
Canad. Math. Bull. Vol. 56 (1), 2013 pp. 70–79
http://dx.doi.org/10.4153/CMB-2011-143-x
c©Canadian Mathematical Society 2011

An Asymptotic Bound on the Composition
Number of Integer Sums of Squares
Formulas

P. Hrubeš, A. Wigderson, and A. Yehudayoff

Abstract. Let σZ(k) be the smallest n such that there exists an identity

(x2
1 + x2

2 + · · · + x2
k) · (y2

1 + y2
2 + · · · + y2

k ) = f 2
1 + f 2

2 + · · · + f 2
n ,

with f1, . . . , fn being polynomials with integer coefficients in the variables x1, . . . , xk and y1, . . . , yk.

We prove that σZ(k) ≥ Ω(k6/5).

1 Introduction

Consider the following problem: given k, what is the smallest n so that there exist

real polynomials f1, . . . , fn in the variables x1, . . . , xk and y1, . . . , yk satisfying the

polynomial identity

(1.1) (x2
1 + x2

2 + · · · + x2
k) · (y2

1 + y2
2 + · · · + y2

k) = f 2
1 + f 2

2 + · · · + f 2
n .

Let σR(k) denote the smallest n for which (1.1) holds. It is known that σR(k) = k for

k ∈ {1, 2, 4, 8}. When k = 1, we have x2
1 y2

1 = (x1 y1)2. When k = 2, we have

(x2
1 + x2

2)(y2
1 + y2

2) = (x1 y1 − x2 y2)2 + (x1 y2 + x2 y1)2.

Interpreting (x1, x2) and (y1, y2) as complex numbers x = x1 + ix2 and y = y1 +

i y2, this formula expresses the property |x|2 · |y|2 = |x · y|2 of multiplication of

complex numbers. When k = 4, there is a similar connection with multiplication of

quaternions, when k = 8, multiplication of octonions.

This fact is the historical motivation for the study of the problem. Other mo-

tivations arise from geometry and topology, and ask whether certain maps between

spheres exist (see [10] for survey). A classical result of Hurwitz [2] states that σR(k) =

k can be achieved only for k ∈ {1, 2, 4, 8}. This is a special case of a more general the-

orem of Hurwitz and Radon [9], [3]. The theorem states that (
∑s

i=1 x2
i ) · (

∑k
i=1 y2

i )

can be written as a sum of k squares if and only if s ≤ ρ(k), where ρ(k) is the so-called

Radon–Hurwitz number. In [9], [3], the function ρ(k) was exactly determined. Here

are two properties of this function: the equality ρ(k) = k holds only if k ∈ {1, 2, 4, 8},
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and asymptotically ρ(k) = Θ(log k). In contrast, Pfister showed that when k is a

power of two, we can always achieve k = n in (1.1), if we allow f1, . . . , fn to be real

rational functions [8].

Beyond the classical, little is known about the function σR(k). The immediate

bounds are k ≤ σR(k) ≤ k2. One can improve the upper bound to k · ⌈ k
ρ(k)

⌉ which,

together with the estimate on ρ(k), gives

k ≤ σR(k) ≤ O
( k2

log k

)

.(1.2)

Using topological means, the lower bound has been increased by James [4], and gives

an asymptotic lower bound σR(k) ≥
(

2 − o(1)
)

k (see also [6]). The gap between

the lower and upper bounds, however, remains wide open. Most importantly, we do

not have a lower bound k1+ǫ, or an upper bound k2−ǫ, for some ǫ > 0. The authors

recently showed in [1] that such a lower bound for squares with complex coefficients1

will resolve an important problem in arithmetic circuit complexity.

A simplified version of the problem has been considered, e.g., in [5], [11]; we can

require the polynomials f1, . . . , fn to have integer coefficients. Define σZ(k) as the

smallest n so that (1.1) holds with f1, . . . , fn polynomials with integer coefficients.

So far, research has mainly focused on computing the exact value of σZ(k) for small

integers k, and little was known about the asymptotic behavior of σZ(k). In this paper,

we prove the following theorem.

Theorem 1.1 σZ(k) ≥ Ω(k6/5).

It is a remarkable fact that the best-known real sum of squares formulas actually

involve polynomials with integer coefficients (see [13] and [7]). Namely, the upper

bound (1.2) is obtained with f1, . . . , fn that have integer coefficients. It is an open

question whether the use of real numbers as opposed to integers can decrease n, that

is, whether σR(k) = σZ(k) holds for every k (and even for k = 11).

2 Sums of Squares and Intercalate Matrices

We call a polynomial identity over R of the form (1.1) a real sum of squares formula of

type [k, n]. If the polynomials f1, . . . , fn have only integer coefficients, we call (1.1)

an integer sum of squares formula.

Let us first show that in the case of real numbers, the polynomials f1, . . . , fn are

bilinear. (We define [k] to be the set {1, . . . , k}.)

Lemma 2.1 If f1, . . . , fn are real polynomials that satisfy (1.1), then f1, . . . , fn are in

fact bilinear forms, that is, fi are of the form fi =
∑

p,q∈[k] ai,p,qxp yq.

Proof It is sufficient to show that f1, . . . , fn are homogeneous polynomials of degree

one in the variables X = {x1, . . . , xk}, and similarly for Y = {y1, . . . , yk}. For a

polynomial g, let g( j) denote the j-homogeneous part of g with respect to the vari-

ables X.

1Where we require f1, . . . , fn to be bilinear.
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We want to show that f
( j)

i = 0 whenever j 6= 1. Let m be the largest j so that

there exists i ∈ [n] with f
( j)

i 6= 0. Assume, for the sake of contradiction, that m > 1.

The maximality of m implies

( f 2
1 + · · · + f 2

n )(2m)
= ( f (m)

1 )2 + · · · + ( f (m)
n )2.

The left-hand side is zero, and so the right-hand side is zero as well. Over the real

numbers, this implies f (m)
1 = · · · = f (m)

n = 0, which is a contradiction. In a similar

fashion,

( f 2
1 + · · · + f 2

n )(0)
= ( f (0)

1 )2 + · · · + ( f (0)
n )2,

which implies f (0)
1 = · · · = f (0)

n = 0. Applying similar reasoning to Y , we conclude

that every fi is a bilinear form as claimed.

Following Yiu [11], we phrase σZ(k) in a more combinatorial language (though we

deviate from Yiu’s notation). We call a k × k matrix M = (Mi, j)i, j∈[k] with nonzero

integer entries an intercalate matrix, if

(1) |Mi, j1
| 6= |Mi, j2

|, whenever j1 6= j2,

(2) |Mi1, j | 6= |Mi2, j |, whenever i1 6= i2,

(3) if i1 6= i2, j1 6= j2 and Mi1, j1
= ±Mi2, j2

, then Mi1, j2
= ∓Mi2, j1

.

We call C = C(M) = {|Mi j | : i, j ∈ [k]} the set of colors in M. We say that M has n

colors if |C| = n.

Condition (1) says that no color appears twice in the same row of M, condition (2)

says that no color appears twice in the same column of M. Condition (3) then re-

quires that for every 2 × 2 submatrix

(

a b

c d

)

of M, either |a|, |b|, |c|, |d| are all different, or the submatrix is of the form

(

ǫ1a ǫ2b

ǫ3b ǫ4a

)

where |a| 6= |b| and ǫi ∈ {+1,−1} satisfy ǫ1ǫ2ǫ3ǫ4 = −1. The following are examples

of 2 × 2 intercalate matrices:

(

1 2

3 −4

)

,

(

1 2

2 −1

)

, and

(

−1 −2

2 −1

)

.

The following matrices are not intercalate:

(

1 2

3 1

)

,

(

1 2

2 1

)

, and

(

−1 2

2 −1

)

.

The following proposition relates intercalate matrices and integer sum of squares

formulas.
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Proposition 2.2 The following are equivalent:

(1) There exists an integer sum of squares formula of type [k, n].

(2) There exists an intercalate k × k matrix with n colors.

Proof Let us first show that existence of real sum of squares formula of type [k, n] is

equivalent to the following: there exists a family V of k2 vectors vi, j ∈ R
n, i, j ∈ [k],

with the following properties (v·u denotes the usual inner product in R
n)

(i) vi, j ·vi, j = 1, for every i, j,

(ii) vi, j1
·vi, j2

= 0, whenever j1 6= j2,

(iii) vi1, j ·vi1, j = 0, whenever i1 6= i2,

(iv) vi1, j1
·vi2, j2

+ vi1, j2
·vi2, j1

= 0, for every i1 6= i2, j1 6= j2.

Assume first that we have a real sum of squares formula of type [k, n] with bilinear

forms f1, . . . , fn, as guaranteed by Lemma 2.1. For ℓ ∈ [n] and i, j ∈ [k], let vi, j[ℓ]

be the coefficient of xi y j in fℓ, and let vi, j = (vi, j[1], . . . , vi, j[n]). Equation (1.1) can

be written as

(2.1) (x2
1 + · · · + x2

k) · (y2
1 + · · · + y2

k) =
(

∑

i, j∈[k]

vi, jxi y j

)

·
(

∑

i, j∈[k]

vi, jxi y j

)

.

The right-hand side can be written as

∑

i, j

(

(vi, j ·vi, j)x2
i y2

j

)

+ 2
∑

i, j1< j2

(

(vi, j1
·vi, j2

)x2
i y j1

y j2

)

+ 2
∑

i1<i2, j

(

(vi1, j ·vi2, j)xi1
xi2

y2
j

)

+ 2
∑

i1<i2, j1< j2

(

(vi1, j1
·vi2, j2

+ vi1, j2
·vi2, j1

)xi1
xi2

y j1
y j2

)

.

On the left-hand side, the coefficients of the monomials x2
i y2

j , i, j ∈ [k] are equal to

one, and the other monomials have coefficient zero. Since (2.1) is equality of formal

polynomials, vi, j satisfy the four conditions above. Conversely, if we are given vectors

with such properties, we can construct a sum of squares formula by means of (2.1).

In the case of integer sum of squares formula, the vectors vi j have integer entries.

In the integer case, condition (i) implies a stronger property:

(v) vi j ∈ {0, 1,−1}n and vi j has exactly one nonzero entry.

Here is how a family V with properties (i) through (v) corresponds to an inter-

calate matrix. Given an intercalate matrix M with colors {a1, . . . , an}, define V as

follows: for every ℓ ∈ [n] and i, j ∈ [k], define vi, j[ℓ] = sgn(Mi, j), if Mi, j = aℓ, and

vi, j[ℓ] = 0 otherwise. Conversely, given such a family V , define an intercalate matrix

with colors {1, . . . , n} as Mi, j = vi, j[ℓ] · ℓ, where ℓ is the unique coordinate such that

vi, j[ℓ] 6= 0. It is straightforward to verify that the required properties of V , resp. M,

are satisfied.

3 The Number of Colors in Intercalate Matrices

We say that two integer matrices M and M ′ are equivalent, if M ′ can be obtained

from M by
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(1) permuting rows and columns,

(2) multiplying rows and columns by minus one, and

(3) renaming colors, that is, if θ : Z → Z is a one-to-one map such that θ(−a) =

−θ(a) for every a, we have M ′

i, j = θ(Mi, j), for every i, j ∈ [k].

Here are two elementary properties of intercalate matrices.

Fact 3.1 A submatrix of an intercalate matrix is an intercalate matrix.

Fact 3.2 If M and M ′ are equivalent, then M is intercalate if and only if M ′ is inter-

calate.

We say that a k × k matrix M is full, if for every i ∈ [k], we have Mi,i = 1.

The following lemma, which will be proved in Section 3.1, is the main step in the

proof of our main theorem.

Lemma 3.3 Let M be a k × k full intercalate matrix. Then M has at least Ω(k3/2)

colors.

Lemma 3.3 implies the following theorem, which gives Theorem 1.1 by Proposi-

tion 2.2.

Theorem 3.4 Any k × k intercalate matrix has at least Ω(k6/5) colors.

Proof Let M be a k × k intercalate matrix with n colors. We show that M contains a

s × s submatrix M(0) which is equivalent to a full intercalate matrix, with s ≥ k2/n.

For a color a, let Ma = {(i, j) ∈ [k] × [k] : |Mi, j | = a}. The sets Ma form a

partition of [k] × [k] to n pairwise disjoint sets, and hence there exists some a so

that s := |Ma| ≥ k2/n. Let M(0) be the submatrix of M obtained by deleting rows

and columns that do not contain a. Since the color a never occurs twice in the same

row or column in M(0), M(0) is s × s matrix, and we can permute rows and columns

of M(0) to obtain a matrix M(1) in which the diagonal entries satisfy |M(1)
i,i | = a. We

can thus multiply some of the rows of M(1) by minus one to obtain a matrix M(2) in

which the diagonal entries have M(2)
i,i = a. Finally, we can rename the colors of M(2)

to obtain a matrix M(3) with M(3)
i,i = 1 for every i ∈ [k]. Altogether, M(3) is a full

intercalate matrix equivalent to M(0).

M(0) contains at most n colors. Hence Lemma 3.3 tells us that n ≥ Ω(s3/2). Since

s ≥ k2/n, we have n ≥ Ω(k3/n3/2), which implies n ≥ Ω(k6/5).

3.1 Number of Colors in Full Intercalate Matrices

The definition of intercalateness immediately implies the following fact.

Fact 3.5 If M is a full intercalate matrix, then Mi, j = −M j,i for every i 6= j.

We now describe a few combinatorial properties of full intercalate matrices.
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Lemma 3.6 Assume that M is a 6 × 6 intercalate matrix of the form

















1 2 3

1 4

1

1 2 3

1 b

1

















,

where the empty entries are some unspecified integers. Then b = −4.

Proof Let M1,4 = c. By Fact 3.5, M has the form

















1 2 3 c

−2 1 4

−3 −4 1

−c 1 2 3

1 b

1

















.

Property (3) in the definition of intercalate matrices implies that M2,5 = M3,6 =

M4,1 = −c, as M2,1 = −M4,5 and M3,1 = −M4,6. Using Fact 3.5, we thus conclude

that M has the form
















1 2 3 c

−2 1 4 −c

−3 −4 1 −c

−c 1 2 3

c 1 b

c 1

















.

Here we have M5,2 = −M3,6 and hence M5,6 = M3,2. In other words, b = −4.

Let M be a k× k matrix. A triple (i, j1, j2) such that 1 ≤ i < j1 < j2 ≤ k is called

a position in M. Let (a, b) be an ordered pair of natural numbers. We say that (a, b)

occurs in position (i, j1, j2) in M, if |Mi, j1
| = a and |Mi, j2

| = b.

Proposition 3.7 Let M be a full intercalate matrix. Then every pair (a, b) occurs in

at most two different positions in M.

Proof Assume that (a, b) occurs at three distinct positions
(

i(p), j1(p), j2(p)
)

, p ∈
{0, 1, 2}, in M. By renaming colors, we can assume without loss of generality that

(a, b) = (2, 3). We show that M contains 9 × 9 submatrix M ′ equivalent to a matrix

of the form




A1

A2

A3



 ,
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where

Ai =





1 2 3

1 ci

1



 .

This will imply a contradiction: Lemma 3.6 implies that c2 = −c1, c3 = −c1 and

c3 = −c2, and hence c1 = −c1, which is impossible, as c1 6= 0.

We first show that the nine indices I =
{

i(p), j1(p), j2(p) : p ∈ {0, 1, 2}
}

are all

distinct. There are a few cases to consider.

(1) The definition of position guarantees that

|{i(p), j1(p), j2(p)}| = 3

for every p ∈ {0, 1, 2}.

(2) Since no color can appear twice in the same row,

|{i(0), i(1), i(2)}| = |{ j1(0), j1(1), j1(2)}| = |{ j2(0), j2(1), j2(2)}| = 3.

(3) Since |Mi(p), j1(p)| = |Mi(q), j1(q)| = 2, M being intercalate implies

|Mi(p), j1(q)| = |Mi(q), j1(p)|.

Assume, for the sake of contradiction, that j2(p) = j1(q) for some p 6= q. Thus,

|Mi(p), j1(q)| = |Mi(p), j2(p)| = 3, and so |Mi(q), j1(p)| = 3. But j1(p) 6= j2(q), as

j1(p) < j2(p) = j1(q) < j2(q). This contradicts property (1) in the definition

of intercalate matrices, since |Mi(q), j1(p)| = |Mi(q), j2(q)|.
(4) Assume, for the sake of contradiction, that i(q) = je(p) for some p 6= q and e =

1, 2. Since M is full, Mi(q), je(p) = 1. As above, we conclude that |Mi(p), je(q)| = 1.

But i(p) 6= je(q), since i(p) < je(p) = i(q) < je(q). Thus the color 1 appears

twice in the row i(p), which is a contradiction.

Let M ′ be the 9 × 9 submatrix of M defined by the set of rows and columns I.

Permuting rows and columns of M ′, we obtain a matrix of the form





B1

B2

B3



 ,

where

Bi =





1 ǫi2 δi3

1

1





and ǫi , δi ∈ {1,−1}. Multiplying rows and columns by minus one where appropri-

ate, we conclude that M ′ is of the desired form.

We are now ready for the proof of the lemma.

Proof of Lemma 3.3 There are at least k3/8 different positions in M. From n colors,

one can build at most n2 ordered pairs. Proposition 3.7 implies that any such pair

appears in at most two positions in M. Thus, 2n2 ≥ k3/8 and so n ≥ Ω(k3/2).
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4 Comments and Open Problems

Full Intercalate Matrices

An obvious way to improve the bound in Theorem 1.1 is to improve the exponent 3/2

in Lemma 3.3. In the current proof, we employ a simple counting argument to show

that a matrix M, in which every pair occurs in at most two positions, must have

at least Ω(k3/2) colors. This is true for any such matrix (not only intercalate), and

remains true if we allow pairs to repeat any constant number of times (not just two).

In this sense, we could have saved some work in the proof of Proposition 3.7, for it

would be sufficient to show that every pair occurs at most c times in M, for some

constant c. Interestingly, if we do not use additional properties of M, the bound

Ω(k3/2) is tight, as the following proposition shows.

Proposition 4.1 There exists n = O(k3/2) and sets S1, . . . , Sk ⊆ [n] such that

(i) |Si | ≥ k, for every i ∈ [k], but

(ii) for every distinct i1, i2, i3 ∈ [k], we have |Si1
∩ Si2

∩ Si3
| ≤ 1.

This means that to improve the bound in Lemma 3.3, we must employ more prop-

erties of M.

The proposition will follow from the following construction of the dual of this set

system, namely, the sets T j ⊆ [k] with j ∈ [n] defined by T j = {i : j ∈ Si}. It

suffices to construct the T j ’s, and show that for any two distinct j, j ′ ∈ [n], we have

|T j ∩ T j ′ | ≤ 2. This construction, which is sometimes called a 3-design, may be

interesting in its own right. For this we need some notation.

For any field F, let H(F) = SL2(F) be the group of 2 × 2 matrices of determinant

one over F, and let P(F) = F ∪ {∞} denote the projective line. We will need the

cardinalities of these objects: if F is finite, we have |H(F)| = (|F| + 1)|F|(|F| − 1) and

|P(F)| = |F| + 1.

The Mobius action of H(F) on P(F) is defined by gx = (ax + b)/(cx + d), for g the

matrix whose rows are (a, b) and (c, d). This action is well known to be 3-transitive:

let x1, x2, x3 and y1, y2, y3 be two triples of elements from P(F), then there is a unique

g ∈ H(F) such that gxi = yi for every i ∈ {1, 2, 3}. In particular, if xi = yi for all i,

then that g is the identity of H(F). For a subset R ⊆ P(F) and g ∈ H(F), denote

gR = {gx : x ∈ R}.

Let q be a prime power. We will use the objects above with the fields of size q

and q2. For b ∈ {1, 2}, let Fb be the field with qb elements, and let Hb = H(Fb) and

Pb = P(Fb). We have P1 ⊆ P2 and H1 is a subgroup of H2. Let C = {g1, g2, . . . , gn}
denote a complete set of left-coset representatives of H1 in H2. We assume that the

identity of H2 is in C .

Our set system can now be defined. Let T j = g jP1 for all j ∈ [n]. In words,

we consider the n shifts of P1 under the Mobius action of all members of the coset

representatives in C .

Let us check the parameters, and then prove the intersection property. We have

k = |P2| = q2 + 1 and n = (q2 + 1)q2(q2 − 1)/(q + 1)q(q− 1) = q(q2 + 1) = Θ(k3/2).
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We have |T j | = q + 1 for each j, and symmetry thus implies that each Si in the

proposition has size |Si | = q(q + 1) > k.

Lemma 4.2 For every two distinct j, j ′, we have |T j ∩ T j ′ | ≤ 2.

Proof Assume for contradiction that for two distinct coset representatives g, g ′ ∈ C ,

we have |gP1 ∩ g ′P1| ≥ 3. Then there must be an element h ∈ C (in the same coset as

g−1g ′) such that h maps some three distinct elements x1, x2, x3 ∈ P1 respectively to

three distinct elements y1, y2, y3 ∈ P1. Let r ∈ H1 be the unique element such that

ryi = xi for i ∈ {1, 2, 3}. Then rh (which is in the same coset as h) fixes x1, x2, x3,

and so must be the identity of H2. But this means that g, g ′ are in the same coset,

completing the contradiction.

Sums of Squares over Gaussian Integers

The sum of squares problem can be posed over any field or a ring. However, one

should explicitly require the polynomials f1, . . . , fn in (1.1) to be bilinear. This re-

quirement rules out trivial solutions; over C, e.g., every polynomial can be written as

sum of two squares. For a ring S, define σS(k) as the smallest n so that there exists

an identity of the form (1.1) with f1, . . . , fn, bilinear forms over S. Here, one can

assume that the characteristic of S is not 2 for otherwise σS(k) = 1. No superlinear

lower bound on σF(k) is known over any field F. It would be especially interesting to

have such a bound over an algebraically closed field. Our lower bound, apart from

not working over a field, significantly employs the fact that −1 does not have a square

root. It would be interesting to remove this restriction.

Problem Prove a superlinear lower bound on σG(k), where G is the ring of Gaussian

integers.
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