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Abstract

We propose a novel model-free approach to obtain the joint risk-neutral distribution among
several assets that is consistent with options on these assets and their weighted index. We
implement this approach for the nine industry sectors comprising the S&P 500 index and find
that their option-implied dependence is highly asymmetric and time-varying. We then study
two conditional correlations: when the market moves down or up. The risk premium is
strongly negative for the down correlation but positive for the up correlation. Intuitively,
investors dislike the loss of diversification when markets fall, but they actually prefer high
correlation when markets rally.

I. Introduction

Option markets provide rich information about assets future returns. There
exists a no-arbitrage relationship that links prices of options to the risk-neutral density
(RND) of an asset future return. First discovered by Ross (1976), Breeden and
Litzenberger (1978), and Banz and Miller (1978), this fundamental relationship is
one of the most useful in financial economics. Building on the relationship,
researchers have developed effective techniques to estimate the risk-neutral
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distributions in a model-free way (see, e.g., Jackwerth and Rubinstein (1996),
Aït-Sahalia and Lo (2000), and Bondarenko (2003)). Option-implied distributions
have since then been used in numerous applications. However, the fundamental
relationship only works in one dimension. It allows researchers to obtain the indi-
vidual risk-neutral distributions for future returns of stock A and stock B, but not their
joint distribution. In this article, a novel extension to higher dimensions is proposed.
Specifically, the options written on individual assets and on their index are used to
fully describe the forward-looking risk-neutral dependence among the assets.

We refer to our approach as MFDR, or model-free dependence recovery. The
approach consists of 3 main steps. First, we estimate risk-neutral marginal distri-
butions of individual assets and also of their weighted sum (the index). As inputs,
this step requires traded options on the individual assets and the index. Second, we
frame the problem of finding a joint distribution among the assets as an integer
optimization problem, in which a matrix of asset returns must be arranged in a
suitable manner. Third, to solve the resulting large-scale optimization problem, we
rely on a combinatorial technique, termed the block rearrangement algorithm
(BRA) (see Bernard and McLeish (2016)). The BRA is the key to our approach,
as alternative solution techniques are simply not feasible for the problem at hand.

OurMFDRmethodology derives a complete description of the implied depen-
dence and, as such, compares favorably with existing methods that primarily focus
on the average pairwise correlation. As Buss, Schönleber, and Vilkov (2019a) point
out, “[c]omputing the historical pairwise correlation among any two stocks is rather
easy; however, computing an expected pairwise correlation from option data is, in
practice, not possible.” Thus, additional simplifying assumptions must be imposed
to obtain an estimate. A common assumption is that of a constant pairwise corre-
lation, which makes the recovery of the single parameter possible by comparing the
variances of the index and individual components. This approach has been
employed by the Chicago Board Options Exchange (CBOE) that has been dissem-
inating its S&P 500 Implied Correlation Indices since July 2009. These correlation
indices are now widely accepted dependence measures. In academic literature,
related approaches are followed among others by Driessen, Maenhout, and Vilkov
(2009), (2013), Buraschi, Kosowski, and Trojani (2013), and Faria, Kosowski, and
Wang (2018), who also assume constant pairwise correlations.

Compared to the existing methods, the MFDR approach offers two critical
advantages. First, as the name suggests, the approach is completely model-free and
requires no parametric assumptions. Second and most importantly, it yields a full
dependence structure, not just a partial dependence measure. While the existing
methods equate the index variance with that of the weighted sum of its components
(one moment condition), MFDR matches their whole distributions (theoretically,
infinitely many conditions). This results in an essentially perfect fit of the index
implied volatility curve, instead of only matching one of its statistics. Since MFDR
yields a feasible dependence structure, a proper correlation matrix is assured by
construction, without the need for any additional assumptions. Finally, while there
might be many compatible dependence structures, MFDR is shown to maximize
entropy and thus it yields the “most likely” implied dependence among asset returns
given the information contained in available options.

We implement MFDR using ETF options on S&P 500 index and its nine
industry sectors. The industry sectors provide an ideal setting for our methodology.
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On the one hand, the joint distribution of the nine sectors is rich and economically
interesting. On the other hand, the dimensionality of the problem is not excessively
large and, computationally, it can be readily handled by our methodology.1 Impor-
tantly, options on the industry sectors have become sufficiently liquid in recent
years, making it feasible to accurately estimate their marginal distributions. Starting
from Jan. 2007, we are able to estimate option-implied dependence daily. To assess
accuracy and stability ofMFDR,we conduct an extensiveMonte Carlo experiment.
This experiment confirms the viability of the new methodology in realistic
applications.

Empirically, we make several contributions. Our first contribution is to doc-
ument empirical properties of option-implied dependence from Jan. 2007 to the end
of 2020. We find that the dependence between the nine sectors is time-varying and
highly nonnormal. In particular, the dependence was much stronger in the later part
of the financial crisis than in the earlier part. Similarly, the strongest dependence
was observed in the midst of the COVID-19 crisis. For most trading days, the
option-implied dependence is grossly inconsistent with the assumption of multi-
normality.2 The formal tests of Mardia (1970) demonstrate that violations of multi-
normality are predominantly due to nonzero skewness, whereas violations due to
excess kurtosis are less prevalent. Overall, we find that for most days the option-
implied dependence is highly asymmetric, with large negative returns being much
more correlated than large positive returns.

Our second contribution is to present novel evidence regarding the correlation
risk premium (CRP), defined as the difference between the correlation under the
real-world and risk-neutral probability measures. The realized correlations are
computed from historical returns, while the risk-neutral ones are obtained from
the option-implied joint distribution. We focus on three types of average correla-
tions computed for the nine sectors: global, down, and up. The first type is the
standard unconditional correlation, the other two are correlations conditional on the
S&P 500 return being below or above its median value.While the global correlation
has been studied extensively in the literature, the other two types cannot be studied
without our methodology.

The early articles on the global CRP include Driessen et al. (2009), (2013),
which document a strong negative CRP for stocks in the S&P 100, S&P 500 and the
DJIA and link it to diversification. During turbulent times, correlations tend to
increase, making diversification less effective. Therefore, the index options are

1It is worth mentioning that even for this problem of moderate dimensionality, the computational
demands are considerable.We estimate option-implied dependence for over 3,500 trading days. For each
day, the first step of MFDR calls for 10 RND estimations (or multivariate quadratic optimizations). The
third step of MFDR involves finding the optimal perturbation of a 1,000 × 10 matrix. The latter is an
NP-complete problem with the total of 1,000!ð Þ9 possible permutations. However, the BRA is able to
find an approximate, but very accurate solution in a reasonable amount of time. Limitations ofMFDR are
discussed in Section II.E.

2Because the risk-neutral margins of the nine sectors are nonnormal (they are highly skewed and
leptokurtic), their joint distribution cannot possibly be multinormal. However, the question remains
whether or not their dependence can be represented by a Gaussian copula, as is commonly assumed in
applications. For the first time, our methodology allows a direct examination of the option-implied
dependence in a model-free fashion.We find that the dependence is highly skewed, but its kurtosis is not
overly excessive.
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expensive because they allow investors to hedge against the risk of reduced diver-
sification. In our work, we also find that the global CRP is negative. However, our
most intriguing empirical results pertain to the down and up correlations. Here, we
document that the risk premium is significantly negative for the down correlation
but positive for the up correlation. Themagnitudes of the risk premium for the down
and up correlations are much larger than for the global correlation. These findings
are consistent with the economic intuition that investors are mainly concerned with
the loss of diversification when themarket falls. As a result, they are willing to pay a
considerable premium to hedge against increases in the down correlation. On the
other hand, investors actually prefer high correlation when the market rallies. That
is, investors view the down correlation as “bad” and the up correlation as “good.”
The net effect of the negative risk premium for the down correlation and the positive
risk premium for the up correlation is a negative risk premium for the global
correlation.

The signs of the down and up CRPmirror those for the down and up variance
risk premium, as reported in Feunou, Jahan-Parvar, and Okou (2018) and Kilic
and Shaliastovich (2019). However, it is important to emphasize that our results
neither follow from nor imply the latter findings. The previous articles study the
market variance risk premium and are based exclusively on index options. Intu-
itively, these articles demonstrate that index OTM puts are expensive and index
OTM calls are cheap when compared to the historical distribution of the index
returns. Our results, on the other hand, make a statement on the relative pricing of
individual options compared to the index options. In this regard, we find that
sector OTM puts are cheap compared to index OTM puts (thus, implying too high
down correlations between the sectors), whereas sector OTM calls are expensive
compared to index OTM calls (implying too low up correlations). Again, a priori,
there is no theoretical reasonwhy the sign of the down (up) CRP shouldmatch that
for the down (up) variance risk premium. A toy model in Section IA.D of the
Supplementary Material formalizes this point.

Perhaps the negative risk premium for the down correlation is not completely
unexpected. If investors only care about volatility when it leads to losses, they will
dislike the down correlation and its risk premium will be negative. As argued by
Ang, Chen, and Xing (2006), similar conclusions can be obtained in an equilibrium
with disappointment aversion preferences (see Gul (1991), Routledge and Zin
(2010)). However, it might be more challenging to rationalize with standard pref-
erences the positive risk premium for the up correlation. Furthermore, the magni-
tudes of the risk premia also appear quite remarkable. To put things in perspective,
the magnitude of the risk premium for the down (respectively, up) correlation is
approximately 2.8 (respectively, 2.5) times larger than for the global correlation.
Motivated by these findings, we introduce a new derivative contract, the down
minus up correlation (DUC) swap, which at maturity pays the difference between
the realized down and up correlations. Historically, the strategy that sells the DUC
swapwould have been very profitable, as it takes advantage of both the “expensive”
down correlation and the “cheap” up correlation. Thus, selling the swap earns the
risk premium, which is about 5.3 times larger than selling the global correlation.

The regular (Pearson) correlation is jointly affected by the margins (such
as volatility, skewness, and heavy tails) and the dependence (copula). Thus, an
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important but difficult question is whether the CRP is driven by the priced
components of the margins or from the priced dependence. Therefore, as our
third contribution, we disentangle the respective roles on the CRP of the changes
in the two components. To remove the effects of the margins in the computation
of correlation, we consider Spearman (instead of Pearson) correlations. Spear-
man’s is a rank correlation and it has the advantage of being unaffected by the
margins. To compute Spearman correlation under the risk-neutral measure,
however, the complete joint distribution is required, even for the case of the
global correlation. Thus, our MFDR methodology is crucial. By contrasting the
results for Pearson and Spearman correlations, we conclude that the CRP is
mainly driven by the dependence and not by the margins. Along the same lines,
when we investigate what causes the enormous spread between the risk-neutral
down and up correlations, we find that only about 11% of the spread can be
attributed to nonnormality of the margins, whereas the rest is due to the non-
normality (skewness) of the dependence. We also extend our analysis of the
down and up correlations by constructing tail indices, which measure the depen-
dence of extreme negative and positive returns. We find that the left-tail index is
always much larger than the right-tail index, providing further evidence of the
asymmetry of the dependence.

As our fourth contribution, we study whether option-implied correlations
could predict future market returns. Consistent with the prior literature, the implied
global correlation has a strong predictive power (see Buss and Vilkov (2012), Buss,
Schönleber, and Vilkov (2019b)). Interestingly enough, its predictive power comes
mainly from the up correlation. The up correlation is a stronger predictor than the
global correlation, which in turn is better than the down correlation. This holds true
for all predictive horizons from 1 to 12 months. For the up correlation, the adjusted
R2 increases with the horizon and reaches an impressive level of 19.8% for the
12-month horizon.We also find that, when the up correlation is high, cyclical stocks
tend to outperform defensive stocks over next 6–12months, whereas the opposite is
true when the up correlation is low.

Our empirical results highlight the importance of proper modeling of the
dependence, especially under the risk-neutral measure. To match the salient
features of the option data, it is critical to allow for a highly asymmetric depen-
dence. Standard models in the literature do not always have this property. There-
fore, as our fifth contribution, we develop an alternative approach to model the
multivariate joint distribution. We refer to it as the hybrid model because it
combines i) fully nonparametric margins extracted from the individual options
and ii) a parsimonious parametric copula. The proposed copula is based on the
homogeneous multivariate skewed normal distribution driven by two parameters
only. Despite its simplicity, the model captures reasonably well the most salient
features of the option-implied dependence. Of course, in terms of fitting option
prices the hybrid model cannot compete with MFDR, because the latter produces
(essentially) a perfect fit. Instead, the hybrid model offers different advantages: it
is transparent, intuitive, and easy to implement. Our primary motivation for
developing this model is twofold. First, because the hybrid model does not rely
on the somewhat opaque MFDR methodology, it provides an alternative confir-
mation of our key empirical results. Second, we believe that the hybrid model

Bondarenko and Bernard 5

https://doi.org/10.1017/S0022109023000960 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000960


could prove useful in other applications whereMFDR cannot be implemented due
to data limitations.

Our article is related to several important strands of the literature. A number
of articles use traded options to infer various measures of dependence. Driessen
et al. (2009), (2013), Buraschi et al. (2013), and Faria et al. (2018) estimate the
average implied correlation assuming that pairwise correlations are all equal. Buss,
Schönleber, and Vilkov (2017) estimate a block-diagonal correlation matrix with
two possible values for pairwise correlations. Buss and Vilkov (2012) relax the
assumption of equal pairwise correlations by assuming a linear transformation
between the correlations under the real-world and risk-neutral measures. Kelly,
Lustig, and Van Nieuwerburgh (2016) assess the dependence among several assets
by computing the spread between a portfolio of individual puts and the put on the
index. Dhaene, Linders, Schoutens, and Vyncke (2012) develop an option-implied
measure of dependence, which is termed Herd Behavior Index (HIX).

The down and up CRP studied in this article extend the literature on
the global CRP. The pioneering work on the global CRP includes Driessen
et al. (2009), (2013), who document a strong negative CRP for stocks in the
S&P 100, S&P 500, and the DJIA. Further investigation of the CRP and its link
to macroeconomic variables can be found in Pollet and Wilson (2010), Buraschi
et al. (2013), Engle and Figlewski (2014), Harvey, Liu, and Zhu (2016), Mueller,
Stathopoulos, and Vedolin (2017), and Faria et al. (2018). The correlation risk is
also closely related to the variance risk (Bondarenko (2004), (2014), Carr and
Wu (2009), Bollerslev and Todorov (2011), and Schneider and Trojani (2015))
and to the disagreement risk (Buraschi, Trojani, and Vedolin (2014)). The down
and up variance risk premium is studied by Kilic and Shaliastovich (2019) and
Feunou et al. (2018).

The asymmetric behavior of the left and right tails of the asset returns has
been widely recognized among both practitioners and academics following the
path-breaking work of Longin and Solnik (2001). Ang and Chen (2002), Hong,
Tu, and Zhou (2006), Alcock and Hatherley (2017), Jiang,Wu, and Zhou (2018),
and Alcock and Sinagl (2022) provide evidence of asymmetric correlation and
dependence between stocks and the market. Furthermore, Hong et al. (2006)
assess the economic importance of asymmetric returns in the context of a port-
folio choice problem. They find that investors can achieve over 2% annual
certainty-equivalent gains when they account for asymmetric correlation.
Longin and Solnik (2001) study the asymmetric tail dependence by computing
the exceedance correlation, or the correlation between returns that are jointly
above or below a given threshold. For international equity markets, they dem-
onstrate that the correlation between large negative returns does not converge to
0 and instead tends to increase deeper in the left tail. On the other hand, the
correlation between large positive returns does decrease to 0. More recently,
Chabi-Yo, Ruenzi, and Weigert (2018) study the dependence of stock returns.
Like us, they are motivated by the limitations of Pearson correlation. After
correcting for the effect of margins, they find evidence of asymmetry between
the left and right tails. MFDR allows us to explore related questions, but for
option-implied counterparts. In the study of the nine sectors of the S&P
500 index, we find that the dependence is much more asymmetric under the
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risk-neutral than under the real-world measure. Our work is also related to
the literature on skewness (see Patton (2004), DeMiguel, Plyakha, Uppal,
and Vilkov (2013), Amaya, Christoffersen, Jacobs, and Vasquez (2015), and
Jondeau, Zhang, and Zhu (2019)) and on downside risk (see Bollerslev
and Todorov (2011), Kelly and Jiang (2014), Kelly et al. (2016), Farago and
Tédongap (2018), and Orłowski, Schneider, and Trojani (2020)).

The BRA used in the third step of MFDR generalizes the standard rearrange-
ment algorithm (RA) introduced by Puccetti and Rüschendorf (2012). The RA
has found important applications in various disciplines. Embrechts, Puccetti, and
Rüschendorf (2013) use the RA in quantitative risk management to assess the
impact of model uncertainty on Value-at-Risk estimates for portfolios. Other appli-
cations of the RA include operations research (fair allocation of goods, optimiza-
tion) and engineering (image reconstruction). Bernard, Bondarenko, and Vanduffel
(2018) study the theoretical properties of the BRA for the problem of finding a joint
distribution given the marginal distribution of several random variables and of their
sum. The first step ofMFDR assumes that risk-neutral marginal distributions can be
estimated from traded options in a model-free way (see, e.g., Jackwerth and
Rubinstein (1996), Aït-Sahalia and Lo (2000), and Bondarenko (2003)). Figlewski
(2018) reviews pros and cons of the various methods proposed for extracting risk-
neutral densities.

The rest of the article is organized as follows: In Section II, we formulate the
problem of inferring the dependence from option prices, discuss the existing
approaches, and present our MFDR methodology. In Section III, we implement
the approach using options on the S&P 500 index and its sectors and document the
properties of the option-implied dependence. Section IV provides a detailed inves-
tigation of the CRP. Section V concludes.

II. Extracting Information from Options

In this section, we recall how to extract the option-implied probability distri-
bution for a single asset and discuss how index options can provide information
about the dependence among several assets. We then review the existing
approaches to constructing option-implied correlations and present our MFDR
methodology.

A. Univariate Case

For a given underlying asset, let X denote the return over a fixed time period
t,T½ �. Let C Kð Þ and P Kð Þ denote the time-t price of the European-style call and
put options with moneyness K and maturity T written on the asset’s return X .
For simplicity, we assume that the asset pays no dividends and that the risk-free
rate is 0.3 Under the standard assumptions, the option prices are equal to the

3In the empirical application, we use ETF options on the S&P 500 index and its industry sectors.
These options are American-style and are written on an asset’s price, not the return. Moreover, the
underlying ETFs do pay quarterly dividends, and of course, the risk-free rate is not really 0. We address
these real-world complications as follows: First, we convert spot prices of the options and the underlying
asset into forward prices (for delivery at time-T ). The forward prices account for dividends and the
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expected value of their payoffs under a suitably chosen risk-neutral probability
measure ℚ:

C Kð Þ=Eℚ X �Kð Þþ� �
=

Z ∞

0
x�Kð Þþ f xð Þdx,

P Kð Þ=Eℚ K�Xð Þþ� �
=

Z ∞

0
K� xð Þþ f xð Þdx,

where f xð Þ denotes the RND. The RND satisfies the relationship first established by
Ross (1976), Breeden and Litzenberger (1978), and Banz and Miller (1978):

f xð Þ= ∂
2C Kð Þ
∂K2

����
K = x

=
∂
2P Kð Þ
∂K2

����
K = x

:(1)

Similarly, the risk-neutral cumulative distribution (RNCD) satisfies

F xð Þ= ∂C Kð Þ
∂K

����
K = x

=
∂P Kð Þ
∂K

����
K = x

:(2)

Although not directly observable, the RNCD can be recovered using the
relationship in (2), provided that options with a continuum of strikes K are avail-
able. In practice, options are only available for a finite number of strikes. Never-
theless, a number of efficient nonparametric approaches have been proposed in the
literature that make it possible to circumvent this shortcoming (see, e.g., Jackwerth
and Rubinstein (1996), Aït-Sahalia and Lo (2000), and Bondarenko (2003)). Note
that for our approach, we only need the information about the RNCD and not the
RND. The former can be estimated considerably more accurately (this is because
the so-called curse of differentiation is not as severe when estimating the first, rather
than the second, derivative of a function).

B. Implied Dependence of Several Assets

To obtain the joint distribution of several assets, the knowledge of individual
marginal distributions is not enough.We also need their dependence. Dependence is
implicit in the prices of multivariate options, such as index options. Consider an
index comprising d assets. Let X j,tþτ denote the return of the jth asset for the period
t, tþ τ½ � for some fixed horizon τ (e.g., 3 months). The return of the index can be
written as

Stþτ =
Xd
j = 1

ωjX j,tþτ ,
Xd
j= 1

ωj = 1,

nonzero risk-free rate. Second, we adjust option prices for the early exercise feature by following the
approach of Barone-Adesi and Whaley (1987). This gives us the prices of equivalent European-style
options. Third, we rescale option prices and their strikes by the asset’s forward price. This gives us
options on the asset’s return.
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where ω1,…,ωd are the weights. When there is no confusion, we simplify
the notation and drop the time index. For example, we write X j instead of X j,tþτ

and S instead of Stþτ . We assume that the options market offers a sufficient range of
strikes so that the risk-neutral distributions FS ,F1,…,Fd for the returns
S,X 1,…,Xd can be estimated accurately.

Our goal is to find a dependence structure (or copula) C that can explain the
distribution of the index. Specifically, for a given copula C, we can define a new
random variable:

Z≔ Z Cð Þ= Z C;F1,…,Fd ,ω1,…,ωdð Þ≔
X
j

ωjX j,(3)

where X 1,X 2,…,X dð Þ has a joint distribution fully described by the copula C and
the respective margins Fj. We can think about the random variable Z as the
weighted return of the d components, or replicated index return. Ideally, we would
like to find a copula C such that the weighted return Z is equal in distribution to the
observed index return S:

Z =
d
S:(4)

This is a difficult problem, as an equality in distribution imposes infinitely
many constraints on the choice of the dependence structure C. We could start by
matching various moments of Z and S.We note that the risk-neutral densities have a
mean of 1 (when X j and S are defined as gross returns); thus, the first central
moment of Z and of S are matched automatically:

E Z½ �=
X
j

ωjE X j

� �
=
X
j

ωj = 1 =E S½ �:

Matching the second central moment leads to the standard identity between the
variance of the index and the variances of its components:

var Sð Þ=
Xd
j = 1

ω2
j var X j

� �þ2
Xd�1

j = 1

X
j< k

ωjωk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X j

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X kð Þ

p
ρjk ,(5)

where ρjk is the correlation betweenX j andX k .Most existing approaches rely on the
identity in (5) and additional auxiliary assumptions, e.g., the assumption of equal
pairwise correlations, ρjk = ρ. We review them in the next subsection and then
present our approach in Section II.D.

C. Existing Approaches

The CBOE Implied Correlation Index is an attempt to estimate the average
pairwise correlation among the stocks in the S&P 500 index.4 Its basic idea is to use
the condition in (5) but to approximate the variances by the squares of the ATM

4The underlying methodology was recently updated by CBOE and is detailed in the white paper,
Chicago Board Options Exchange (2022).
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Black–Scholes implied volatilities (BSIV, or simply IV) and to replace the different
ρjk with a single correlation parameter that we denote as ρCBOE. Then

ρCBOE =

σ2S �
Pd
j = 1

ω2
j σ

2
j

2
Pd�1

j = 1

P
k > j

ωjωkσjσk

:(6)

Assuming that this approximation is exact, the expression of ρCBOE in (6) can
be rewritten as the weighted average pairwise correlation:

ρCBOE =

P
j < k

ωjωkσjσkρjkP
j < k

ωjωkσjσk
:(7)

However, since this approximation is in fact not exact, this interpretation no
longer holds. The CBOE index cannot be viewed as a genuine correlation, it may be
very different from the true average correlation, and it can potentially take values
that are greater than 1.5

The academic literature has proposed several modifications to the CBOEmeth-
odology.Most notably, Driessen et al. (2009), (2013) improve the CBOE approach in
two ways. First, they apply the condition in (5) to all components and not a small
subset. Second, for the standard deviations of X j and S they use the model-free
implied volatility (MFIV; see Britten-Jones and Neuberger (2000), Carr and Madan
(2001), and Bakshi, Kapadia, and Madan (2003)). The variances are now driven not
by the ATM options only, but are based on the whole cross section of options. For
MFIVs, the condition in (5) holds exactly under the assumption of diffusion, but only
approximately if prices could jump (which is likely in practice).

More recently, Buss et al. (2017), (2019a) use standard deviations for RNDs,
σℚ, for which the condition in (5) now holds identically.6 Furthermore, Buss et al.
(2017) relax the equal pairwise correlation constraint by estimating a block diag-
onal correlation matrix with two correlation parameters (i.e., pairwise correlations
are constant for any two stocks within the same economic sector of the S&P 500 but
take another value when two stocks belong to different sectors). Buss and Vilkov
(2012) replace the assumption of constant pairwise correlations ρjk = ρwith a linear

5For example, the KCJ index was 100.8 on Nov. 6, 2008; 105.93 on Nov. 13, 2008; and 103.4
on Nov. 20, 2008. We observe that, strictly speaking, the condition in (5) does not hold for ATM IVs.
Implied volatilities are standard deviations of log-returns under the assumption that these are normally
distributed. Therefore, using implied volatilities in (5) would be justified when log Sð Þ =Pjωj log X j

� �
.

In reality, the index is an arithmetic, not a geometric, average. Hence, some bias is introduced andwe can
only state an approximate relation: σ2S ≈

Pd
j = 1ω

2
j σ

2
j þ2

Pd�1
j = 1

P
k > jωjωkσjσk~ρjk where σS and σj are the

ATM IVs for the index and its components, and ~ρjk is the pairwise correlation of log X j

� �
and log X kð Þ. In

addition, CBOE uses a subset of d = 50 largest components of the index, which introduces another bias:
since the selected components are generally less volatile, the average implied correlation tends to be
overstated.

6Note that σℚ is also related to the concept of the simple model-free implied volatility (SMFIV) of
Martin (2017) and can be computed from the simple variance swap.
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specification, which ensures a negative CRP (ρℚ > ρℙ) that is higher in magnitude
for stocks with low or negative correlation consistently with the empirical evidence
in Mueller et al. (2017) for the FX market.

A rather different approach to assess the risk-neutral dependence among
several assets is proposed by Kelly et al. (2016). It is based on the idea that a
portfolio of individual options is always more expensive than an option on the
portfolio, where the strikes are chosen appropriately. The spread between the two is
larger when the correlation among the assets is lower. They find that during the
2007–2009 financial crisis, the OTM put options for financial firms were extraor-
dinarily expensive relative to the matched OTM put options for the financial sector
index. Therefore, they conclude that a large amount of aggregate tail risk was
missing from the cost of the financial sector crash insurance, likely due to a
perceived sector-wide government bailout guarantee. Overall, their approach uses
options to infer a particular indicator of tail dependence, but it does not provide the
entire joint distribution.

D. A More General Approach: Model-Free Dependence Recovery

One common limitation of the existing approaches is that only partial depen-
dence information is obtained. Furthermore, strong assumptions are typically
imposed on the correlation matrix under the risk-neutral measure. The identifying
restriction in (5), which equates the index variance to the variance of the portfolio of
the components, is clearly insufficient to recover the entire correlation structure –
there are many possible ways to satisfy this single restriction.

As stated previously, our approach is more ambitious, as it attempts to find
a full dependence (copula) and to do so in a completely model-free fashion. How is
this even possible? The key to our approach is that it matches not just onemoment in
(5) but a continuum of moments. Specifically, our method attempts to construct the
random variable Z such that it is equal to S almost surely, which is even stronger
than the condition in (4) and which implies that for any function g z,sð Þ,

E g Z,Sð Þ½ �=E g S,Sð Þ½ �:(8)

In this respect, our approach generalizes the existing approaches. Our solution
satisfies the second moment condition in (5) as a special case, meaning that our
solution will yield exactly the same average global pairwise correlation ρ as the
existing approaches. The existing approaches use just one summary statistic from
each option-implied distribution Fj (either BSIV, or MFIV, or σℚ) and match just
one restriction in (5).7 In contrast, our approach uses the complete information
contained in each distribution Fj and attempts to satisfy a continuum of restrictions
implied by (8).We discuss inmore detail various implications of (8) in AppendixA.

7BSIV depends on the price of the ATM option only. MFIVand σℚ use information from the entire
cross section of options with different strikes, but that information is still reduced to a single statistic.
Clearly, there are many distributions, otherwise very different, but with identical MFIV (or σℚ). The
existing approaches are unable to distinguish among them, yielding the samemeasure of dependence. In
Appendix C, we provide numerical examples, which illustrate that satisfying only condition (5) is not
enough to reproduce the observed implied volatility curve of the index (see Tables C.1 and C.2).
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Let us briefly describe our method. Recall that S =
Pd

j = 1ωjX j for some
weights ωj that sum to 1. Assume that we observe the dþ1ð Þ risk-neutral distri-
butions (Fj for the return X j and FS for the index return) and that we want to
construct a discretemultivariate distribution among the d returnsX 1,…,Xd . To do
so, we first approximate Fj for each asset j∈ 1,…,df gwith a discrete distribution
(which can be done to any degree of accuracy) as follows: There are n equiprob-
able states in which X j takes the values xij, i= 1,…,n, where the elements xij are
defined as realizations xij ≔F�1

j
i�0:5
n

� �
i= 1,…,nð Þ, and S takes the values si,

i= 1,…,n defined as F�1
S

i�0:5
n

� �
: Using this discretization, we represent the mul-

tivariate vector of asset returns X 1,X 2,…,X dð Þ by an n× d matrix:

x11 x12 … x1d
x21 x22 … x2d
⋮ ⋮ ⋱ ⋮
xn1 xn2 … xnd

2
6664

3
7775,(9)

where the jth column corresponds to the jth asset returnX j and the ith row represents
a state of the world in which a joint outcome X 1 = xi1,…,X d = xidð Þ occurs with
probability 1=n. If one permutes the elements in the jth column, the marginal
distribution of X j remains unchanged because all realizations are equally likely.
In contrast, the dependence of X j with the other variables X k is affected, because
permutations result in different states.

We then aim at rearranging the matrix in (9) by permuting elements within
a column to satisfy the restriction that S =

Pd
j = 1ωjX j in each of the n states. The

solution technique is called BRA and its formal exposition is relegated to
Section IA.A of the Supplementary Material. This appendix also presents a toy
model with n= 5 and d = 3 for which it is possible to trace every step of the BRA
procedure. However, this parsimonious example does not resemble anything
close to what we would like to do in real applications. Therefore, to further
develop intuition, Section IA.A of the Supplementary Material provides another
illustration of the algorithm, now using continuous margins that are discretized
into a large number of states. This is still an unrealistic, but pedagogical example.
It uses only two assets and allows us to easily visualize the impact on the
dependence of altering the distribution of their weighted sum. Specifically, we
assume that the two returns X 1 and X 2 are normally distributed with standard
deviations of 0.2 and 0.4, respectively. Their margins are thus fixed. We then
consider 3 cases for the distribution of their weighted sum, S = 1

2X 1þ 1
2X 2. In the

first 2 cases, S is also normally distributed with a variance chosen such that the
implied correlation is equal to either 0 (no dependence, the first and second
graphs in Figure IA.1 in the Supplementary Material) or 0.97 (strong depen-
dence, the first and second graphs in Figure IA.2 in the Supplementary Material),
respectively. In the last case, S has a skewed distribution with a heavy left tail
(asymmetric dependence, the first and second graphs in Figure IA.3 in the
Supplementary Material). To run the BRA, we discretize the marginal distribu-
tions of X 1, X 2 and S into n= 1,000 equiprobable states. The resulting joint
distribution is represented by 1,000 dots corresponding to pairs X 1,X 2ð Þ in the
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fourth graph of each figure (which in turn correspond to the 1,000 rows of the
output matrix from the BRA). In Figure IA.1 in the Supplementary Material, the
two variables X 1 and X 2 appear independent, which is expected when an implied
correlation is equal to 0. In Figure IA.2 in the Supplementary Material, the
implied dependence is strong and symmetric. This is also intuitive because the
distribution of the sum is also symmetric. Finally, when the sum has a skewed
distribution, the joint distribution is highly asymmetric, with a very pronounced
left tail dependence, as can be seen in the third and fourth graphs of Figure IA.3 in
the Supplementary Material.

E. Discussion and Limitations of MFDR

Intuitively, our approach can be compared to GMM. Asset returns are per-
muted in such a way as to keep the margins fixed and to enforce the “moment”
condition S =

Pd
j= 1Y j state-by-state. Effectively, there are as many restrictions as

states n, which could be chosen as large as desired. The approach finds a com-
patible joint distribution, which matches every available option on the assets and
the index. Although there are many restrictions being enforced, the solution is,
typically, not unique. This situation is not uncommon (when the market is incom-
plete, there are many risk-neutral measures, which correctly price available
options). However, out of many possible ones, the BRA finds an economically
sensible solution. As shown in Bernard et al. (2018), the BRA procedure has an
important property: The obtained multivariate model for Y 1,Y 2,…,Ydð Þ exhibits
maximum entropy. This means that the procedure yields the “most likely” con-
figuration given the information available and given that no additional informa-
tion is used.8

To make clear, what is meant by “most likely,” let us take a step back and
assume for a moment that we only have information about the marginal distribu-
tions of the assets, and not the sum. That is, we only agree on the values that appear
in the first d columns but not on the order in which they appear. Consequently, all
permutations within columns are equally plausible, and there is no reason to prefer
one permutation over another. Hence, randomizing the assignment of realizations to
the different states leads tomarginal distributions (reflected by the columns) that are
most likely to be independent, which corresponds precisely to the maximum-
entropy case. Suppose now that the additional information is known, namely, the
marginal distribution of the sum. In this case, the set of admissible permutations is
simply reduced to those that yield row sums that are 0. The BRA method imple-
ments the idea of randomizing the assignment of realizations to the different states
but now under the additional constraint provided by the knowledge of the distri-
bution for the index.9

8In this regard, it is also worth citing Jaynes ((2003), p. 370), who developed the principle of
maximum entropy in its modern form and who stated the following: “In summary, the principle of
maximum entropy is not an oracle telling which predictions must be right; it is a rule for inductive
reasoning that tells us which predictions are most strongly indicated by our present information.”

9In the context of extracting RNDs, the principle of maximum entropy has been explored in
Rubinstein (1994), Jackwerth and Rubinstein (1996), and Stutzer (1996).
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In sum, our approach amounts to constructing a numerical dependence and we
refer to it as MFDR. The approach consists of main 3 steps. First, from traded
options on the individual assets and the index, we estimate the risk-neutral marginal
distributions. Second, we discretize the estimated marginal distributions into n
states and reduce the problem of finding a joint distribution among d assets to
finding a suitable permutation of an n× dþ1ð Þ matrix. Finally, we solve the
resulting integer optimization problem with the BRA.

In Section III, we implement MFDR using ETF options for the d = 9 industry
sectors comprising the S&P 500 index. This application provides an ideal setting to
showcase MFDR, which is best suited for small to moderate d. Generally, there are
three potential limitations to our methodology. The first limitation is related to the
availability of high-quality option data. Recall that in the first step of MFDR, we
estimate risk-neutral marginal distributions from prices of traded options. For each
asset, we need options with a wide range of strikes, densely covering the whole
support of the RND. This requirement is not satisfied for many assets, including
some large companies in the DJIA or the S&P 100. Without such a detailed
information, accurate estimation of option-implied marginal distribution becomes
infeasible, at least in a fully model-free manner. The second limitation is related to
the computational time required to solve the optimization problem in the third step
of MFDR. Although the BRA method is much faster than the direct search, its
computational demands increase exponentially with d. In Section IA.E of the
Supplementary Material, we implement MFDR for the case of d = 30 stocks in
the DJIA, but the computational burden of the BRA becomes considerable. To
speed up convergence, we can reduce the number of states n, and use the
“randomized” BRA (which cycles through a random subset of partitions of the
columns, instead of all possible partitions) or the standard RA. These steps enable
us to find a solution for larger d, but with some loss of accuracy. Finally, as d
increases, the weighted sum of the d components (the index) becomes less infor-
mative about the joint distribution. Intuitively, with more degrees of freedom, it
becomes easier to find a copula that fits the distribution of the index. The BRAwill
still find a valid joint distribution, which perfectly fits all options on individual
components and their index (provided that there are no arbitrage violations).
However, the solution will be determined to a larger degree by the principle of
maximum entropy and to a lesser degree by the constraints imposed by observed
option prices.

III. Empirical Application

We use daily closing prices of options on the nine SPDR Select Sector funds
and on the SPDR S&P 500 Trust. These nine sector ETFs are capitalization-
weighted portfolios comprising all stocks in the S&P 500 index. Option data are
obtained directly from CBOE. Table 1 lists abbreviated names for the ETFs. Our
sample covers the period from Jan. 1, 2007 to Dec. 31, 2020. Although options
on sector ETFs were also traded in prior years, the availability of strikes and
maturities was more limited. By 2007, the liquidity of sector options has
improved considerably, making it feasible to accurately estimate their RNDs
on a day-to-day basis. We focus on horizon τ = 3 months and infer the option-
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implied joint distribution of the nine sectors.10 The details of the estimation
procedure are provided in Appendix B. We conduct an extensive Monte Carlo
experiment, which confirms accuracy and stability of MFDR in our setting, see
Section IA.C of the Supplementary Material. The realized volatilities and cor-
relations are computed using daily returns of the ETFs, which are obtained from
CRSP. The daily sector weights ωj are obtained from Bloomberg. The risk-free
rate is approximated by the rate of Treasury bills.

We first briefly discuss the main characteristics of the sectors and of the
aggregate market over the studied period. Figure 1 plots the cumulative returns
and the 3-month ATM implied volatilities for the S&P 500 and for 3 specific sectors
(FIN, TEC, and ENE). The performance of individual sectors often differs consid-
erably. During the financial crisis (defined in this article as the period from Aug.
1, 2007 to Apr. 1, 2009), the financial sector starts to decline much earlier than other
sectors, but from the last quarter of 2008 onward the crisis spreads to the rest of the
economy. During the 2015 energy crisis, it is the energy sector that experiences a
considerable decline, whereas the other sectors aremostly unaffected. The COVID-
19 crisis in Mar. 2020 affects all sectors. As expected, the ATM implied volatilities
(IVs) of the sectors are highly correlated over time. The IVof the financial sector is
very high in 2008–2009, whereas the IVof the energy sector stands out in 2015–
2016 and during the COVID-19 crisis.

Table 2 provides descriptive statistics for the nine sectors and the S&P
500 index. In particular, it shows that the largest sectors of the S&P 500 index
are TEC, FIN, and HEA, with the median portfolio weights of 24.1%, 16.0%, and
13.3%, respectively. The smallest sectors are MAT and UTI, with the median
weights of 3.2% and 3.4%, respectively. Some sectors experience considerable
variation in the weight ωj. For example, the weight for FIN ranges from 8.6% to
22.4% over the sample period, whereas the weight for ENE ranges from 1.9% to
16.2%. Table 2 also reveals that the ATM IVs are consistently smaller than the
standard deviations of the estimated risk-neutral densities (σℚ). This pattern reflects

TABLE 1

S&P 500 Sectors

Table 1 lists the underlying assets used in this study. The sector ETFs appear in alphabetical order of the ticker.

Description Ticker Abbreviation

Materials sector SPDR fund XLB MAT
Energy sector SPDR fund XLE ENE
Financial sector SPDR fund XLF FIN
Industrial sector SPDR fund XLI IND
Technology sector SPDR fund XLK TEC
Consumer staples sector SPDR fund XLP CST
Utilities sector SPDR fund XLU UTI
Health care sector SPDR fund XLV HEA
Consumer discretionary sector SPDR fund XLY CDI
SPDR S&P 500 ETF trust SPY SPX

10The choice of τ = 3months represents a practical compromise. The horizon is long enough to allow
accurate estimation of the realized correlations. At the same time, it is short enough so that sector options
are still liquid.
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nonnormality of risk-neutral densities and manifests itself in the pronounced vol-
atility skews.

To provide initial intuition, Figure 2 plots the average implied volatility smile
for the nine sectors and for the index. The implied volatility smile corresponds to
τ = 3 months and is shown as a function of the normalized moneyness:

TABLE 2

Summary Statistics

Table 2 reports time series averages over our sample for the nine sectors and for the aggregate market (S&P 500). The first 7
columns are computed from daily returns and include the mean, standard deviation σℙ, skewness, kurtosis, correlation with
themarket (Corr), betawith themarket, and the Sharpe ratio (SR). The next 3 columns are theminimum,median, andmaximum
for sectorweightωj . The last 2 columns reportℚ statistics computed from91-day options. They include the optionATM implied
volatility (IV) and standard deviation of the RND. When applicable, statistics are reported in annualized form and as
decimals.

Weight

Mean σℙ Skew Kurt Corr Beta SR Min Med Max IV σℚ

MAT 0.086 0.255 �0.17 11.20 0.88 1.08 0.30 0.023 0.032 0.039 0.232 0.246
ENE 0.022 0.317 �0.29 16.50 0.81 1.24 0.04 0.019 0.091 0.162 0.263 0.272
FIN 0.046 0.336 0.27 16.51 0.86 1.40 0.11 0.086 0.160 0.224 0.256 0.272
IND 0.094 0.230 �0.19 11.82 0.92 1.02 0.37 0.075 0.102 0.122 0.210 0.223
TEC 0.150 0.226 0.01 15.03 0.92 1.01 0.62 0.184 0.241 0.402 0.206 0.219
CST 0.080 0.151 �0.19 14.63 0.80 0.59 0.47 0.065 0.098 0.141 0.149 0.164
UTI 0.059 0.199 0.41 19.79 0.70 0.67 0.25 0.026 0.034 0.047 0.178 0.190
HEA 0.106 0.181 �0.11 14.45 0.84 0.74 0.54 0.106 0.133 0.170 0.173 0.188
CDI 0.125 0.224 �0.40 12.00 0.91 0.99 0.52 0.076 0.110 0.133 0.208 0.222
SPX 0.092 0.207 �0.06 17.89 1.00 1.00 0.40 0.185 0.200

FIGURE 1

Cumulative Returns and ATM Implied Volatilities

Figure 1 shows implied volatilities corresponding to amaturity of 3months. The gray-shaded areas indicate the financial crisis
(Aug. 1, 2007 to Apr. 1, 2009) and the COVID-19 crisis (Feb. 21, 2020 to Mar. 23, 2020). Shown are 3 sectors (FIN, TEC, and
ENE) as well as the S&P 500 index (the black line).
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m≔
log K

Z

σATM
ffiffi
τ

p ,(10)

where σATM is the ATM IVand Z is the forward price. To construct the figure, we
compute the daily volatility smiles for the nine sectors and value-weight them. The
average sector volatility smile and the index volatility smile are then averaged
across various subsamples. In Graph A, we isolate the financial crisis (defined as
the period fromAug. 1, 2007 to Apr. 1, 2009). Generally, the volatility smile for the
sectors is higher than for the index, although the gap between the two is relatively
narrow, indicating a high correlation between the sectors. During the financial
crisis, as expected, the implied volatilities are much higher. It is also noteworthy
that the gap between the two smiles is wider for positive m, implying a potentially
lower correlation on the upside. In Graph B, we distinguish between days when the
realized correlation is low or high. Specifically, we first compute the average
pairwise realized correlation for the nine sectors over the trailing 3-month window.
We then select the bottom and top quartiles and compute average implied volatilities
for each group. For the high correlation quartile, the two volatility smiles are much
steeper and the gap between the two smiles is more narrow, especially, for the
middle and high values of m.

A. Three Types of Correlations

To describe the option-implied dependence of the nine sectors, we compute
three types of pairwise correlations. The first type is the standard correlation:

ρℚj,k = corr
ℚ X j,X k

� �
,(11)

FIGURE 2

Implied Volatility

Figure 2 shows the average implied volatilities of the nine sectors (solid lines) and the aggregate market (dashed lines) for the
normalized moneynessm. Time to maturity τ = 3months. For the sectors, implied volatility smiles are value-weighted for each
day. Graph A shows the averages computed separately for the financial crisis (FC, Aug. 1, 2007 to Apr. 1, 2009, red) and for
the period excluding the crisis (xFC, blue). Graph B shows the averages computed for trading days when the realized
correlation is low (blue) and high (red). Specifically, we first compute the weighted average pairwise correlation for the nine
sectors over the 3-month trailingwindow.We then select the bottomand topquartiles and compute average implied volatilities
for both groups.
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which is the Pearson correlation coefficient between the returns for sectors X j and
X k over the period 0,τ½ �. The other two types are down and up correlations, or
correlations conditional on the S&P 500 having a low or high return, respectively.
Specifically,

ρd,ℚj,k = corrℚ X j,X k jS ⩽ Sm
� �

,(12)

ρu,ℚj,k = corrℚ X j,X k jS > Sm
� �

,(13)

where Sm denotes themedian return of the S&P 500 index. In Section IV, we use the
down and up correlations to better understand the nature of the CRP.We refer to the
standard correlation as global, to distinguish it from the two truncated correla-
tions.11 This should not cause any confusion, as we do not work with international
assets.

Since there are many sector pairs (12d d�1ð Þ= 36), it is often convenient to
work with weighted average correlations. Specifically, for positive weights πj, we
define

ρa,ℚ =

P
j < k

πjπkρ
a,ℚ
j,kP

j< k
πjπk

,(14)

where the superscript a∈ g,d,uf g indicates the type of the correlation (global,
down, or up). However, if there is no confusion, we often drop the superscript g
when discussing the usual, global correlation. There are several sensible choices for
the weights πj, including πj = 1=d (equal-weighted) or πj =ωj (value-weighted).
Here, we focus on the “risk-weighted” averaging:

πj =ωjσ
ℚ
j ,(15)

where σℚj is the standard deviation of the RND. This case has been used in most
existing approaches. In particular, assuming constant pairwise correlations, the
average global correlation ρℚ with the weights in (15) can be computed from
the volatilities of the components and the index without our MFDR but using
(6) instead. Thus, focusing on this case allows for direct comparison with the

11Intuitively, the down correlation is simply a correlation coefficient computed under the conditional
probability with respect to the event S ⩽ Smf g (i.e., the index return being below its median). Mathemat-

ically, the down correlation is defined as corr X j,X k jS ⩽ Sm
� �

=
cov X j,X k jS ⩽ Smð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var X j jS ⩽ Smð Þp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X k jS ⩽ Smð Þ

p :A related

conditional correlation is studied in Ang and Chen (2002) and Campbell, Forbes, Koedijk, and Kofman
(2008), who also refers to it as a truncated correlation or correlation conditional on a partitioning event. See
equation (2) in the latter article. In our empirical application, the joint distribution of the nine sectors on any
day is represented by n= 1,000 equiprobable states, where each state is given by the vector of the nine
returns. In particular, these states are shown as n dots in Figures 3 and 4. Half of the states correspond to the
index being below its median (S ⩽ Sm) and we use these 500 draws from the joint distribution to compute

the down correlation ρd,ℚj,k . The other 500 states are used to compute the up correlation ρu,ℚj,k .
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existing literature.12 However, the findings on the CRP that we present in Section
IV.B are robust to the choice of the weights. When studying the CRP we need not
only the risk-neutral correlations, but also their real-world counterparts, ρg,ℙ, ρd,ℙ,
and ρu,ℙ. The latter are computed from the same equations (11)–(15) but using the
realized correlations instead of the option-implied correlations.13 The realized
correlations are obtained from the daily ex-dividend returns of the underlying ETFs
over the trailing 3-month window.14More precisely, the window is equal to 63 trad-
ing days, which approximately corresponds to 3 calendar months, or
91 calendar days.

B. Case Studies

Wenow illustrate our approach on two dates in themidst of the financial crisis:
Sept. 8, 2008 and Nov. 17, 2008. The first date represents a relatively calm period,
whereas the second represents an extremely turbulent one. For each day,we proceed
as follows: We use 91-day options to obtain the risk-neutral marginal distributions
Fj and FS for the nine sectors X j and the index S. We discretize dþ1ð Þ = 10
distributions into n= 1,000 states, collect them in an n× 10 matrix, and apply the
method described in Section II.D. The output of the BRA is another n× 10 matrix
that describes a joint model compatible with all marginal distributions. Since the
full joint distribution is a 10-dimensional object, we need to make some choices on
how to display it. Hence, from the output matrix, we extract triplets xi,yi,zið Þ for
i= 1,…,n to examine the dependence among the S&P 500 index (xi), Financial
sector (yi), and Utilities sector (zi). (Of the nine sectors, we arbitrarily pick two, the
most and least dramatic ones.)

We present the results in Figures 3 and 4, where Graph A (in each) displays
dependence for the pair (S, FIN) and Graph B for the pair (S, UTI). We remove the
effect of the marginal distributions on the joint distribution and display in the first
column of the scatterplots FS xið Þ,FFIN yið Þð Þ and FS xið Þ,FUTI zið Þð Þ. By doing so,
we bring all returns to the same (uniform) scale and obtain a visualization of the true
copula. However, it is typically easier to interpret the dependence between normally
distributed variables instead of uniformly distributed ones. Therefore, in the second
column, we show the scatterplots of transformed variables that are now standard
normal (normalized dependence). Specifically, we use the quantile functionΦ�1 of

12To obtain the correlation risk premium, Driessen et al. (2009), Buss et al. (2017), (2019a) have to
rely on the relationship in (6) as their approach cannot produce pairwise correlations underℚ. A notable
exception is Buss and Vilkov (2012) who impose a linear relationship between pairwise implied and
realized correlations. They are then free to use an approach based on either (7) or (14).

13We also considered alternative definitions for the down and up correlations, where the mean return
or 0 is used as the cutoff instead of the median Sm. The empirical results were very similar. However,
there are important theoretical and practical advantages to defining the conditional correlations with
respect to a specific quantile of the index return. In particular, using the median guarantees that the
calculation of down and up correlations under ℙ is always based on an equal number of realizations.
Specifically, Sm is computed every day of our sample based on the last 63 daily returns. This ensures that
the down and up realized correlations can be computed with at least 31 observations. UnderQ, the down
and up correlations can be readily computed because the full joint distribution is known for each
trading day.

14See Jackwerth and Vilkov (2019) for a discussion of the impact of frequency on the estimation of
real-world correlations.
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FIGURE 3

Implied Dependence on Sept. 8, 2008

Graphs A andD of Figure 3 show the dependence of the Financial andUtilities sectors relative to the S&P 500 index. Graphs B
and E show the same dependence but after transformation to normally distributed variables. Graphs C and F display the
corresponding contour plots.
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Implied Dependence on Nov. 17, 2008

Graphs A andD of Figure 4 show the dependence of the Financial Utilities sectors relative to the S&P 500 index. Graphs B and
E show the samedependence but for normally distributed variables. GraphsC andF display the corresponding contour plots.
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the standard normal distribution to define transformation GS xð Þ≔Φ�1 FS xð Þð Þ for
the S&P 500 index; GFIN xð Þ and GUTI xð Þ are defined similarly for FIN and UTI. In
the second column, we then show scatterplots for the couples GS xið Þ,GFIN yið Þð Þ and
for the couples GS xið Þ,GUTI zið Þð Þ. In the third column, we display the correspond-
ing contour plots. When the dependence is normal, these contours must be perfect
ellipsoids. On Sept. 8, 2008, we find positive dependences for both sectors, but the
one for the financial sector is much stronger. Both dependences appear slightly
asymmetric, with the left tail being stronger than the right tail. OnNov. 17, 2008, the
same trends become much stronger for both sectors: the dependence is now notice-
ably more pronounced, the asymmetry is very obvious, and the left tail dependence
is extreme, even for the “calm” Utility sector.

For the two dates, we show all pairwise correlations ρℚj,k on Graph A of
Figures 5 and 6. We observe that Financial, Energy, and Technology sectors are

FIGURE 5

Implied Correlations for the Nine Sectors on Sept. 8, 2008

Graph A of Figure 5 shows the correlation matrix. Graph B shows the implied down correlation ρd ,ℚj ,S (y-axis) versus the implied
up correlation ρu,ℚj ,S (x-axis). Also shown is the 45-degree line.
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Implied Correlations for the Nine Sectors on Nov. 17, 2008

Graph A of Figure 6 shows the correlation matrix. Graph B shows the implied down correlation ρd ,ℚj ,S (y-axis) versus the implied
up correlation ρu,ℚj ,S (x-axis). Also shown is the 45-degree line.
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highly correlated with themselves and the other sectors. The best diversifiers are
Materials and Utilities. The pairwise correlations are higher across the board for the
second date compared to the first date. The average global correlation ρℚ is 0.58 for
Sept. 8, 2008, and 0.88 for Nov. 17, 2008.

If X k in definitions (12) and (13) is replaced with the index S, we obtain the

global, down, and up correlations ρℚj,S , ρ
d,ℚ
j,S , and ρu,ℚj,S of sector jwith the market. We

display the scatter plot of the last two correlations in Graph B of Figures 5 and 6.
There are nine points corresponding to the nine sectors. Also shown is the first

bisectrix ρd,ℚj,S = ρu,ℚj,S . From Figures 5 and 6, it is clear that the down correlations tend

to bemuch higher than the up correlations, i.e., ρd,ℚj,S > ρu,ℚj,S . In fact, the average down

and up correlations are 0.44 and 0.17 for Sept. 8, 2008, but 0.91 and 0.51 for Nov.
17, 2008.15 On both days, the correlation conditional on the market going down is
thus considerably stronger than the correlation conditional on the market going
up. This feature is not unique for the two selected days and provides a strong
indication that the implied dependence for the nine sectors is asymmetric and thus
nonnormal. In Section III.C, we formally assess the extent to which the dependence
deviates from normality.

In Section IA.B of the Supplementary Material, we report the option-implied
dependence for two more recent dates: Oct. 20, 2017 and Mar. 23, 2020. The first
one represents a very calm period, when the market implied volatility was unprec-
edentedly low. The second one is a very turbulent period at the peak of the COVID-
19 crisis. For both dates, the implied dependence remains highly skewed, with the
down correlations being much higher than the up correlations. It is interesting to
observe that on the second date, there is evidence of a strong right-tail dependence
(in addition to an even stronger left-tail dependence). This suggests that, in the
midst of the COVID-19 crisis, prices of sector options reflected a distinct possibility
of a strong market rally, with most sectors advancing simultaneously. The market
indeed had a stunning recovery, increasing by more than 35% over the next
3 months.

C. Asymmetry of Risk-Neutral Dependence

To formally test whether the option-implied dependence is consistent with
a multivariate Gaussian copula, we rely on the classical multinormality tests of
Mardia (1970). He constructs two statistics for measuring multivariate skewness
(MS) and kurtosis (MK), which can be used to test the hypothesis of normality
(Mardia (1974), (1975), Mardia, Kent, and Bibby (1980)). Usually, the test for
whether skewness and kurtosis are consistent with a normal model are performed
separately; however, so-called omnibus tests can assess them simultaneously. We
perform these two tests on the normalized dependence defined as in Section III.B.
That is, we use option-implied dependence with attached normal margins and
assess whether multivariate normality holds. The two tests are performed separately

15The reported average down and up correlations may seem too low when compared to correlations

ρd,ℚj,S and ρu,ℚj,S shown in Figures 5 and 6. Keep in mind, however, that the average correlations are

computed from pairwise correlations ρd,ℚj,k and ρu,ℚj,k , which are lower than ρd,ℚj,S and ρu,ℚj,S .
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on each trading day in the sample, with the results reported in Table 3. Both tests
provide strong evidence that the risk-neutral dependence is not of a normal nature,
although the evidence for nonzero skewness is more pronounced. Moreover, given
the p-values and the proportion of rejection for the respective testsMS andMK, it is
clear that the asymmetry (skewness) is a key feature to reject the normal dependence
hypothesis.

IV. Correlation Risk

A. Implied and Realized Correlations over Time

Figure 7 plots the average implied correlations for each trading day in our
sample, where Graph A displays the time series of ρℚ, whereas Graph B displays

TABLE 3

Test for Normal Dependence

Table 3 reports the results of two multivariate normal tests, MS and MK, which are run for all trading days. Shown are the
average p-values and the fraction of the days when the p-value exceeds a threshold of 0.01, 0.05, or 0.10 (i.e., when the null
hypothesis of normal dependence is not rejected).

No. of Obs. Mean p >0:01 p > 0:05 p > 0:10

MS 3,513 0.0003 0.0011 0.0009 0.0009
MK 3,513 0.1169 0.3251 0.2747 0.2442

FIGURE 7

Average Implied Correlations

Graph A of Figure 7 shows the average implied global correlation ρℚ . Graph B shows the average implied down (blue) and up
(green) correlations ρd ,ℚ and ρu,ℚ . The gray-shaded areas indicate the financial crisis and COVID-19 crisis.
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both ρd,ℚ and ρu,ℚ. In particular, this figure makes it clear that the gap between the
down and up correlations is always positive and consistently verywide.We observe
that the sample average for the global correlation (0.748) is larger than for the down
correlation (0.719) and is much larger than for the up correlation (0.271) (see
Table 4). It is important to stress that the truncated correlations are not directly
comparable to the global correlation. The conditioning bias shrinks correlations to
0, which can be derived analytically in the multivariate normal setting.16 Assuming
normality and accounting for the conditioning bias as in (16), the above average
down and up correlations translate into equivalent global correlations of 0.864 and
0.423, respectively.

It is also worth stressing that the implied correlations computed for sectors are
much higher than those for individual stocks reported in the prior literature. When
500 stocks are aggregated into nine sectors, the idiosyncratic risk gets largely
diversified away and the correlation increases.17 Buss et al. (2017) estimate the
implied global correlation for the S&P 500 index in two ways: using the 500 indi-
vidual stocks and the 9 sectors. Over the sample from 1996 to 2015, they find that
the 91-day correlation for the stocks (0.423) is much lower for the sectors (0.700).18

TABLE 4

Correlation Risk Premium

Table 4 reports statistics for the risk premia θ, θd , and θu computed for the average global, down, and up correlations. The last
row is the correlation spread,Δρ= ρd �ρu . The last column shows the Newey–West t-statistics computed with 63 lags.

No. of Obs. Under ℙ Under ℚ Premium t-Stat

Global 3,513 0.678 0.748 �0.069 �6.4
Down 3,513 0.527 0.719 �0.193 �10.9
Up 3,513 0.444 0.271 0.173 11.5
Down–up 3,513 0.083 0.449 �0.366 �19.8

16Under multivariate normality, the following relation between the down (up) correlation ρd,ℚj,S

ρu,ℚj,S

� 	
and the global correlation ρℚj,S holds (for convenience, we suppress the reference to the measure

ℚ and assets j and S):

ρd = ρu = ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

π

1� 2ρ2

π

s
,(16)

which immediately implies that ∣ρd ∣= ∣ρu∣< ∣ρ∣. This formula is consistent with derivation inAppendix B
of Ang and Chen (2002). See also equation (3) in Campbell et al. (2008).

17The effect can be intuitively explained in the homogeneous model, where the pairwise correlation
among sectors is ρsectors and the pairwise correlation of stocks within each sector is ρintra. Under the
assumption that there are many sectors and many stocks within each sector, one obtains the approximate
relationship ρall � ρsectors �ρintra, where ρall is the average pairwise correlation across all stocks. If
ρintra = 0:70 and the average correlation among the nine sectors ρsect = 0:75, then ρall = 0:53, which
agrees with estimates in the literature. For example, the average realized pairwise correlations between
sectors is around 0.7 versus around 0.4 between stocks (see Table A105 in Buss et al. (2017)).

18To further illustrate this effect, we have applied the MFDR methodology to estimate the depen-
dence for the 30 stocks in DJIA in Section IA.E of the SupplementaryMaterial. Over the 14-year sample
period, the average implied global, down, and up correlations are 0.538, 0.507, and 0.144 for the
30 stocks in DJIA as opposed to 0.678, 0.527, and 0.444 for the nine sectors in S&P 500, as shown,
respectively, in Table 4 andTable IA.4 in the SupplementaryMaterial. This indicates that the correlations
for individual stocks are much lower than their counterparts for the sectors. The implied dependence for

24 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109023000960 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000960


Figure 7 reveals that all three correlations drop sharply during the second
half of 2008, which might seem counterintuitive, as this period is in the midst of
the financial crisis. To better understand this finding, we split the time period
Aug. 2007–July 2009 into three subperiods as shown in Figure 8: Period I runs
until Mar. 2008 (the bailout of Bear Sterns), Period II is from Mar. 2008 until
Sept. 2008 (the failure of Lehman Brothers), and Period III is from Sept. 2008
until July 2009.

In 2006, the U.S. financial industry was highly exposed to subprime mort-
gages. When house prices started to fall in July 2006, this had an immediate impact
on banks. The financial sector declined, and its implied volatility increased,
as confirmed by the blue lines in Figure 1. By Aug. 2007, correlations had also
increased considerably, as confirmed by the red line in Figure 9. However, the crisis
had yet not spread to other sectors, and the market implied volatility remained fairly
stable, as evidenced by the black line inGraphC of Figure 8. At that point, therewas
a widespread belief among market participants that by lowering interest rates, the
Federal Reserve could boost market liquidity and restore confidence. In Mar. 2008,

FIGURE 8

Average Implied Correlation, Cumulative Returns, and ATM Implied Volatilities

Figure 8 focuses on the period of the financial crisis (Aug. 1, 2007 to Apr. 1, 2009). The red solid lines show the dates that
separate Period I, Period II, and Period III of the financial crisis (Mar. 17, 2008 and Sept. 15, 2008). The black dashed lines
indicate several extreme trading days (July 14, 2008, Oct. 9, 2008, Nov. 20, 2008, and Jan. 20, 2009). Graphs B and C show
the financial sector (blue line) and the S&P 500 index (black line).
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individual stocks still exhibits high asymmetry, with the down correlation being much larger than the up
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Bear Stearns became the first of several financial institutions to be bailed out by the
government. This event created an expectation that if needed, the government
would rescue any other banks and thus that the crisis would not spill over to other
sectors. Correlations and volatilities temporarily decreased during Period II, return-
ing to the pre-crisis levels as evidenced by Graphs A and C of Figure 8. However,
the situation changed drastically after the bankruptcy of Fannie Mae and Freddie
Mac on Sept. 7, followed by that of Lehman Brothers a week later. As the govern-
ment decided to let Lehman fail, the market stress increased sharply and investors
started to panic. A new crisis period started as investors rushed to the safest
investments, such as cash or government securities. During the last quarter of
2008, markets fell worldwide, and volatilities and correlation peaked and remained
at high levels afterward, as confirmed by all 3 graphs of Figure 8 during Period III.

FIGURE 9

Implied and Realized Correlations

Figure 9 shows implied correlations (blue) computed from option-implied dependence; realized correlations (red) are
computed from sector index returns. The corresponding means of the two series are shown with the horizontal dashed lines.
The gray-shaded areas indicate the financial crisis and COVID-19 crisis.
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B. Risk Premia

We use the average correlations defined in Section III.A to study down and up
CRP. Formally, we define the global, down, and up correlation premia as

θa = ρa,ℙ�ρa,ℚ,(17)

where, as before, a∈ g,d,uf g corresponds to the global, down, and up correlations.
Recall that the correlations under ℙ are computed over the 3-month trailing win-
dow, so that the risk premia are defined in the ex ante fashion. The same approach
has been used, among others, in Driessen et al. (2009), Buss et al. (2017), (2019a),
and Bollerslev, Tauchen, and Zhou (2009).19

Figure 9 plots across time the average implied correlation (blue line) and
realized correlation (red line). Graphs A, B, and C correspond to the three types
of correlations: global (A), down (B), and up (C). We observe that implied and
realized correlations generally behave very similarly. This is reassuring: the
forward-looking implied correlation extracted from options using our MFDR
methodology appears to be closely related to the real-world correlation computed
from asset historical returns. Second, we observe that both implied and realized
correlations display considerable variation over time and that the magnitude of the
fall in the correlations that we observe during 2008 is not that unusual. For example,
betweenMar. 2018 andOct. 2018, the realized global correlation first dropped from
60% to 10% and then rebounded to nearly 85% at the height of the COVID-19 crisis
in Mar. 2020.

Graph A of Figure 9 documents that the global CRP θ, which appears as the
difference between the blue and the red lines, is mostly negative. Across the sample
period, it has an average of �0.069 and is statistically highly significant with a t-
statistic of�6.4 (see Table 4). Buss et al. (2017) also estimate the CRP for the nine
sectors of the S&P 500 at the 3-month horizon, but over a different sample period
from 1996 to 2015. Their estimate (�0.059) is of similar magnitude as ours.20

Graphs B and C of Figure 9 illustrate our most intriguing contribution to the
CRP literature. Graph B visually demonstrates that the average realized down
correlations are systematically lower than their implied counterparts (the red line
is consistently below the blue line). The opposite is true for Graph C: The average
realized up correlations are systematically higher than their implied counterparts.
Table 4 reveals that on average the up correlations are lower than the down
correlations under ℙ and that this asymmetry is even more pronounced under ℚ,
with ρu,ℚ < ρu,ℙ < ρd,ℙ < ρd,ℚ: As the result, the average down CRP θd is negative

19It is common to estimate the realized and implied variances at a given time-t from the information
available at that time. That is, the implied variance is estimated from options available at time-t, while the
realized variance is estimated from past historical returns up to time-t. Specifically, Bollerslev et al.
(2009) define the variance risk premium as “the difference between this ex ante risk-neutral expectation
of the future return variation over the t, tþ1½ � time interval and the ex post realized return variation over
the t�1, t½ �.”

20Note that the magnitude of the CRP for sectors is generally smaller than that for individual stocks.
In particular, Driessen et al. (2013) and Buss et al. (2017), (2019a) report the CRP for stocks in the S&P
500 index of�0.106,�0.100, and�0.099, respectively. However, as mentioned earlier, the correlations
for sectors are not directly comparable to those for stocks.
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(�0.193), whereas the average up CRP θu is positive (0.173). Both risk premia are
highly significant and economically very large. They are consistent with the eco-
nomic intuition that investors are mainly concerned with the loss of diversification
when the market falls. Consequently, they are willing to pay a considerable pre-
mium to hedge against increases in the down correlation. However, investors
actually prefer high correlation when the market rallies. That is, investors view
the down correlation as “bad” and the up correlation as “good.” The net effect of the
negative premium for the down correlation and the positive premium for the up
correlation is a negative premium for the global correlation.

The last row of Table 4 focuses on the correlation spread (the difference
between the down and up correlations), ΔρM = ρd,M�ρu,M, where M∈ ℚ,ℙf g
indicates the probability measure under which the expectations are evaluated.
Unsurprisingly, the corresponding risk premium, Δρℙ�Δρℚ, is negative and
highly significant (�0.366, t-stat =�19.8). Its magnitude is about 5.3 times larger
than the CRP for the global correlation: the magnitude of risk premium for the
down (up) correlation is approximately 2.8 (2.5) times larger than for the global
correlation.

These observations motivate us to define the DUC swap. At time-T , this swap
has a payoff (the variable leg) equal to the difference between the realized down and
up correlations, or Δρℙ. That is, the daily returns realized over the life of the swap
are split into two equal groups, when the market return is low and high. The average
weighted correlations are computed for each group and their difference gives the
payoff of the swap. At time-0, theDUC swap has the initial cost (the fixed leg) equal
to the difference between the risk-neutral down and up correlations, or Δρℚ.
Historically, selling the DUC swap would have been very profitable, as it takes
advantage of both selling the “expensive” down correlation and buying the “cheap”
up correlation. However, two caveats are in order. The DUC swap is not yet
tradable. We assume that historically it would have been traded at the price implied
by our BRA approach. Furthermore, the transaction costs, likely to be substantial,
are not accounted for.21

We observe that the signs of the down and up CRP mirror those for the down
and up variance risk premium, as recently reported in Feunou et al. (2018) and Kilic
and Shaliastovich (2019). However, it is important to emphasize that our results
neither follow from nor imply the latter findings. A priori, there is no theoretical
reason why the sign of the down (up) CRP should match that for the down
(up) variance risk premium. Tomake this point precise, we consider a simple model
in which the d sectors have returns distributed according to a mixture of two
regimes. In each regime, returns are jointly normally distributed with homogeneous
parameters. The details of this model are relegated to Section IA.D of the Supple-
mentary Material.

We focus on the equal-weighted index S =
Pd

j = 1ωjX j with ωj = 1=d and
d = 9. We keep the parameters of the model fixed under ℙ, but vary them under
ℚ to investigate possible signs of the variance and CRP. Let VRPa and CRPa

21We leave for future research development of a tradable strategy, which could proxy the DUC swap.
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denote the risk premium for the variance and correlation, respectively, and
where a∈ g,d,uf g indicates global, down, or up premia. VRP is computed from
the index returns, as the difference between the variance under ℙ and under ℚ, e.g.,
VRPg = varg,ℙ Sð Þ�varg,ℚ Sð Þ. In Table 5, we report the signs of risk premia for 3
different scenarios. For all scenarios, we choose the parameters of the mixture model
under ℚ to be consistent with the prior empirical evidence on the risk premia.
Therefore, the first 4 columns in the table are the same across the 3 scenarios reflecting
the fact that the global VRP, down VRP, and global CRP are negative, whereas the up
VRP is positive.22 The last two columns, however, show that, depending on param-
eterization, the down and up CRP could be both negative, the first negative while the
other positive, and vice versa. In general, the signs of the VRP do not determine the
signs of the CRP. In Scenario 3, for instance, the signs of the down and up CRP are
opposite to the signs of the down and up VRP.

The previous studies of the market variance risk premium (Feunou et al.
(2018) and Kilic and Shaliastovich (2019)) are based exclusively on index options
and, intuitively, they demonstrate that index OTM puts are expensive and index
OTM calls are cheap when compared to the historical distribution of the index
returns. Our results, on the other hand, make a statement on the relative pricing of
individual options compared to the index options. That is, we evaluate the joint
pricing of the index and individual options. In this regard, we find that sector OTM
puts are cheap compared to index OTM puts (thus, implying too high down
correlations between the sectors), whereas sector OTM calls are expensive com-
pared to index OTM calls (implying too low up correlations).

C. Marginal Distributions or Dependence?

As shown in Section IV.B, time-varying correlation is priced and its risk
premium changes the sign between the down to up correlations. Since correlations
are affected jointly by the margins and the dependence, the risk premium could
potentially stem from either one. Disentangling the respective roles of the margins
and the dependence is an important but hard question. Ideally, for each trading day
we need to estimate the two components under both the risk-neutral and physical
measures. Under ℚ, this is feasible, as MFDR yields the full joint distribution.
However, under ℙ, we only observe one draw from the unobserved (and time-
varying) distribution.

TABLE 5

Signs of the Variance and Correlation Risk Premia

The parameters for the 3 scenarios in Table 5 are given in Table IA.2 in the Supplementary Material.

VRPg VRPd VRPu CRPg CRPd CRPu

Scenario 1 � � þ � � �
Scenario 2 � � þ � � þ
Scenario 3 � � þ � þ �

22The literature documenting the negative global VRP includes Bondarenko (2004), (2014),
Bollerslev et al. (2009), and Carr and Wu (2009).
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To better understand the roles of the margins and the dependence, we perform
two exercises. In the first exercise, we focus onℚmeasure only, for which we have
complete information. We formally investigate the causes of the enormous asym-
metry between the down and up correlations underℚ in Table 4 (i.e., a large positive
correlation spread) Δρℚ = ρd,ℚ�ρu,ℚ. As argued earlier, this asymmetry is incon-
sistent with a multivariate normal (MVN) distribution, for which the down and up
correlations must be the same. The observed asymmetry may be caused by non-
normality of the margins or nonnormality of the dependence. For example, the
observed asymmetry could at least partially be due to the heavier left tails of the
margins compared to the right tails. To disentangle the effects of the margins and of
the dependence in explaining the correlation spread Δρℚ, we contrast 4 cases,
labeled NN, EN, NE, and EE, where the first letter denotes the type of the margins
(Normal or Empirical) and the second letter denotes the type of the copula (again,
Normal or Empirical). The EE case corresponds to the output distribution obtained
using our model-free BRA algorithm (Empirical margins and Empirical copula).
The NN case corresponds to Normal margins and Normal copula (i.e., an MVN
distribution). Specifically, the standard deviations for the normal margins match
those of the empirical margins, and the normal copula is calibrated to a constant
correlation matrix in such a way that the model preserves the average pairwise
correlation among the nine sectors. The NE case uses Normal margins joined with
the Empirical dependence from the BRA algorithm (i.e., misspecified margins and
correct dependence). Finally, the EN case uses the Empirical margins joined with a
Normal copula (i.e., correct margins and misspecified dependence).

For all 4 cases, we compute the average pairwise global, down, and up
correlations and display them as time series in the 3 graphs of Figure 10: NN (blue),
EN (green), NE (red), and EE (black). In Table 6, we report the time-series averages
of each quantity. In the first graph of Figure 10 (the average global correlation), the 4
lines are all close to each other. In fact, the average global correlations for EE and
NN are identical by construction. In the second and third graphs (the average down
and up correlations), the 4 lines are farther apart. Furthermore, for the up correlation
the EN and NN lines are close to each other, as are the NE and EE lines. For the
down correlation, the pattern is similar, although there are generally wider gaps
between the corresponding pairs. We thus conclude that the correlation spread Δρℚ

is mainly driven by the type of copula and not by the potential nonnormality of the
margins. This conclusion is reinforced by the last row of Table 6. The correlation
spread is 0 for the multivariate normal case (NN), 0.048 for the EN model, and
0.449 for the EE model, which fits perfectly options on individual sectors and the
index. Even though the EN model has symmetric copula, its down and up corre-
lations are not the same due to the skewed margins. When comparing the NN and
EN models, we can intuitively see that adopting the nonnormal margins explains
only about 11% of the true correlation spread (0.048/0.449). The rest can be
attributed to the nonnormality of the dependence.

In the second exercise, we focus on both ℚ and ℙ measures and attempt to
disentangle the respective roles of the margins and the dependence on the CRP. We
repeat the analysis of Table 4 but now using Spearman (instead of Pearson)
correlations. Spearman’s is a rank correlation and it has the advantage of being
unaffected by themargins. To compute Spearman correlation underℚ, however, the
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complete joint distribution is required, even for the case of the global correlation.
Thus, our BRA methodology is crucial. The results are reported in Table 7. We
observe that, compared to Table 4, all correlations are now slightly lower under both
measures. However, the correlation spreadΔρ remains positive under bothℙ andℚ.
Importantly, the risk premia for the three types of correlations (global, down, and
up) remain quantitatively very similar, but now they are not confounded by the

TABLE 6

Implied Correlations

In Table 6, we compute average implied global, down, and up correlations for the 4 cases (NN, EN, NE, andEE), where the first
letter denotes the typeofmargins (Normal or Empirical) and the second letter denotes the typeof copula (Normal or Empirical).
For example, ENdenotes Empirical margins joinedwith aNormal copula. All statistics are under theℚmeasure. The last row is
the correlation spread, Δρℚ = ρd ,ℚ �ρu,ℚ .

NN EN NE EE

Global 0.748 0.728 0.689 0.748
Down 0.512 0.548 0.640 0.719
Up 0.511 0.500 0.269 0.271
Down–up 0.000 0.048 0.372 0.449

FIGURE 10

Implied Correlations

In Figure 10, we compute average implied global, down, and up correlations for the 4 cases (NN, EN, NE, and EE), where the
first letter denotes the type of margins (Normal or Empirical) and the second letter denotes the type of copula (Normal or
Empirical). For example, EN denotes Empirical margins joined with a Normal copula. Statistics are plotted as 1-monthmoving
averages.

0

0.2

0.4

0.6

0.8

1
Graph A. Average Global Correlation

NN EN NE EE

2008 2010 2012 2014 2016 2018 2020

0

0.2

0.4

0.6

0.8

1

2008 2010 2012 2014 2016 2018 2020

Graph B. Average Down Correlation

2008 2010 2012 2014 2016 2018 2020
0

0.2

0.4

0.6

0.8

1
Graph C. Average Up Correlation

Bondarenko and Bernard 31

https://doi.org/10.1017/S0022109023000960 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000960


dynamics of the marginal distributions. Therefore, by contrasting the results for
Pearson and Spearman correlations, we conclude that the CRP is mainly driven by
the dependence and not by the margins.

D. Tail Indices

In this article, we have studied two new dependence indicators, the down and
up correlations, or correlations conditional on the index return being below or above
its median. One natural generalization is to consider more detailed indicators that
condition on other quantiles of index returns. This would permit a better charac-
terization of the dependence deeper in the tails.23 In fact, we can take this idea to the
limit and estimate the left and right tail indices. Given a joint distribution of two
random variables X ,Zð Þ, let X q and Zq denote q-quantiles for X and Z. The left-tail
index is defined as

LT qð Þ≔ 2log qð Þ
log Prob X ⩽ X q,Z ⩽ Zq

� �� ��1:

This index is equal to 0 when the two variables are independent and 1 when
they are comonotonic (have perfect positive dependence).24 The right-tail index
RT qð Þ is defined similarly. To reduce the noisiness of the estimator in finite
samples, we choose q to be not too small, such as q= 0:1. We compute the left-
(right-) tail index between each sector and S&P 500 and value-weight them across
the nine sectors. In Figure 11, we showLT qð Þ and RT qð Þ over time and observe that
their empirical behavior is qualitatively similar to that of the down and up corre-
lations. The left-tail index is always larger than the right-tail index. Quantitatively,
both tail indices are higher than the corresponding correlations. Similarly to the
analysis of Section IV.C, a careful check must be performed to better understand
whether the asymmetry is driven by the properties of themarginal distributions or of
the dependence.

TABLE 7

Correlation Risk Premium, Spearman

Table 7 reports statistics for the risk premia θ, θd , and θu computed for the average global, down, and up correlations. It is the
same as Table 3, except now the computations are based on Spearman (instead of Pearson) correlations. The last row is the
correlation spread, Δρ= ρd �ρu . The last column shows the Newey–West t-statistics computed with 63 lags.

No. of Obs. Under ℙ Under ℚ Premium t-Stat

Global 3,513 0.635 0.664 �0.029 �3.2
Down 3,513 0.447 0.622 �0.175 �12.9
Up 3,513 0.394 0.228 0.166 13.0
Down–up 3,513 0.053 0.394 �0.341 �21.4

23Longin and Solnik (2001) perform a study in this spirit under the real-world measure. We are now
in position to extend their work to option-implied forward-looking measures.

24An alternative left tail index is considered in Chabi-Yo et al. (2018) to study the dependence
between individual stock returns and the market return under the real-world probability.
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E. Implications for Literature and Hybrid Model

The results in Section IV.C highlight the importance of proper modeling of the
dependence, especially underℚ. The large positive correlation spread Δρℚ is mainly
driven by the nonnormality of the dependence and the CRP ismainly a compensation
for the dependence risk. Therefore, a financial economist whowants to build a multi-
asset model that matches the salient features of the option data must pay a special
attention to the dependence. She could pursue two distinct strategies: a) to model the
joint distribution directly and b) to model the margins and the dependence separately
and then combine the two pieces to build the joint distribution.

The first strategy is more common because of its tractability (e.g., Chang,
Christoffersen, Jacobs, and Vainberg (2012), Schreindorfer (2020)). However, it
suffers from the fact that the number of parsimonious joint models is limited.

Here, we follow an alternative approach to model the multivariate joint dis-
tribution, which is based on previous strategy (b). It consists of estimating the
marginal distributions from a model-free approach as discussed in the article but to
use a copula based on the homogeneous multivariate skewed normal distribution
driven by two parameters ρ and δ, denoted by SN ρ,δð Þ (see Appendix C1 for the
formal definition).

We refer to this model as hybrid because it combines i) fully nonparametric
margins extracted from the individual options and ii) a parsimonious parametric
copula. It offers a number of advantages. First, it fits perfectly all sector marginal
distributions. That is, the model by construction matches exactly the prices of all
sector options. Second, it automatically enforces any additional consistency con-
dition (e.g., that the average beta of the nine sectors (computed for simple returns)
must be equal to 1). Third, the model provides a very tight overall fit to option data.

To understand the appropriateness of the hybrid model, we compare it with
some alternative approaches. Specifically, recall that the definition in (3) says that
the weighted sum Z can be constructed from the known margins Fj and the copula
C. By changing the copula C, we obtain different distributions of Z and, ideally,
want to match the known distribution of S as in (4). To perform a comparison, we
need some measure of goodness-of-fit. One intuitive approach is to compare the

FIGURE 11

Implied Left- and Right-Tail Indices

In Figure 11, tail indices LT qð Þ (blue) andRT qð Þ (green) are computed forq = 0:1. The gray-shadedareas indicate the financial
crisis and COVID-19 crisis.
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two implied curves IVZ and IV S , which correspond to Z and S. Specifically, we
define the distance as the root mean squared relative error (RMSRE):

D≔D Z,Sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL
k = 1

IVZ
k � IV S

k

IVS
k


 �2
vuut ,(18)

where we use the L= 20 moneyness levels k = 1,…,L, equally spaced between 1%
and 99%.

We consider several choices for the copula C and thus for the corresponding
weighted sum Z. One choice corresponds to the output of our model-free approach,
which we, as before, denote as EE. Alternatively, we can construct the copula from
some parametric model. A common choice in the literature is the normal copula, but
this model is not likely to perform well, given our finding on the very strong
asymmetry of the implied dependence. Therefore, we consider a more flexible
generalization, a multivariate skewed normal (SN) copula with two parameters ρ
and δ, denoted by SN ρ,δð Þ (seeAppendix C1 for the formal definition).We focus on
the homogeneous case, where the pairwise correlations are identical and the skew-
ness parameter is also identical across all assets.

In Table C.1, we contrast the different models for Sept. 8, 2008, one of the two
dates studied in Section III. Initially, we choose the parameters of the SN copula to
match the standard deviation of the index σℚS . Specifically, for three (arbitrary)
choices of the skewness parameter δ, we vary the remaining free parameter ρ to
match σℚS . These 3 cases, denoted as SN1, SN2, and SN3, are presented in the first 3
rows of Table C.1. The second and third columns in Table C.1 report the parameters
of the SN copulas. Next, we estimate the “optimal” SN copula, for which both
parameters are chosen tominimize the distanceD in (18). Thatmodel, denoted SN∗,
is presented in the fourth row. Finally, the EE model from our MFDR approach is
presented in the last row.

For each of the five models, Table C.1 also reports the average correlations
(global, down, and up). Since models SN1, SN2, and SN3 all match σℚS , the global
correlation is forced to be the same by construction. That is, any approach based
solely on matching σℚS , as is typically done in the literature, would yield the exact
same global correlation if the index distribution were given by any of the three
models SN1–SN3. In other words, the approach would not have been able to
distinguish between the 3 cases even though their down and up correlations are
drastically different.

Despite its simplicity, the model captures reasonably well the most salient
features of the option-implied dependence.25 As already mentioned, the hybrid
model fits perfectly the sector options, but it could potentially misprice the index
options. The mispricings, however, are much smaller than when a multivariate
normal copula is used. Of course, in terms of fitting option prices the hybrid model
cannot compete with the BRA approach, because the latter produces (essentially) a
perfect fit. Instead, the hybrid model offers different advantages: it is transparent,
intuitive, and easy to implement. Our primary motivation for developing this model

25The hybrid model has only 2 free parameters and, thus, is relatively easy to estimate.
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is twofold. First, because the hybrid model does not rely on the somewhat opaque
BRA methodology, it provides an alternative confirmation of our key empirical
results, including the analysis of the CRP. Second, we believe that the hybrid model
could prove useful in other applications where the BRA methodology cannot be
implemented due to data limitations.26 An additional analysis of the implied vol-
atilities in the variousmodels shows that the hybridmodel may fit very well onmost
days, such as Sept. 8, 2008 but that it may also fail to reproduce the implied
volatility pattern that only the EE approach succeeds in. Full details for the hybrid
model are provided in Appendix C.

F. Return Predictability

A large body of the literature uses various option-implied factors to predict
future market returns. In particular, these forward-looking factors include variance,
semi-variance, correlation, or skewness (see, e.g., Buss and Vilkov (2012), Amaya
et al. (2015), Stilger, Kostakis, and Poon (2017), Buss et al. (2019b), Jondeau et al.
(2019), and Martin and Wagner (2019)). The MFDR methodology could provide
new insights as to which specific option-implied factors drive return predictability.
In this subsection, we explore whether the down and up correlations could predict
future returns better than the standard global correlation.

Our sample is relatively short and we start by focusing on the canonical
in-sample univariate predictive regression:

ret,tþh = αþβ � xtþ εt,(19)

where ret,tþh denotes the cumulative excess return for the index over the period
t, tþh½ �, h is the forecasting horizon, and xt is the predictor known at time-t. Using a
similar regression, Buss et al. (2019b) study predictive power of several option-
implied measures (correlation, variance, and semi-variance), as well as their real-
ized counterparts and risk premia. They conclude that the implied correlation is by
far the best univariate predictor. Therefore, for the predictor xt, we use the three
types of implied correlation: global, down, and up.We set the forecasting horizon h
to 1, 3, 6, 9, or 12 months (i.e., 21, 63, 126, 189, and 252 trading days) and estimate
the regression monthly. When using horizons longer than 1 month, we account for
autocorrelation induced by overlapping returns by computing Newey–West t-
statistics with the number of lags equal to the horizon.

Panel A of Table 8 presents the results for the baseline specification. Using the
OLS regression for the S&P 500 return, the table reports the beta coefficient, its
Newey–West t-statistics, and the adjusted R2. The results for the implied global
correlation are consistent with the prior literature: ρg,ℚ is a strong predictor of the
market return; the adjusted R2 statistics increases from 2.09% at the 1-month
horizon to its maximum of 11.20% at the 6-month horizon and falls off after that.

26Our approach can be compared to Jackwerth and Vilkov (2019) who estimate the joint distribution
of the S&P 500 return and its volatility. They also estimate a hybridmodel, wheremodel-free margins are
combined with a parametric copula. Specifically, Jackwerth and Vilkov (2019) find that Frank copula
works best for their application. Our problem is quite different and of higher dimension. The skewed
normal copula provides a parsimoniousway tomodel the strong asymmetric dependence observed in our
application.
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The regression coefficient is always significantly positive, with t-statistics being 2.0
and higher. Turning to the other two correlations, ρd,ℚ and ρu,ℚ, we find that across
all horizons the adjusted R2 is lower (higher) for the down (up) correlation. In
particular, when compared to the global correlation, the predictive power for the up
correlation is slightly higher for short horizons, but much stronger for longer
horizons. Its R2 continues to increase all the way to the 12-month horizon, where
it reaches an impressive level of 19.80%. The regression coefficient is positive and
highly statistically significant. As for the down correlation, itsR2 is much lower and
its beta coefficient is never significant.

It is interesting to note that Feunou et al. (2018), Kilic and Shaliastovich
(2019), and Buss et al. (2019b) find that the down semi-variance risk premium is
a better predictor than the (global) variance risk premium,whereas the predictability
by the up semi-variance risk premium is much weaker. In other words, it is the
downside part of the variance that contains useful information about market future
returns. In contrast, we find that themost valuable information for predictingmarket
future returns is contained in the implied up correlation, whereas the predictability
by the implied down correlation is weak.

We check the robustness of our predictability results to a number of alter-
native specifications. First, one might be concerned that the strong return pre-
dictability could be driven by a few influential outliers. Following Kilic and
Shaliastovich (2019), we exclude from our analysis observations corresponding
to the financial crisis, which was a period of high market volatility and extreme
realized returns. Panel B of Table 8 reports the results for the sample excluding the
financial crisis and they are similar to the results based on the entire sample.

TABLE 8

Predictive Regressions

Table 8 reports the results of univariate predictive regressions over five horizons h (1, 3, 6, 9, and 12months). The independent
variable is the excess return for S&P 500. The predictor variable is the implied global, down, or up correlation. For each horizon
and predictor, the table shows the beta coefficient, its Newey–West t-statistics computed with the number of lags equal to the
horizon, and the adjusted R2 (in percentage).

h Global Down Up

Months β t-Stat R2 β t-Stat R2 β t -Stat R2

Panel A. OLS Regression

1 0.10 2.02 2.09 0.07 1.23 1.06 0.08 2.34 3.60
3 0.29 2.15 6.66 0.23 1.69 5.26 0.19 2.74 7.96
6 0.51 2.22 11.20 0.36 1.39 6.34 0.38 3.47 16.67
9 0.58 2.41 9.45 0.34 1.42 3.62 0.50 3.34 19.22
12 0.64 2.87 9.09 0.31 1.57 2.19 0.59 2.98 19.80

Panel B. Ex Financial Crisis

1 0.09 2.46 2.64 0.07 2.00 1.13 0.06 2.28 3.90
3 0.20 2.24 4.29 0.12 1.70 1.27 0.15 2.59 7.28
6 0.33 2.31 8.22 0.16 1.10 1.27 0.27 3.34 15.65
9 0.39 2.74 8.54 0.15 1.08 0.70 0.34 3.43 19.24
12 0.50 2.84 13.37 0.22 1.30 2.06 0.39 2.97 21.42

Panel C. WLS Regression

1 0.08 1.63 1.59 0.07 1.23 1.28 0.06 1.85 2.51
3 0.22 1.65 4.79 0.20 1.40 4.17 0.16 2.22 6.11
6 0.40 1.74 8.95 0.32 1.24 6.03 0.32 2.86 13.54
9 0.45 1.90 7.47 0.32 1.31 3.73 0.40 2.68 14.63
12 0.59 2.68 9.64 0.36 1.83 3.48 0.53 2.69 18.68
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The up correlation remains the strongest predictor. Although its betas are now
slightly lower for all horizons, the adjusted R2s are generally higher, ranging from
3.90% to 21.42%.27

Second, instead of completely removing influential observations, we can
down-weight them using the weighted least squares (WLS) regression. Panel C of
Table 8 reports the results for the WLS regression, where the weight at time-t is
equal to the inverse of the 3-month implied volatility. Thus, observations during
volatile periods receive lower weights compared to those during calm periods.
Intuitively, this corresponds to a market timing strategy, which uses implied
correlation as a signal, but reduces the risk exposure during volatile periods.
The main conclusions remain. Although the predictability for the up correlation
now slightly decreases across all maturities, its R2 is as high as 18.68% for the
12-month horizon.

Third, a common concern with predictability regressions is that they often do
not work well out-of-sample (see Campbell and Thompson (2008), Goyal and
Welch (2008)). Therefore, Table 9 presents the results for the out-of-sample regres-
sions. Specifically, the model in (19) is reestimated every month using 60-month
rolling window. At any time-t, the estimated coefficients are used to forecast the
subsequent return ret,tþh avoiding any look-ahead bias. Thenwemove the estimation
window by 1 month, reestimate the model, and apply new coefficients to the next
month.28 In Table 9, we report the averages across all estimations for the beta,
t-statistics, and in-sample adjusted R2. Estimates for betas and R2s are stable and
their averages are similar to those in Table 8. Also reported is the out-of-sample R2

statistics, which compares the mean-squared error of a candidate predictive model
to that of the benchmark model. The latter one uses the historical mean return as a

TABLE 9

Out-of-Sample Regressions

Table 9 reports the results of univariate predictive regressions over five horizons h (1, 3, 6, 9, and12months). The independent
variable is the excess return for S&P 500. The predictor variable is the implied global, down, or up correlation. For each horizon
and predictor, the table shows the average beta coefficient, the average t-statistics (Newey–West adjustedwith the number of
lags equal to the horizon), the average adjusted in-sampleR2 statistics, and the out-of-sampleR2 statistics. BothR2 statistics
are in percentage.

h Global Down Up

Months β t -Stat R2
IS R2

OOS β t-Stat R2
IS R2

OOS β t -Stat R2
IS R2

OOS

1 0.11 1.32 1.37 1.08 0.05 0.82 �0.31 �0.73 0.09 1.63 2.88 8.76
3 0.28 1.40 5.76 1.93 0.12 0.72 1.97 �2.92 0.21 1.98 9.11 4.50
6 0.45 1.45 9.30 12.09 0.16 0.60 2.81 0.77 0.40 2.34 18.74 20.40
9 0.44 1.41 6.66 8.74 0.09 0.16 1.93 �4.49 0.42 2.34 17.91 15.73
12 0.47 1.91 6.83 15.75 0.07 0.32 2.17 �4.21 0.49 2.56 19.04 30.41

27If the COVID-19 crisis is also excluded, this has little effect on the predictability results. The peak
of the COVID-19 was very short, affecting just one observation at monthly frequency.

28The choice of 60-month rolling window is a practical compromise. Ideally, wewould like to have a
sufficiently long estimation period to allow for accurate and stable in-sample fit of the model. However,
we also want to have a long enough testing period to evaluate the forecasts.
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forecast. Specifically, following Campbell and Thompson (2008), the out-of-
sample R2 is computed as

R2
OOS = 1�

MSEj

MSE0
,

where subscripts j and 0 denote the candidate and benchmark models, respectively.
The out-of-sample evidence is consistent with our in-sample results. The up cor-
relation remains a strong predictor out-of-sample. Its R2

OOS is high and increases
with the horizon. As before, the global correlation is a useful, but weaker predictor.
The down correlation cannot outperform the (naive) benchmark predictor, as
evidenced by its negative out-of-sample R2s.

Fourth, Table 10 presents the results of the OLS regression for the nine sectors.
We find that, the predictive power of the up correlation continues to be strong. For
all sectors and horizons, it delivers a higher R2 than the global correlation. The only
exception is the Technology sector with h= 1 and 3 months, where R2 for the up
correlation is marginally lower. The difference in R2s between the up and global
correlations widens considerably for the longer horizons. For h= 9 and 12 months,
R2 for the up correlation typically exceeds 15%, often substantially. The two
exceptions are Technology and Utilities sectors, for which predictability is rela-
tively weak for all three predictors. For the down correlation, predictability is the
weakest, with beta coefficients usually being insignificant.29

Overall, we conclude that the implied up correlation contains valuable infor-
mation about future market returns. Future work and a longer sample will help us
better understand economic mechanisms driving the up correlation predictability.
Some initial intuition is provided by Figure 12, which investigates how different
sectors behavewhen the up correlation is high or low.We group the nine sectors into
three “Super Sectors”: Cyclical (MAT, FIN, and CDI), Sensitive (ENE, IND, and
TEC), and Defensive (CST, UTI, and HEA). In defining Super Sectors, we follow
Morningstar classification. Cyclical companies tend to have a high correlation with
business cycles. Defensive companies are anti-cyclical and tend to stay stable
whether the market is healthy or not. Sensitive companies fall between cyclical
and defensive ones and tend to havemoderate correlations with business cycles. For
each Super Sector, we compute the average excess return as equal-weighted of its 3
industries. We sort all trading days into terciles based on the implied up correlation
and then compute the average subsequent returns for three Super Sectors. The
forecasting horizon h = 1, 3, 6 and 12 months.

Figure 12 confirms nonparametrically a positive relationship between the up
correlation and future returns. Across all Super Sectors, the average return mono-
tonically increases from the bottom to the top tercile. When the up correlation is

29In unreported results, we repeated predictive regressions in (19), but now using the CBOE implied
correlation index COR3M as the predictor. COR3M aims to measure the average correlation among
the S&P 500 stocks for the 3-month tenor. The index has been recently redesigned by CBOE, but its
backfilled values are available for our whole sample. We find that COR3M performs similarly to the
global correlation ρg,ℚ as a predictor for the market and individual sectors and that both significantly
underperform relative to the up correlation across all horizons. These results are available from the
authors.
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high, all sectors perform well, with cyclical stocks outperforming defensive stocks.
Conversely, when the up correlation is low, all sectors perform poorly, with defen-
sive stocks outperforming cyclical stocks. Intuitively, when the up correlation is
high, investors anticipate a broad market rally, with all sectors advancing simulta-
neously. As cyclical stocks have higher market betas, they tend to outperform
defensive stocks during these days. Conversely, when the up correlation is low,
themarket ismore fragile and sectors are pulling in different directions. During such
times, defensive stocks tend to perform relatively better.30

TABLE 10

Predictive Regressions for Individual Sectors

Table 10 reports the results of univariate predictive regressions over five horizons h (1, 3, 6, 9, and 12 months). The
independent variable is the excess return for each of the nine sectors. The predictor variable is the implied global, down,
or up correlation. For each sector, horizon, and predictor, the table shows the beta coefficient, its Newey–West t-statistics
computed with the number of lags equal to the horizon, and the adjusted R2 (in percentage).

h Global Down Up

Sector Months β t-Stat R2 β t -Stat R2 β t -Stat R2

MAT 1 0.12 2.02 1.77 0.08 1.03 0.56 0.09 2.36 2.70
3 0.36 2.11 6.51 0.30 1.61 5.26 0.22 2.56 6.44
6 0.67 2.23 11.56 0.48 1.50 6.94 0.46 2.96 14.55
9 0.73 2.54 10.06 0.45 1.53 4.16 0.59 3.06 17.57

12 0.72 2.95 8.91 0.35 1.45 2.08 0.65 2.98 18.10
ENE 1 0.17 2.27 2.15 0.09 1.13 0.31 0.13 2.16 3.84

3 0.40 2.21 5.24 0.27 1.59 2.56 0.29 2.51 7.50
6 0.61 1.91 8.12 0.41 1.45 3.95 0.47 2.53 12.46
9 0.79 2.03 9.00 0.47 1.56 3.50 0.64 2.72 16.08

12 0.91 2.21 10.46 0.51 1.59 3.61 0.76 2.93 18.21
FIN 1 0.09 1.24 0.21 0.06 0.57 �0.20 0.08 1.92 1.26

3 0.33 1.75 3.15 0.29 1.34 2.85 0.23 2.26 4.00
6 0.76 2.13 8.94 0.57 1.39 5.77 0.53 3.06 11.70
9 0.95 2.35 9.55 0.64 1.72 4.86 0.72 2.77 14.83

12 1.04 2.46 8.95 0.63 1.87 3.51 0.84 2.28 14.42
IND 1 0.13 2.14 2.00 0.08 1.13 0.78 0.09 2.56 2.90

3 0.34 2.12 5.64 0.27 1.60 4.21 0.22 2.60 6.34
6 0.63 2.31 10.62 0.43 1.37 5.47 0.46 3.47 14.70
9 0.76 2.68 10.95 0.44 1.48 4.06 0.62 3.57 19.77

12 0.87 3.47 11.35 0.44 1.64 3.01 0.75 3.32 20.90
TEC 1 0.10 1.70 1.69 0.10 1.44 1.94 0.06 1.87 1.51

3 0.30 1.81 5.53 0.28 1.67 5.77 0.18 2.07 4.92
6 0.41 1.43 5.30 0.32 1.08 3.69 0.30 2.04 7.63
9 0.32 1.12 1.75 0.18 0.64 0.26 0.34 1.75 6.43

12 0.32 1.15 1.18 0.11 0.44 �0.42 0.37 1.44 5.12
CST 1 0.06 1.82 1.26 0.04 1.11 0.36 0.05 1.84 2.80

3 0.20 2.39 6.19 0.15 1.72 4.18 0.12 2.73 6.20
6 0.43 3.30 16.79 0.27 1.61 7.84 0.29 5.14 20.40
9 0.56 4.02 20.41 0.34 2.07 8.72 0.40 5.31 28.18

12 0.62 4.55 20.10 0.35 2.43 7.18 0.49 5.15 31.18
UTI 1 0.07 1.20 0.49 0.06 0.93 0.35 0.05 1.22 0.90

3 0.13 1.08 1.22 0.10 0.80 0.77 0.08 1.28 1.41
6 0.24 1.39 3.31 0.14 0.70 1.00 0.18 2.18 5.49
9 0.30 1.59 3.76 0.17 0.88 1.13 0.26 2.41 7.81

12 0.34 1.85 3.76 0.18 1.10 0.94 0.31 2.28 8.46
HEA 1 0.08 1.73 1.40 0.05 1.16 0.36 0.08 1.91 4.33

3 0.18 1.93 3.67 0.13 1.33 2.05 0.15 2.76 6.65
6 0.34 2.39 7.20 0.17 1.02 1.78 0.32 3.96 17.31
9 0.47 2.55 8.14 0.20 1.04 1.32 0.47 4.12 22.37

12 0.63 2.79 10.94 0.25 1.33 1.52 0.64 3.59 28.58
CDI 1 0.12 2.09 2.06 0.08 1.06 0.66 0.10 2.90 4.32

3 0.41 2.56 10.07 0.33 2.06 7.95 0.28 3.54 12.05
6 0.72 2.51 14.30 0.52 1.76 8.64 0.54 3.86 21.06
9 0.78 2.48 11.06 0.48 1.74 4.55 0.68 3.38 22.13

12 0.83 2.70 9.40 0.40 1.67 2.11 0.80 2.94 22.17

30In unreported results, we estimated predictive regressions in (19), but when the dependent variable
is the Super Sector’s return in excess of the market. For all forecasting horizons, betas are positive for
Cyclical and Sensitive and negative for Defensive sectors. However, betas are only significant for
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Table 11 reports the risk measures of several sector strategies, including the
value-weighted portfolio of the nine sectors (SPX), the equal-weighted portfolio of
the nine sectors (SPXEW), the three Super Sectors, and a simple sector rotation
strategy (RS).31 Our rotation strategy is rebalanced monthly based on the level of
the implied up correlation. Specifically, RS invests in Defensive sectors when the
up correlation is low (the bottom tercile), in all sectors when the up correlation is
average (the middle tercile), and in both Cyclical and Sensitive sectors when the up
correlation is high (the top tercile). Because their performances are similar across all
three terciles, for simplicity, we treat Cyclical and Sensitive sectors symmetrically
(and opposite to Defensive sectors).

FIGURE 12

Subsequent Return Sorted by Implied Up Correlation

All trading days in Figure 12 are sorted into three terciles based on the implied up correlation ρℚ,u and then the average
subsequent returns are computed for three Super sectors (Cyclical, Sensitive, and Defensive). The forecasting horizon h = 1,
3, 6 and 12 months.

–1%

–0.5%

0%

0.5%

1%

1.5%

2%

2.5%
Bottom
Middle
Top

–2%

–1%

0%

1%

2%

3%

4%

5%

6%

7%

–4%

–2%

0%

2%

4%

6%

8%

10%

12%

14%

Cyclical Sensitive

Graph A. Subsequent 1-Month Return Graph B. Subsequent 3-Month Return

Graph D. Subsequent 12-Month ReturnGraph C. Subsequent 6-Month Return

Defensive Cyclical Sensitive Defensive

Cyclical Sensitive Defensive Cyclical Sensitive Defensive
–5%

0%

5%

10%

15%

20%

25%

Bottom
Middle
Top

Bottom
Middle
Top

Bottom
Middle
Top

Cyclical for horizons of 3 months or more. While the implied up correlation is a strong predictor for the
overall market, its marginal predictability for excess returns is weaker. Our sample period of 14 years is
relatively short, resulting in a lack of statistical power. These results are available from the authors.

31Sector rotation is a popular investment strategy that exploits perceived differences in the relative
performance of sectors at different stages of the business cycle (Beber, Brandt, andKavajecz (2011)).We
note that the success of this strategy critically depends on sectors not being overly correlated. In the
presence of transaction costs, it would be harder to justify switching between sectors when they all
perform similarly, even with the benefit of perfect foresight.
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Since the rotation strategy equal-weights the selected sectors, SPXEW
serves as the appropriate benchmark. Table 11 shows that RS outperforms
SPXEW considerably: the average excess return is more than 3% higher
(12.49% vs. 9.31%), the volatility is lower, resulting in a superior Sharpe ratio
(0.76 vs. 0.54). RS also considerably outperforms all Super sectors in terms of the
mean return, while it is only slightly worse than the Defensive sector in terms
of risk.32

V. Conclusions

We propose a novel methodology to estimate the risk-neutral dependence
among several assets that is consistent with market prices of options on these assets
and on their index. TermedMFDR, it offers two critical advantages compared to the
existing methods. First, the methodology is completely model-free and requires no
parametric assumptions. Second and most importantly, it yields a full dependence
structure, not just the average correlation coefficient. To achieve so, the method-
ology matches a continuum of moments on the risk-neutral distributions, as
opposed to satisfying just one restriction in the existing methods.

In the empirical application, we implement MFDR to the nine economic
sectors comprising the S&P 500 index. We document that the option-implied
dependence for the nine sectors is highly asymmetric and time-varying. We
study the CRP and find that it is negative for the down correlation and positive
for the up correlation. These findings are consistent with the economic intuition
that investors are mainly concerned with the loss of diversification when the
market falls and that they actually prefer high correlation when the market
rallies. That is, investors view the down correlation as “bad” and the up corre-
lation as “good.” While it might be possible to rationalize the negative risk
premium for the down correlation with disappointment aversion preferences,
the positive risk premium for the up correlation presents a bigger challenge for
the theoretical literature.

We anticipate that our model-free methodology could be used in numerous
additional applications and we now briefly discuss some of them. First, since our

TABLE 11

Risk Measures for Sector Strategies

Table 11 reports mean excess return, volatility, and Sharpe ratio for various sector strategies. The strategies are the value-
weighted portfolio of the nine sectors (SPX), the equal-weighted portfolio of the nine sectors (SPXEW), Cyclical, Sensitive,
Defensive, and the sector rotation strategy (RS). The rotation strategy is rebalancedmonthly based on the tercile of the implied
up correlation.

SPX SPXEW Cycl. Sens. Defens. RS

Mean return (%) 9.62 9.31 8.66 9.60 9.56 12.49
Std. Dev. (%) 16.81 17.17 21.30 20.38 13.52 16.54
Sharpe ratio 0.57 0.54 0.41 0.47 0.71 0.76

32It is worth noting that, in our short and somewhat special sample period, the Defensive sector
stands out on the risk-adjusted basis. It had about samemean return as the broad market, but with a much
lower risk.
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approach can estimate the full risk-neutral covariance matrix, it could be useful for
optimal portfolio construction. The existing literature has already established that
the moments of the univariate implied distribution can improve portfolio choice.
Superior asset allocation can be achieved by using the risk-neutral moments esti-
mated from options rather than their realized counterparts estimated from stock
returns (e.g., Kostakis, Panigirtzoglou, and Skiadopoulos (2011), DeMiguel et al.
(2013)). Therefore, a promising avenue for future research is to investigate whether
these results can be extended to multidimensional portfolios, where the
asset allocation is not limited to the risk-free assets and one risky asset but rather
could include many risky assets.

Second, Bollerslev, Patton, and Quaedvlieg (2022) recently propose a novel
extension of the CAPM model by decomposing the traditional market beta into
four semibetas depending on the signed covariation between the market and
individual asset returns (this extends the work of Ang et al. (2006) on the
downside and upside betas). They show that the decomposition into the four
semibetas offers superior cross-sectional predictions compared to those obtained
by the traditional betas. The semibetas are estimated from historical returns, either
daily or intraday. It would be of interest to use our methodology to estimate the
forward-looking option-implied semibetas and to contrast them to the semibetas
estimated under ℙ.

Third, MFDR is designed to find a joint distribution, which perfectly repro-
duces both the individual and index options. Importantly, thismethodology can also
inform uswhen no feasible joint distribution exists. This happenswhen the prices of
individual options are inconsistent with the index options, implying that there exists
an arbitrage opportunity. Typically, such a situation arises when a specific portfolio
of individual options is too cheap compared to the index option. Our methodology
can be used to detect potential arbitrage opportunities and to verify whether they can
survive realistic trading costs.33 This idea generalizes dispersion arbitrage, which is
based solely on global correlations.

Finally, our methodology could shed more light on the phenomenon stud-
ied in Kelly et al. (2016). Specifically, they construct the so-called put spread
for the financial industry as a measure of tail dependence. The spread is defined
as the difference in costs between OTM puts for individual banks and OTM
puts for the financial sector index. Kelly et al. (2016) find that during the 2007–
2009 financial crisis, the put spread for the financial industry was extraordinary
large, which implies a very low implied correlation among the banks and is
consistent with the perceived sector-wide government bailout guarantee. When
implemented at the industry level, our approach would potentially be able to
recover the full joint distribution for the banks (not just one specific partial
measure of tail behavior) and to disentangle the effects due to changes in the
margins (e.g., the volatility of the banks) and the dependence (e.g., interaction
between banks).

33The problem of detecting arbitrage opportunities is considered in Hobson, Laurence, and Wang
(2005) and Chen, Deelstra, Dhaene, and Vanmaele (2008). These authors derive the highest possible
price for a given basket option consistent with observed prices of individual options.
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Appendix A. Implications of the Restriction in (8)

It might be instructive to consider inmore detail a few specific choices for function
g z,sð Þ. When g z,sð Þ= z or g z,sð Þ = z2, we recover conditions on the first and second
central moments discussed previously. Similarly, the choice of g z,sð Þ= z3 delivers a
condition on the average measure of coskewness. However, let us consider some simple
“cross-moments”when g z,sð Þ depends on both z and s. When g z,sð Þ= zs, we obtain the
condition similar to (5):

Xd
j = 1

ωjσjρjS = σS :

With the additional assumption of equal correlations with the index, ρj,S = ρS , it
leads to a new identifying equation for the implied correlation:

ρS =
σSPd

j = 1
ωjσj

:

The above is not the same as the equation used in the existing literature. This is
because the two auxiliary assumptions of constant correlations ρjk = const (between two
assets) and ρjS = const (between an asset and the index) are not equivalent when σj and
ωj are not constant.

Finally, consider expectations conditional on S. Let g z,sð Þ= zI s ⩽ Kð Þ, for some
level K. We obtain the following restriction:

Xd
j = 1

ωjE X j jS ⩽ K
� �

=E S jS ⩽ K½ �:

That is, conditional on S being below some critical levelK, the average value of the
portfolio of the d assets must be equal to that of the index itself. Generally, there will be
many copulas C that are consistent with (4). This situation is not uncommon given that
in incomplete markets, the risk-neutral measure is not unique. However, although they
could differ in “micro” details, all solutions will agree on broad, “aggregate” features. In
particular, all solutions will imply the same average pairwise correlation ρ obtained by
the existing approaches. More generally, they will all agree on moments E g Z,Sð Þ½ � for
any function g z,sð Þ. In this sense, any solution will provide very valuable information.

Appendix B. CBOE Options

We use CBOE options on the SPDR ETFs for the nine Select Sectors and the S&P
500 itself. The ETFs are managed by State Street Global Advisors. The stocks in the
S&P 500 index are divided into 11 industry sectors, but Information Technology and
Telecommunications are combined in a single ETF (ticker XLK), while Financial and
Real Estate are combined in another ETF (ticker XLF). The ETFs pay quarterly
dividends. The ETF options are physically settled and have an American-style exercise.
The contract size is 100 shares of the corresponding ETF. The minimum price move-
ment is 0.05. The strikes are multiples of $1. Sector options all expire on the same day.
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We obtain option data directly from CBOE. The data includes bid and ask quotes
recorded at both 14:45 and 15:15 CDT. Due to lower liquidity, spreads widen consid-
erably right before themarket closes at 15:15. Therefore, in our analysis we use quotes at
14:45. On any given trading day, we estimate option-implied RNDswith a constant time
to maturity of 91 days. The details of the procedure are summarized below.

Data Set Construction

1. We compute midpoint prices. In the data set, we match all puts and calls by
trading date t, maturity T, and strike K. For each pair t,Tð Þ, we drop very low (high)
strikes with 0 bids. We approximate the risk-free rate r over t,T½ � by the rate of 3-month
Treasury bills.

2. Because sector options are American-style, their prices PA
t Kð Þ andCA

t Kð Þ could
be slightly higher than the prices of the corresponding European options Pt Kð Þ and
Ct Kð Þ. The difference, however, is small for the short maturities on which we focus.
This is particularly true for OTM and ATM options. To infer the prices of European
options Pt Kð Þ andCt Kð Þ on a given underlying X t andmaturity τ =T � t, we proceed as
follows: First, we discard all ITMoptions. That is, we use put prices forK=Zt ⩽ 1:00 and
call prices forK=Zt⩾1:00, where Zt ≔X te r�δð Þτ is the forward price. Prices of OTM and
ATM options are both more reliable and less affected by the early exercise feature.
Second, we correct American option prices PA

t Kð Þ and CA
t Kð Þ for the value of the early

exercise feature by using Barone-Adesi and Whaley (1987) approximation. Third, we
compute the prices of ITM options through the put-call parity relationship:

Ct Kð Þ�Pt Kð Þ= Zt�Kð Þe�rτ :

3. We check option prices for violations of the no-arbitrage restrictions. To
preclude arbitrage opportunities, European call and put prices must be monotonic and
convex functions of the strike. In particular, the call pricing functionCt Kð Þmust satisfy

ðaÞ CtðKÞ⩾ðFt�KÞþe�rτ , ðbÞ � e�rτ
⩽ C0

tðKÞ ⩽ 0, ðcÞ C00
t ðKÞ⩾0:

In real data, however, restrictions (a)–(c) can sometimes be violated and we
enforce them by running the Constrained Convex Regression (CCR) introduced in
Bondarenko (2000). Intuitively, CCR searches for the smallest (in the sense of least
squares) perturbation of option prices that restores the no-arbitrage restrictions. The
procedure is also useful for identifying possible recording errors or typos.

4.We construct prices of synthetic options with constant time to maturity τc =Tc�
t = 91 days. Specifically, we start with two available time to maturities τ1 and τ2 which
bracket the target time to maturity τc. Cleaned European options for τ1 and τ2 are
converted into implied volatilities and linearly interpolated with respect to the normal-
ized moneyness m, defined in (10). The interpolated implied volatilities for τc are then
converted back into option prices, which are used for the RND estimation.34

5. For each trading day t, we estimate the RND corresponding to time to maturity τc
using themethod ofPositive ConvolutionApproximation (PCA) developed inBondarenko

34For most days, constructing options with constant time to maturity does not require extrapolation,
as there exist two maturities such that τ1 ⩽ τc ⩽ τ2. However, in the earlier part of our sample, there are a
few days for which the shortest available maturity τ1 exceeds τc and extrapolation is unavoidable. We
discard days which require extensive extrapolation, i.e., when the weight for the shortest maturity is
negative and less than �0.5.
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(2003). The method allows one to infer the RND f t xð Þ and RNCD Ft xð Þ through the
relationships in (1) and (2). The method directly addresses the important limitations of
option data that (a) options are only traded for a discrete set of strikes, as opposed to a
continuum of strikes, (b) very low and very high strikes are unavailable, and (c) option
prices are recordedwith substantialmeasurement errors, which arise fromnonsynchronous
trading, price discreteness, and the bid–ask bounce. The PCA method is fully nonpara-
metric, always produces arbitrage-free estimators, and controls against overfitting while
allowing for small samples. We implement a version of PCA for which extreme left and
right tails of the RND are extended in accordance with power laws.

6. Given the estimated RNCDs for the nine sectors and the index, we discretize
each of them into n= 1,000 equally probable points, collect them into n× dþ1ð Þmatrix
M, and apply theBRAmethod described in Section II.D. The output of the BRA is given
by another n × dþ1ð Þ matrix that describes the joint distribution between the nine
sectors compatible with all marginal distributions. Armedwith the full joint distribution,
we are able to compute various statistics of interest, including global, down, and up
pairwise correlation for sector returns.

Appendix C. Hybrid Model

Figure C.1 plots the implied volatility curves IVZ for the five models SN1, SN2,
SN3, SN

∗, and EE. For reference, also shown is the implied volatility curve for the index
IVS (the black curve). Graph A of Figure C.1 shows the three models SN1–SN3, which
are fit solely tomatch σℚ and thus (5). They are very far from the observed IVS (the black
curve). Graph B of Figure C.1 shows models SN∗ and EE, with the latter one matching
IVS almost perfectly. Note that model SN∗ does not match σℚ perfectly, as it is fit by
minimizing a different objective function (the distance D). Even for the optimal SN
model, the distanceD is about 4 times larger than for the EEmodel, which does not even
aim at minimizing the distanceD as its objective. Visually, the fit with model SN∗ seems
quite good on Sept. 8, 2008, but this is not always the case.

We repeat here the study performed on Sept. 8, 2008, with another date to show
that the hybrid model may not always be a good fit. Indeed, Table C.2 and Figure C.2
repeat the same analysis, but now for a different day, Oct. 20, 2017. For that day, even
the optimal SN model is too inflexible to approximate the implied volatility curve well.
The distance D is now about 20 times as large as that for the EE model.

TABLE C.1

Five Fitted Models

Table C.1 reports statistics for the five models estimated on Sept. 8, 2008. SN1, SN2, and SN3 are the skewed normal copulas
fit to match the standard deviation of the index σℚS ; SN

∗ is the SN copula fit to match the whole IV curve by minimizing the
distanceD in (18); EE is the empirical copula obtained from our algorithm. Here, δ and ρ are the parameters of the SNmodels;
ρg , ρd , and ρu are the average global, down, and up correlations; Δρ is the correlation spread.

Model δ ρ σℚ ρg ρd ρu Δρ D × 100

SN1 �0.87 0.140 0.456 0.585 0.437 0.130 0.307 2.28
SN2 0.00 0.596 0.456 0.585 0.322 0.290 0.032 7.66
SN3 0.80 0.366 0.456 0.585 0.244 0.394 �0.151 13.98
SN∗ �0.84 0.243 0.455 0.583 0.414 0.167 0.247 0.77
EE 0.456 0.584 0.437 0.172 0.265 0.19
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FIGURE C.1

Implied Volatilities for the Five Models on Sept. 8, 2008

Graph A of Figure C.1 shows the skewed normal copulas SN1–SN3. Graph B shows the skewed normal copula SN∗ and
empirical copula (from MFDR) EE. The black curves in both graphs show the true implied volatilities (for the index) IVS .
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TABLE C.2

Five Fitted Models

Table C.2 reports statistics for the five models estimated onOct. 20, 2017. SN1, SN2, and SN3 are the skewed normal copulas
fit to match the standard deviation of the index σℚS ; SN

∗ is the SN copula fit to match the whole IV curve by minimizing the
distanceD in (18); EE is the empirical copula obtained from our algorithm. Here, δ and ρ are the parameters of the SNmodels;
ρg , ρd , and ρu are the average global, down, and up correlations; Δρ is the correlation spread.

Model δ ρ σℚ ρg ρd ρu Δρ D × 100

SN1 �0.87 �0.008 0.217 0.535 0.422 0.041 0.380 12.18
SN2 �0.40 0.537 0.217 0.535 0.319 0.262 0.057 17.16
SN3 0.80 0.368 0.217 0.535 0.246 0.402 �0.156 23.03
SN∗ �0.83 0.077 0.213 0.503 0.370 0.061 0.309 11.91
EE 0.217 0.516 0.538 0.060 0.477 0.59

FIGURE C.2

Implied Volatilities for the Five Models on Oct. 20, 2017

Graph A of Figure C.2 shows skewed normal copulas SN1–SN3. Graph B shows skewed normal copula SN∗ and empirical
copula (from MFDR) EE. The black curves in both graphs show the true implied volatilities (for the index) IVS .
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The previous illustrations focus on two specific dates. To generalize the analysis,
we fit a multivariate normal copula (with one parameter ρ) and a multivariate skewed
normal copula (with two parameters ρ and δ) for all days in our sample. Specifically, we
search for the normal copula N∗ and the skewed normal copula SN∗ that minimize the
distance D in (18) on each day. In Table C.3, we report the time-series averages of the
fitted parameters and distance D. It is clear that adding the skewness parameter greatly
reduces that distance (by a factor of more than 2), but the distance for SN∗ is still much
larger than for the model-free EE (by a factor more than 9). Note also that the correlation
coefficient in the normal copula ρ is not directly comparable to the coefficient ρ in the
skewed normal copula. For SN∗, the average global correlation matches almost exactly
that for EE (0.747 and 0.748, respectively), even though ρ is on average equal to only
0.300 (combined with a very negative skewness parameter δ = �0:905). Recall that the
three models do not have to match the average global correlation, as the objective is not
to match σℚ but instead to minimize the distance D.35

TableC.3 shows that the normal copula is unable to reproduce the asymmetry between
the down and up correlations that is exhibited by the model-free approach EE. Specifically,
using the EE approach, the correlation spread Δρ= ρd �ρu = 0:449. Even though a normal
copula is symmetric, the down and up correlations are not identical because themargins are
skewed (the heavy left tail). For model N∗, the correlation spread Δρ= 0:047, or approx-
imately 10.5% of that for EE. Intuitively, about 10.5% of the correlation spread can be
attributed to nonnormality of the margins. This complements the results of Table 6 in
Section IV.C. On the other hand, the skewed normal model with only one extra parameter
can reproduce the down and up correlations considerably better, now accounting for
approximately 76% of the correlation spread (0.341/0.449). This also means that many
of our conclusions regarding the down and up CRP can be (approximately) confirmed by
adopting the hybrid model SN∗, for which nonparametric margins are joined by the SN
copula.

Multivariate Skewed Normal Model

We follow the procedure of Azzalini and Valle (1996) to simulate a d-dimensional
skewed normal copula. We are interested in the special case of constant pairwise
correlation and constant skewness. Generally, the joint pdf of X 1,X 2,…,X dð Þ is a
skewed normal distribution with mean parameter 0, correlation matrix R and skewness
parameter λ= λ1,…,λdð Þ if

TABLE C.3

Three Models over the Full Sample

Table C.3 reports time-series averages for three models estimated daily from Jan. 1, 2007 to Dec. 31, 2020. N∗ is the normal
copula with parameter ρ, and SN∗ is the skewed normal copula with two parameters, ρ and δ. They are fit tomatch the whole IV
curve byminimizing the distanceD in (18). EE is themodel-free copula from our algorithm. The first 3 columns are the average
global, down, and up correlations; the fourth column is the correlation spread Δρ = ρd �ρu .

Model ρg ρd ρu Δρ ρ δ D × 100

N∗ 0.724 0.538 0.490 0.047 0.748 8.96
SN∗ 0.747 0.654 0.313 0.341 0.300 �0.905 4.01
EE 0.748 0.719 0.271 0.449 0.43

35Furthermore, recall that the parameter ρ of the normal copula can only be interpreted as a
correlation coefficient if the margins are normal. Thus, the coefficient ρ does not match the average
global correlation.
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f xð Þ= 2ϕd x,Σð ÞΦ αtxð Þ,

where ϕd x,Σð Þ is the pdf of an MVN distribution with mean 0 and covariance matrix Σ
and

αt =
λtR�1Δ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λtR�1λ

p , Σ=ΔðRþ λλtÞΔ, Δ= diagð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�δ21

q
,

ffiffiffiffiffiffiffiffiffiffiffiffi
1�δ22

q
,…,

ffiffiffiffiffiffiffiffiffiffiffiffi
1� δ2d

q
Þ,

λj =
δjffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2j

q , for some δj ∈ ð�1,1Þ:

(20)

The simulation procedure can be summarized as follows:

a) Simulate Z as a standard normal N 0,1ð Þ and simulate Y 1,…,Ydð Þ as an MVN
vector with mean 0 and correlation matrix R.

b) Define X j = δj∣Z∣þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2j

q
Y j. Then each X j is the standard skewed normal

with parameter λj, and the d-dimensional vector X 1,…,X dð Þ follows SNd R,λð Þ.
c) Obtain the d-dimensional skewed normal copula by replacing simulated values

of X 1,…,X dð Þ with their ranks.

In our case, d = 9, and we fit a skewed normal distribution with only two free
parameters. One parameter, ρ, is the constant pairwise correlation in the correlation
matrix R. The other parameter is a constant skewness coefficient (i.e., δ1 =⋯= δd = δ
where δ is linked to λ by (20)).36

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109023000960.
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