

(δEδF − δFδE)(a) = (1 − q−2)e f (σ(a) − σ−1(a)) ,
therefore

δEδF − δFδE = (1 − q−2)e f (σ − σ−1).
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Since there exists a ∈ A such that σ 2(a) /= a, the previous equation shows us that

δEδF − δFδE =
σ − σ−1

q − q−1

if and only if

(1 − q−2)e f = 1
q − q−1 .

However, this is clearly equivalent to

e f = ( 1
1 − q−2 )(

1
q − q−1 ) = q3

(q2 − 1)2 .

Finally, since e , f need not belong to A, in order to have an action ofUq(sl(2)) on
A, we also need to add the conditions that δE(A) ⊆ A and δF(A) ⊆ A.

_e next lemma will exploit the fact that k[x1 , . . . , xm] is a unique factorization
domain.

Lemma 3 Let R = k[x1 , . . . , xm], and suppose y ∈ R has degree one and 0 /= d ∈
Q(R) such that dy, yd ∈ R with d ∉ k. _en there exists 0 /= α ∈ k such that either
y = αd or y = α

d .

Proof One possibility is that either d or 1
d belongs to R, andwe ûrst consider the case

where d ∈ R. Since R is a unique factorization domain and d ∉ k, we have d = p1⋯ps ,
where s ≥ 1 and each p i is an irreducible polynomial. However, y has degree one and

y
d
= y

p1⋯ps
∈ R,

therefore it must be the case that s = 1 and p1 has degree one. As a result, d = p1 and
y = αd, for some 0 /= α ∈ k. An identical argument then shows that if 1

d ∈ R, then
y = α

d , for some 0 /= α ∈ k.
In light of the previous argument, it suõces to show that either d ∈ R or 1

d ∈ R.
_erefore, by way of contradiction, we will assume that neither d nor 1

d belong to R.
Since R is a unique factorization domain, we can write

d = p1⋯ps

q1⋯qt
,

where s, t ≥ 1 and every p i , q j is an irreducible polynomial such thatno p i is amultiple
in R of any q j Recall that

dy = ( p1⋯ps

q1⋯qt
) y and

y
d
= q1⋯qt

p1⋯ps
y

both belong to R. Since dy ∈ R, we see that p1⋯ps y is a multiple in R of q1, hence y
is a multiple in R of q1. Similarly, since y

d ∈ R, we know that q1⋯qt y is a multiple in
R of p1, hence y is also a multiple in R of p1. However, y has degree one, therefore
there exist 0 /= β, γ ∈ k such that y = βq1 and y = γp1. _is immediately leads to the
contradiction that p1 is amultiple in R of q1, concluding the proof.
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Suppose that δ1 is a (σ , 1)-skew derivation and δ2 is a (1, σ−1)-skew derivation such
that

(3) σδ1 = q2δ1σ , σδ2 = q−2δ2σ , δ1δ2 − δ2δ1 = α(σ − σ−1),
where 0 /= α ∈ k. It is easy to see that, for any 0 /= β ∈ k, there exists a unique 0 /= β′ ∈ k
such that

σ(βδ1) = q2(βδ1)σ , σ(β′δ2) = q−2(β′δ2)σ ,

(βδ1)(β′δ2) − (β′δ2)(βδ1) =
σ − σ−1

q − q−1 .

_erefore, for any σ , δ1 , δ2 satisfying (3) and 0 /= β ∈ k, we see that σ , βδ1 , β′δ2
represent an action of Uq(sl(2)) on k[x1 , . . . , xm]. As a result, ûnding actions of
Uq(sl(2)) on k[x1 , . . . , xm] reduces to ûnding σ , δ1 , δ2 satisfying (3) and if 0 /= γ, γ′ ∈
K then σ , γδ1 , γ′δ2 represents essentially the same action. In this situation, we say
that σ , δ1 , δ2 and σ , γδ1 , γ′δ2 are scalar multiples. _us, up to scalar multiplication, it
suõces to ûnd triples σ , δ1 , δ2 satisfying (3).

_eorem 4 Consider an aõne action of Uq(sl(2)) on the commutative polynomial
ring R = k[x1 , . . . , xm] such that σ 2 /= 1. _en there exist y1 , . . . , ym , ∈ R such that
(i) R is the polynomial ring k[y1 , . . . , ym];
(ii) σ(y i) = y i and δE(y i) = δF(y i) = 0, for 2 ≤ i ≤ m.
Furthermore, the only two possibilities, up to scalar multiplication, for the action of
Uq(sl(2)) on y1

n , for n ≥ 1, are

(i) σ(y1
n) = q2n y1

n , δE(y1
n) = q2n

−1
q2−1 y1

n+1, δF(y1
n) = q−2n−1

q−2−1 y1
n−1;

(ii) σ(y1
n) = q−2n y1

n , δE(y1
n) = q−2n−1

q−2−1 y1
n−1, δF(y1

n) = q2n
−1

q2−1 y1
n+1.

Proof Given an action of Uq(sl(2)) on R = k[x1 , . . . , xm], Lemma 1 implies that
there exist 0 /= e , f ∈ Q(R) such that δE = e(σ − 1) and δF = f (σ−1− 1). Recall thatwe
only need to ûnd δE and δF up to scalar multiplication. _erefore, given σ , Lemma 2
tells us that it suõces to ûnd 0 /= e ∈ Q(R) such that σ(e) = q2e and

(4) e(σ(a) − a) , 1
e
(σ−1(a) − a) ∈ R,

for all a ∈ R. Observe, in this situation,we are letting f = 1
e and it immediately follows

that σ( f ) = q−2 f .
Choose 1 ≤ i ≤ m and let y = σ(x i)− x i . If y /= 0, then y has degree one and, from

(4), it follows that

ey = e(σ(x i) − x i) ∈ R and
1
e
y = − 1

e
(σ−1(σ(x i)) − σ(x i)) ∈ R.

By Lemma 3, there exists 0 /= α ∈ k such that y = αe or y = α
e . _us, at least one of e

or 1
e belongs to R. However, since σ is not the identity on e, we have e ∉ k. _erefore,

at most one of e or 1
e belongs to R.

It follows from the argument above that exactly one of e or 1
e belongs to R and

we will let e′ denote the one that does. As a result, y = αe′ and e′ has degree one.
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_us, every nonzero element of the form σ(x i)− x i is a scalar multiple of e′. If we let
F = σ − 1, then F is a linear map from the vector space kx1 + ⋯ + kxm to the vector
space ke′. Furthermore, since σ /= 1, there is some i such that σ(x i) /= x i . Hence, F
is not the zero map; thus the image of F has dimension one and the kernel of F has
dimension m − 1.

We can let y1 = e′ and then choose a basis {y2 , . . . , ym} for the kernel of F.
Since {y1 , y2 , . . . , ym} consists of m linearly independent degree one polynomials,
R is equal to the polynomial ring k[y1 , . . . , ym]. In addition, since F = σ − 1, we
immediately see that

σ(y i) = y i and δE(y i) = δF(y i) = 0,

for 2 ≤ i ≤ m. At this point, all that remains is to examine the action of σ , δE , δF on y1.
Since y1 = e′, we now have two cases to consider: either y1 = e or y1 = 1

e . If y1 = e,
then since σ(e) = q2e, we have

σ(y1) = q2 y1 , δE(y1) = e(σ(y1) − y1) = y1(q2 y1 − y1) = (q2 − 1)y1
2 ,

δF(y1) =
1
e
(σ−1(y1) − y1) =

1
y1

(q−2 y1 − y1) = (q−2 − 1).

However, we are ûnding δE and δF up to scalar multiplication. _erefore, without
loss of generality, wemay assume

σ(y1) = q2 y1 , δE(y1) = y1
2 , δF(y1) = 1.

It now easily follows, by mathematical induction, that if n ≥ 1, we have

σ(y1
n) = q2n y1

n δE(y1
n) = q2n − 1

q2 − 1
y1

n+1 , δF(y1
n) = q−2n − 1

q−2 − 1
y1

n−1 .

_e remaining possibility is that y1 = 1
e . Since σ(e) = q2e, we have σ( 1

e ) = q−2 1
e ,

therefore

σ(y1) = q−2 y1 , δE(y1) = e(σ(y1) − y1) =
1
y1

(q−2 y1 − y1) = q−2 − 1,

δF(y1) =
1
e
(σ−1(y1) − y1) = y1(q2 y1 − y1) = (q2 − 1)y1

2 .

Since we are ûnding δE and δF up to scalar multiplication, without loss of generality,
wemay assume that

σ(y1) = q−2 y1 , δE(y1) = 1, δF(y1) = y1
2 .

Mathematical induction can now be used to show that, for n ≥ 1,

σ(y1
n) = q−2n y1

n , δE(y1
n) = q−2n − 1

q−2 − 1
y1

n−1 , δF(y1
n) = q2n − 1

q2 − 1
y1

n+1 .

We conclude our paper with any easy application of_eorem 4.

Corollary 5 Consider an aõne action of H = Uq(sl(2)) on the commutative poly-
nomial ring R = k[x1 , . . . , xm] with σ 2 /= 1.
(i) If q isnot a root of 1, then the subring of invariants RH is a commutative polynomial

ring in m − 1 variables.
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(ii) If q is a root of 1 and t is the smallest positive integer such that q2t = 1, then the
subring of invariants RH is a commutative polynomial ring in m variables and R
is a free RH-module of rank t.

Proof Since σ , δE , δF all have the same invariants, RH is equal to the invariants of
σ . By _eorem 4, R is the polynomial ring k[y1 , . . . , ym], σ(y1) = αy1, where α = q2

or α = q−2, and σ(y i) = y i , for 2 ≤ i ≤ m. If r ∈ R, we can express r uniquely as
r = ∑n

i=0 p i y1
i , where n ≥ 0 and each p i ∈ k[y2 , . . . , ym]. Applying σ , we have

(5) σ(r) = σ(
n
∑
i=0

p i y1
i) =

n
∑
i=0

σ(p i)σ(y1)i =
n
∑
i=0

p iα i y1
i .

In light of (5), σ(r) = r if and only if α i p i = p i , for 0 ≤ i ≤ n. If we are in the case
where q is not a root of 1, then α is not a root of 1 and we see that σ(r) = r if and only
if p i = 0, for i ≥ 1. _us, r ∈ RH if and only if r = p0 ∈ k[y2 , . . . , ym]. _erefore, in
this case, RH = k[y2 , . . . , ym].

On the other hand, if q is a root of 1, let t is the smallest positive integer such that
q2t = 1. _erefore t is the smallest positive integer such that α t = 1 and it follows from
(5) that σ(r) = r if and only if p i = 0 whenever i is not amultiple of t. _erefore RH

is the polynomial ring k[y1
t , y2 , . . . , ym] and, as a RH-module, we have

R = RH ⊕ RH y1 ⊕⋯⊕ RH y1
t−1 .
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