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Abstract
‘We establish new Strichartz estimates for orthonormal families of initial data in the case of the wave, Klein—Gordon
and fractional Schrodinger equations. Our estimates extend those of Frank—Sabin in the case of the wave and
Klein—Gordon equations, and generalize work of Frank et al. and Frank—Sabin for the Schrodinger equation. Due
to a certain technical barrier, except for the classical Schrodinger equation, the Strichartz estimates for orthonormal
families of initial data have not previously been established up to the sharp summability exponents in the full range
of admissible pairs. We obtain the optimal estimates in various notable cases and improve the previous results.

The main novelty of this paper is our derivation and use of estimates for weighted oscillatory integrals, which
we combine with an approach due to Frank and Sabin. Our weighted oscillatory integral estimates are, in a certain
sense, rather delicate endpoint versions of known dispersive estimates with power-type weights of the form |¢|™4
or (1 + |£%)~4/2, where A € R. We achieve optimal decay rates by considering such weights with appropriate
A € C. For the wave and Klein—Gordon equations, our weighted oscillatory integral estimates are new. For the
fractional Schrodinger equation, our results overlap with prior work of Kenig—Ponce—Vega in a certain regime. Our
contribution to the theory of weighted oscillatory integrals has also been influenced by earlier work of Carbery—
Ziesler, Cowling et al., and Sogge—Stein.

Finally, we provide some applications of our new Strichartz estimates for orthonormal families of data to the
theory of infinite systems of Hartree type, weighted velocity averaging lemmas for kinetic transport equations, and
refined Strichartz estimates for data in Besov spaces.
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1. Introduction

For a given dispersion relation ¢, the function Uy f denotes the solution to the initial value problem

idu+¢d(D)u=0, (t,x) eR™¥, d>1,
u(0,-) = f.

This paper is concerned with extended versions of Strichartz estimates taking the form

ZVj|U¢fj|2

J

g - Svies (1.1)
L7 L?

for families of orthonormal functions (f;); in a given Hilbert space I, which we shall take to be
homogeneous or inhomogeneous Sobolev spaces. This particular line of investigation originated in
recent work of Frank et al. [29] for the Schrodinger propagator (¢(£) = |£%). The idea to generalize
classical inequalities from a single-function input to an orthonormal family traces back further, with
pioneering work of Lieb—Thirring [57] establishing extended versions of certain Gagliardo—Nirenberg—
Sobolev inequalities and applications to the stability of matter. We also mention Lieb’s extended version
of Sobolev inequalities in [56], which will be of use to us in the current paper.

Motivation to study estimates of the form (1.1) is plentiful. Applications to the Hartree equation
modelling infinitely many fermions in a quantum system can be found in work of Chen—Hong—Pavlovic
[19, 20], Frank-Sabin [30], Lewin—Sabin [54, 55] and Sabin [69]. Physically, the quantity Zj.\’: | e fi?
gives a representation of the density of a quantum system of N fermions (at time #), where f; represents
the jth fermion at the initial time, and thus it is desirable to have optimal control over such a quantity
in terms of the number of particles N; this corresponds to obtaining bounds of the form (1.1) with 8
as large as possible. Other applications include consequences for the wave operator for time-dependent
potentials, which may be found in [29]. In a somewhat different direction, one may obtain refined
versions of the classical (single-function) Strichartz estimates for data in certain Besov spaces rather
quickly from (1.1) via the Littlewood—Paley inequality; this observation may be found in [31] and
provides an approach to refined Strichartz inequalities, which is distinct and rather simpler than the
more well-known approach via bilinear Fourier (adjoint) restriction estimates. In addition to the papers
cited already, we refer the reader forward to Section 7, where we present several applications of the
nature described above; these applications will be consequences of the new estimates we obtain in the
current paper and on which we now begin to focus.
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The classical (single-function) Strichartz estimates enjoy a rather general theory, which allows for
a fairly unified approach to a wide class of dispersive equations such as the Schrodinger equation
#(€) = |£)? or, more generally, the fractional Schrodinger equation ¢(&£) = |£]% (a # 0, 1), the wave
equation ¢(&) = |¢| and the Klein—Gordon equation ¢(&) = (&), where (¢) := (1 + |£|*)'/2. In the
extended framework (1.1), matters are significantly more complicated, and a comparable general theory
seems rather distant. In this paper, we provide substantial progress in this direction, generalizing work
in [29] to the fractional Schrédinger case and significantly extending the results in [30] for the wave and
Klein—Gordon equations. Our approach is, to a certain extent, based on an abstract framework, and we
expect that similar results can be obtained by our approach for broader classes of dispersion relations.
To facilitate the presentation of prior results and our new results in the extended framework (1.1), we
first review the classical (single-function) case.

1.1. Classical Strichartz estimates

Let H{ be a Hilbert space, such as H® or H*, the homogeneous or inhomogeneous Sobolev spaces of
order s built over L?>(R?). (For the definitions of H*, H* and ¢(D), we refer the reader forward to
Section 2.) The classical Strichartz estimates usually take the form

WUgfllLapr < 11l (1.2)

Since ¢ is typically smooth away from the origin, a commonly used technique to prove the estimate
(1.2) is first to consider the case that the Fourier (frequency) support of the initial data f is localized
to an annulus and then apply Littlewood—Paley theory to extend to general data in the class . This
strategy allows us to avoid complications that arise from singular behavior of the dispersive relation ¢
near the origin and at infinity. For initial data with such localized frequency, one can prove estimates of
the form (1.2) if a dispersive estimate such as

sup S (+h™7 (1.3)

xeRd

[ e e el ae

holds, where y is a bump function with support away from zero and o > 0. More precisely, for o > 0,
we say that (g,r) € [2,00) X [2, ) is o--admissible if

In the case of equality

we say that (g, r) is sharp o-admissible, and in the case of strict inequality

1 1 1
oft-
we say that (g, r) is non-sharp o-admissible. It follows from work of Keel-Tao [48] that (1.2) holds for
frequency localized f whenever we have the dispersive estimate (1.3) and (g, r) is o-admissible.

We remark that pairs (g, o0) and (oo, r) are notincluded in our definition of admissible pairs. Estimates
of the form (1.2) are available for certain pairs of this type; indeed, such an estimate obviously holds
if H = L% and (q,r) = (00,2). The case r = oo, in particular, requires special attention. For example,
in the case of the wave equation ¢(&¢) = |£], it was shown by Fang—Wang [28] that (1.2) fails with
¥ = H? when (q,r,d) = (4,00,2), and it was shown in [59] and [36] that (1.2) fails with H = st
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when (g,r) = (2,), for d = 3 and d > 4, respectively. For the Schrodinger equation ¢(&) = |£%,
the situation is slightly different; (1.2) holds with H = L? when (g,r,d) = (4,00, 1) and fails with
I = HT when (q,r) = (2,00) for d > 2 (see [59] and [36]).

The fractional Schrodinger equation

First, we consider the case of the fractional Schrodinger equation ¢ (&) = |£]%, where @ # 0, 1:
idu = (=A)*"u,  u(0) = uo. (1.4)

If @ = 2, this corresponds to the well-known Schrédinger equation. The fractional Schrédinger equation
(1.4) with @ € (0,2) \ {1} appears in [51, 52] as a consequence of generalizing Feynman’s path
integral arising in Brownian motion to the one generated by Lévy motion, as well as in [44] as a
model of water waves. For further studies on the fractional Schrodinger equation, we refer the reader
to [24, 21, 38, 42, 47, 49]; and for the case @ = 4, to which special attention has been paid, see
[45, 46, 65, 66].

If a € R\ {0, 1}, for (g, r) that are %-admissible, the classical Strichartz estimate

it (=A)@/? d d
e fllgrg < I fllges s=$ -4 -2 (19

holds (see, for example, [25]). For s < —%, the space H* does not admit natural classes of dense
functions such as the Schwartz class, so we restrict our attention to the case where %’ + % < d. Note that

for the classical Schrodinger equation with @ = 2, we have s € [0, ) whenever (g, r) is %-admissible,

so the additional assumption % + % < d is automatically satisfied in this case.

The wave equation
It is well-known that the solution of the wave equation

Opu=Au, — (u(0),0;u(0)) = (uo, u1)

can be written as u = uy + u_, where u, and u_ are given by

us(x,t) = eﬂ’ﬂfi(x),

and f, and f_ satisfy (fi + fo,iV=-A(f+ — f-)) = (ug, u1). As a result, the Strichartz estimates for the

wave equation are usually given by those for the one-sided propagator e*'* V-2 For d > 2, it is known
that the estimate

R e e (1.0

holdsif (g, r)is %-admissible. By an elementary scaling argument, one may easily verify that (1.6) fails

for other values of 5. We also remark that if (g, r) is sharp %—admissible, then we have s = % (% - %)

In the case where (¢, r) is sharp %—admissible and g = r, the Strichartz estimate (1.6) becomes
1™ R F1 aasn < 1l (1.7)
L.x,t7

which basically corresponds to the Stein—Tomas adjoint restriction estimate for the cone.
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The Klein—-Gordon equation

In a similar manner to the wave equation, the solution of the Klein—-Gordon equation
Onu+u =Au, (u(0), 0,u(0)) = (uo, u1)

+itV1-

decomposes into a sum of waves given by the propagators e A and therefore the Strichartz estimates

usually take the form

™12 flia g < I f s (1.8)

itV1-A

The propagator e possesses properties of a mixed nature. With high frequency initial data, the

behavior resembles the wave propagator e’ \F whereas the mapping property of e’ V! VI-A s similar
to that of e’ in the low-frequency regime. Th1s is related to the fact that the surface (&, (£)) has
nonvanishing Gaussian curvature near the origin while the surface gets close to the cone (&, |£]) as
|€] — oo. In fact, if s = % - % - ;1 it is possible to deduce the estimate (1.6) from (1.8) via Littlewood—
Paley theory, scaling and a 11m1t1ng argument. Similarly, it is not difficult to obtain the Strichartz estimate
for e if (1.8) holds for sharp —-admissible (g,7).

For d > 2, it is known that (1 .8) holds if (g, r) is sharp %-admissible and

d+1(1 1

Testing (1.8) on a Knapp-type example reveals that this range of s cannot be enlarged. Also, for d > 1,
it is known that (1.8) holds if (g, r) is sharp %—admissible and

d+2(1 1
5§ > ; (E_?)’ (1.10)

which, again, may be shown to be the optimal range of s for such (g, r).

1.2. Strichartz estimates for orthonormal functions — known results

In this work, we are concerned with Strichartz estimates for orthonormal families of initial data (1.1).
As mentioned before, the key point is to make the exponent S as large as possible. Indeed, the case § = 1
is equivalent to the classical Strichartz estimates: clearly, (1.2) implies (1.1) via the triangle inequality,
and conversely, (1.1) trivially implies (1.2) by taking the family (f;); to consist of a single function f
with unit norm in J.

For the Schrodinger equation, contributions in [29, 30, 31] mean the sharp value of 8 has been
obtained whenever (g, r) is sharp %-admissible.

Theorem 1 [29, 30, 31]. Let d > 1, and suppose (q,r) is sharp —-admlSSLble
(1) If2<r< 2(d+1) , then

(A 12
Zvj|€” fil

J

g » Sviles (1.11)
L2 L}?

holds for all families of orthonormal functmns (fy)) in L? and B = 2. This estimate is sharp in
the sense that the estimate fails for > =~
(ii)) Ifd=2and 6 <r < oo, 0rifd = 3 and 2(d+1) <r< ﬂ , then (1.11) holds for all families of

orthonormal functions (f;); in L*and B < 4 Thls estzmate is sharp in the sense that the estimate

fails for B > 4.
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A remarkable phenomena here is that, for d > 3, the sharp value of g for the estimate (1.11) coincides
with one (i.e. the trivial case in light of the remarks prior to the above theorem) at the endpoints
of the sharp —-admlsmble line: that is, (¢,r) = (c0,2) and (gq,r) = (2, 2 y 2) which, respectively,
correspond to the trivial energy conservation estimate and the Keel-Tao endpoint estimate [48]. Also,
the sharp value of B reaches its maximum at the point (g,r) = (2(‘“1), 2(‘m)) In fact, as pomted
out in [31], the estimates in (i) follow from those in (i) by interpolation between (g, r) = (2, 2% 5 2
and points arbitrarily close to (g,r) = (2(d+l), 2(d“)) in this sense, (¢,7) = (2(d+l), 2(d“)) may be

considered as an endpoint case of the estimate (1.11). It remains open whether one can establish a
2(d+1) 2(d+1)

suitable estimate in weaker form with (g,r) = (=5, )! so that other sharp estimates can be
recovered from it by interpolation. See [5] for dlscusswn on fallure of such endpoint estimates in Lorentz
spaces.

We also note that the sharp value of 8 has been obtained for the Schrodinger equation whenever
(g, r) is non- sharp é-admissible see [5]. In this case, f; are assumed to be contained in H* with
s =95 -7 -2 See, for example, Theorem 4. As we shall see below, in general, the sharp admissible
case will play a crucial role in establishing the estimates in the non-sharp admissible case. Therefore, in
this introductory section, we only present our new results for the sharp admissible cases; the statements
for the non-sharp cases will appear in Section 5.

The work of Frank—Sabin [30] also contains results for estimates of the form (1.1) for the wave
equation and the Klein—Gordon equation; however, as we shall see below, these are not as advanced as
the results contained in Theorem | for the Schrédinger equation.

For the wave equation, Frank—Sabin [30] obtained a substantial generalization of (1.7) for orthonormal
functions of initial data in H'/2. By interpolation with a trivial estimate in the case (g, r) = (c0,2), we
state their result as follows.

Theorem 2 [30]. Let d > 2. Suppose (q,r) is sharp ﬂ-admissible and?2 <r < M Then for all
families of orthonormal functions (f;); in HS, with s = d” (— - —) and B =

holds:
Z Vj|eit\/1fj|2

J

- +2, the followzng estimate

g r Svles. (1.12)
L>L?

For the Klein—Gordon equation, Frank and Sabin [30] established the following.
Theorem 3 [30]. Let o > 0, and suppose (q, r) is sharp o--admissible.

(i) Ifo= % and2 <r < 2([7;1) Jfor all families of orthonormal functions (f;); in H®, s = d+1 (——— ,

the following estimate holds:

NT=A 4 12
Zvﬂe” fil

J

(1.13)

< vl = _r2
S WYlleB ,3 .
LI%LX% 6 ’ r

(ii) If o = % and2 <r < M , then (1 13) holds for all families of orthonormal functions (f;); in
H?, with s = %(% - 1) and,B = r+2

In both Theorems 2 and 3, the range of exponents only goes up to the diagonal case ¢ = r, and the
other estimates with g < r are not sharp with respect to the summability exponent . This is due to the
fact that their argument relies on a special property that is available only when g = r, and it is clear that
their argument does not extend beyond the diagonal case. More precisely, in [30] the authors followed the
original idea of Strichartz [74], and they regarded the evolution operators as adjoint restriction operators
given by a measure supported on the associated surface (the cone and hyperboloid, respectively, for the

'When d = 1, we have (g,r) = (4, ). We refer the reader to [6] for some recent results in such a case.
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wave and Klein—Gordon equations). For instance, let S denote the upward cone
S={(¢ 1) eR xR:7 =&}

Then ei’mf(x) can be written in the form @(x, t), wheredu(é,1) = 5<T||§ D and glé, 1) = |§|f(§).
With this notation, Strichartz [74] proved ‘

IIgdﬂlle%n < llgllz2s,au), (1.14)

'x,t

and from this, (1.7) trivially follows. The proof of (1.14) in [74] used an argument based on interpolation
involving an analytic family of operators of the form T, f = VG, = f, where G, is chosen suitably
depending on du. The key oscillatory integral estimates on the kernel of these operators relies on a
rather delicate identity for ¥G, whose validity seems tightly connected to the choice of measure du
above. Frank and Sabin’s clever observation was that the same basic ingredients could be used to derive
(1.12) in Theorem 2. For (g, r) beyond the diagonal case ¢ = r (where s = %), however, it is necessary
to handle data with higher regularity, and thus, roughly speaking, one would like to replace du above
with a more singular version of the form 5(‘;— I‘fl) (a > 1). This causes significant technical difficulty
in getting the appropriate kernel estimates; for example, no explicit identity seems available away from
the case a = 1.

Our main contribution to overcome the aforementioned difficulty is to find an appropriate measure
and establish corresponding weighted oscillatory integral estimates of so-called damped—type with
optimal decay rates (see Section 3 for further details). These oscillatory integral estimates then yield
kernel estimates for a suitable analytic family of operators. Our new idea is sufficiently robust to allow
us to significantly improve upon the above results for the wave and Klein—Gordon equations, as well as
the fractional Schrodinger equation. Below, we describe our main new results for the sharp admissible
case; we also obtain new results in the non-sharp admissible case, but for reasons we have already
mentioned, we postpone our presentation of these results to Section 5.

Remark 1. As an alternative approach to obtain the Strichartz estimate (1.1) for orthonormal data,
one might attempt to adapt the typical strategy for the single-function case based on Littlewood—Paley
theory. That is to say, first prove the estimate for data with localized frequency on dyadic annuli and
then put together the estimates for each dyadic piece. However, such an approach does not seem to be
effective in the case of orthonormal data. Indeed, in contrast with the classical Strichartz estimate, for
(1.1) there are cases where the frequency localized estimate cannot be upgraded to the frequency global
estimate; see [5] for more detail. In particular, our new approach to the estimate (1.1) for the fractional
Schrodinger (@ # 2), wave and Klein—Gordon equations provides a novel method of establishing the
classical Strichartz estimates (1.4), (1.6) and (1.8) that completely avoids the use of Littlewood—Paley
theory.

1.3. Main new results

As already mentioned above, our primary aim is to extend Theorems 2 and 3 to all cases where (¢, r)
is sharp %-admissible or sharp %’-admissible, as well as generalizing Theorem | to the fractional
Schrodinger equation.

We first present the result for the fractional Schrodinger equation, which essentially gives the sharp
value of S in all cases. As far as we are aware, except for the case @ = 2 in Theorem 1, there are no
estimates of the type (1.1) in the existing literature for the fractional Schrodinger equation. From (1.5),
we note that (f;); should be in H® with s = @(% - %) if (¢, r) is sharp %-admissible.

Theorem 4 (The fractional Schrodinger equation; sharp %-admissible). Leta e R\ {0,1} and d > 1.
Suppose (q,r) is sharp %-admissible with % + % <d.
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(i) If2<r< 2(dd+11) , for all families of orthonormal functions (f;); in H?,

it (—A al2 2
ZVHE”( il

J

S [vlles (1.15)

t

holds with s = d(z ) (— - —) and B = 12. This estimate is sharp in the sense that the estimate
fails for B > r+2

(ii) Ifd =2 and 6 < r < oo, or ifd.z 3 and % <r< d 2, then (1. 15) holds for all families of
orthonormal functions (f}); in H*, with s = @(% i), and B < 5. This estimate is sharp in
the sense that the estimate fails for B > %

We next give our result for the wave equation, which significantly improves Theorem 2 when g < r.
In this case, we note from (1.6) that it is necessary to consider orthonormal families (f;); in H*,

5= %(2 1) whenever (g, r) is sharp L _admissible.
Theorem 5 (The wave equation; sharp f— admissible). Let d > 2, and suppose (q,r) is shar; %-
admissible.

(i) If2 < 2d , then (1. 12) holds for all families of orthonormal functions (f;); in HS, with

d+] (_ _ _) andﬁ _ r+2
(ii) Ifd =3and 6 <r < oo, orifd > 4 and % <r< 2(51__31), then (1.12) holds for all families of
orthonormal functions (f;); in H, with s = %(% - %), and B < %. This estimate is sharp in the
sense that the estimate fails for § > %.

d

Our main result regarding the Klein—Gordon equation in the cases o = % and o = %‘ are described

in the following two theorems.

Theorem 6 (The Klein—Gordon equation; sharp —-admissible). Let d > 1, and suppose (q,r) is sharp
5 4_admissible.

() If2<r 2<d+1) , then (1 13) holds for all families of orthonormal functions (f;); m H?, with
d+2 (— - —) and B=: +2 This is sharp in the sense that the estimate fails if B > - +2
(ii) Ifd = 2 and 6 < r < oo, orifd > 3 and 22 <y < 24 then (1.13) holds for all families of
orthonormal functions (f;); in H®, with s > #(% - %), and B < %. This estimate is sharp in the
sense that the estimate fails for 8 > %.

Theorem 7 (The Klein—-Gordon equation; sharp %-admissible). Let d > 2, and suppose (q,r) is
sharp L admissible.

() If2<r< d 2, then (1. 1'5) holds for all families of orthonormal functions (f;); in H®, with
s > %(l——) and B = 2 -
(ii) Ifd =3 and 6 < r < oo, orifd > 4 and 75 Zd <r < 29D ypen (1.13) holds for all families of

“d-3
orthonormal functions (f;); in H®, with s > d+1 (— - —) and 8 < q . This estimate is sharp in the
sense that the estimate fails for 8 > q
It is also possible to unify the cases o = %x, % into the case o = % + p, where p € [0, %].

Indeed, Frank and Sabin [30] obtained a more general result than Theorem 3 corresponding to p € [0, %]
(d >2)and p € (0, %] (d = 1). For simplicity of the exposition, we only consider the cases p = 0, % in
Theorem 3, Theorem 6, and Theorem 7; we refer the reader forward to Section 4 for discussion of the
more general case, including a result for the sharp (%2 + p)-admissible case that completely includes
the result in [30].
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We shall prove two necessary conditions in Section 6 that justify the claims in the above theo-
rems regarding the sharpness of the range of 8. Left open is to show that the exponent S = %
in (i) of Theorems 5 and 7 is sharp. Our examples show that this exponent is sharp in the extreme
cases r = 2 and r = dz—fl2, and thus we expect that this is the sharp value for intermediate values

of r too.

1.4. Estimates for oscillatory integrals with weights

As we have already mentioned, the new idea in the proof of our main theorems is to make use of estimates
for oscillatory integrals with weights, or damping factors, which will be combined with an interpolation
argument based on a suitable analytic family of operators. See Proposition 7, where we formalize our
approach under the assumption that we already have the desired oscillatory integral estimate. In fact,
oscillatory integrals with weights naturally arise by absorbing to new operators the multiplier operators
|D|* and (D)* defining the Sobolev spaces. To obtain the appropriate dispersive estimates for these
operators, we need to show the optimal decay estimates for the associated oscillatory integrals with
weights. Interestingly, in some cases, such oscillatory integrals turn out to be oscillatory integrals with
damping factors [26, 49, 12].
In Section 3, we prove various estimates for oscillatory integrals of the form

°(w) = / e EHID) (&) w(£) dé, (1.16)
Rd

for a suitable choice of the cutoff function a and the weight function w, which we need to choose
properly according to our particular purposes. Indeed, it will be crucial for proving Theorems 4—7 that
our choice of a and w allows us to recover the optimal decay rate in ¢. Oscillatory integrals of the form
1?(w) are ubiquitous in analysis, and often the weight is chosen to be a power of the determinant of
the Hessian matrix of ¢, denoted by det H¢, which mitigates bad behavior near degeneracies. For the
purpose of our applications to Strichartz estimates for orthonormal families of data, we will choose
w(€) = €7 or (£)%, for certain z € C, which may not necessarily be the form of |det H¢|*. Since the
Hessian vanishes in the case of the wave equation, this case provides an example of the case where it
will be necessary to consider weights not belonging to the typical class of weights that are powers of the
Hessian. Our new results concerning such estimates are Propositions 3, 4, 5 and 6. We believe that these
weighted oscillatory estimates are of independent interest, and we provide further contextual remarks
in the beginning of Section 3.

We end this section with an overview of our paper. In Section 2, we introduce some notation and
key facts that will be used throughout the paper. This includes the duality principle from [30], which
rephrases Strichartz estimates for orthonormal families of initial data in terms of certain Schatten space
estimates. In Section 3, we state and prove the weighted oscillatory integral estimates that are key
to our proof of those Schatten space estimates corresponding to the main theorems in this paper. In
Section 4, we prove the sufficiency claims in Theorems 4, 5, 6 and 7 (sharp admissible cases), and in
Section 5, we prove analogous results in the non-sharp admissible case. The necessity claims in both
the sharp and non-sharp admissible cases all follow from the necessary conditions that we will establish
in Section 6. Finally, in Section 7, we present several applications of our new estimates to the theory
of infinite systems of Hartree type, weighted velocity averaging lemmas for kinetic transport equations,
and refined Strichartz estimates.

2. Notation and preliminaries

For A,B > 0,and p € R, by A 5, B we mean that A < C(1 + |p|)“B for some constants C,c > 0.
We often use the notation (x) = (1 + |x|2)%. Also, the Hessian matrix of ¢ : R? — C at ¢ is given by

Hp(&) = (0:0;¢() 1 <ij<d-
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2.1. Function spaces

The spaces H* (R4), H* (R), respectively, denote the homogeneous and inhomogeneous Sobolev spaces
based on L*(R¢), which are equipped with the norms

1A lgzs = NIDE fllezs 1 las = IKDY* £l 2

Here, ¢(D) will denote the Fourier multiplier operator given by

o(D)f (&) = p(£) F(£),

where the Fourier transform of a sufficiently nice function f : R¢ — C is given by

FFE) = [(&) = /IR fetEar,

Also, the inverse Fourier transform is defined by

FF00) = £ (x) = / F(E)e™ de.

@n)?

For p € [1,00) and r € [1, c0], we write LP>" (R¥) for the Lorentz space with norm

0 d 1/r
ier = { [y g

for r < o0, and

£ llLps = supt'/P £*(1).
t>0

For p € (1,00)and r € [1, o], the space LP-" is normable. Strictly speaking, ||-||.r.- is a true norm when
r < p and a quasi-norm otherwise; a true norm that is equivalent to || - ||Lr.- is obtained by replacing
f*(t) with % /Ot f*. For details on fundamental properties of Lorentz spaces, we refer the reader to [73].

Since LP-P = LP and LP-"' C LP2 if r; < rp, Lorentz spaces provide a natural setting to seek
refinements of certain classical inequalities for L functions. An example is the refined version of the
Hardy-Littlewood—Sobolev inequality for functions in Lorentz spaces:

81(t1)g2(12)

P deidea| < llgillLenllgallze, 2D
|-

where A € (0,1), p1, p2 € (1,0) sat1sfy oy tA= 2, and 1 1 > 1. This can be found in [63].
Finally, we introduce a convenient notatlon When handling mlxed-norm estimates. For (space-time)
functions F : R x R — C belonging to LY L"., we write
IFlg.r = 11Fllgag:-
In the case of Lorentz spaces, if F € LI"PL" or F € LT L", we write

”F”(q,p),r = ”F“L,q”’L;’ ”F”q,(r,p) = ”F”Lth;””

respectively.
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2.2. A duality principle
We shall make use of the duality principle originating in the work of Frank and Sabin [30, Lemma 3].”
In the following statement (and throughout the paper), given an exponent ¢ > 2, we write ¢ for the
exponent given by

7_(4a)

2 2]

or equivalently

For B € [1,0), G = CB(L?(R?)) denotes the Schatten space based on L?(R) that is the space of all

compact operators A on L*(R¢) such that Tr|A|# < co, where |A| = VA*A, and its norm is defined by
1

lAlles = (Tr|A|B)E. If B = co, we define ||Al|e~ = ||A]|;2_ /2. Also, the case § = 2 is special in the

sense that C? is the Hilbert—Schmidt class and the € norm is given by ||A||e> = ||Kll L2(RAxRd), Where

K 4 is the integral kernel of A. More details on the Schatten classes can be found in [70].

Proposition 1 (Duality principle). Suppose T is a bounded operator from L*(R?) to LEPL for some
q>2 p,r>2andfB > 1. Then

D viThl?
(q P

J

S Vlles
r

2°2/°2
holds for all families of orthonormal functions (f;); in L*(R?) and all sequences v € P if and only if

e 2
IWTT Wliew < IWIE; 5, =

holds for all W € LYPLT.
We shall apply the above duality principle in the case p = 27. That is to say, we will obtain estimates

ZVj|Tfj|2

J

2r
r+2

S vlles, B=
(£.8).%

from estimates of the form
IWTT Wller < IWIF; 5 -

2.3. Dyadic decomposition

Throughout the paper, x denotes a fixed function C;°(—1,1) that satisfies y = 1 on (—%, %), and we
define

xo=x(2") - x.
For j € Z, we write x; = x0(27/+) so that y; is a smooth cutoff function supported in (2/~1,2/+!). By

construction, we have
X=ZX,-, ZXj=X+ZXj=1~ 22)
Jj=0

Jj<-1 Jj=—

2Strictly speaking, Lemma 3 in [30] is stated in terms of pure Lebesgue space norms; as noted in [5], the extension to the
mixed-norm setting including Lorentz spaces follows with minimal modifications.
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2.4. Van der Corput’s lemma

The following proposition, often referred to as van der Corput’s lemma, will be useful throughout
Section 3 (see, for example, [72, p. 334]).

Proposition 2. Let k > 1 and p1, p2 € R with py < pa. Suppose 6 : [p1, p2] — R satisfies
169 (p)| > 1

forall p € [p1, p2]. Suppose also that a : [p1, p2] — Risdifferentiable and a’ is integrable on [p1, p2].
Then there exists a constant Cy, depending only on k, such that

P2
/ elue(p)a(p) dp

P1

P2
< ck(|a(p2>| . / Ia'(p)ldp)lﬂl’”k

P1

holds, when k > 2, or k = 1 and 6’ is monotonic.

3. Weighted oscillatory integral estimates

In this section, we establish various new weighted oscillatory integral estimates, by which we mean
decay estimates for oscillatory integrals of the form I? (w) defined by (1.16). These estimates are related
to the dispersive estimates for the associated propagators. If a has compact support, ¢ is smooth on the
support a, and ¢ is not degenerate—that is to say, det Hp # O—then the stationary phase method gives

114 (1)) < J1°%.

This decay estimate is in general best possible under such a non-degeneracy assumption. However, if
det H¢ vanishes, only weaker decay estimates are possible. There have been attempts to recover optimal
decay 0(|t|_%) by introducing a suitable damping weight. A typical weight involves powers of the
determinant of the Hessian matrix of ¢. In view of the asymptotic expansion of the oscillatory integral
with non-degenerate phase (for example, see [43, (7.7.12), p. 220] and [72, p. 360-361]), it is natural to
use the damping factor w(&) = |detH¢(£)|'/? to recover the best possible decay 0(|t|‘%).

This type of estimate for I? (|detH¢|”) has been studied by various authors. Early results of this kind
go back as far as work of Sogge and Stein [71]. In work of Cowling et al. [26], the damped oscillatory
integral estimates were studied with finite-type convex ¢, but the weight was assumed to have sufficient
smoothness and weights with complex exponent y were not considered. Establishing estimates of the
form

|19 (JdetH$|"/2+%)] <, [1]7%

turned out to be a delicate problem, even without . Until now, only results for special classes of ¢ are
known. Kenig, Ponce and Vega [49] obtained such an estimate with elliptic polynomial ¢. In the radial
case ¢(&) = ¢o(|€]), estimates were obtained by Carbery—Ziesler [12] under the assumption that ¢ and
¢(, are convex.

Below, we present our weighted oscillatory integral estimates corresponding to the wave equation,
the Klein—Gordon equation and the fractional Schrodinger equation, which we need for proof of the
orthonormal Strichartz estimates. In the case of the wave and Klein—Gordon equations, our results are
completely new. For the case of the fractional Schrédinger equation, our estimates are new in the case
a < 2 and overlap with work of Kenig, Ponce and Vega [49] when @ > 2. See also the remark at the end
of this section for further discussion about this point. Compared with the previous work, our argument
here is significantly simpler. This is mainly due to our efficient use of the bounds that are obtained by
making use of the first order derivatives of the phase functions.

https://doi.org/10.1017/fms.2020.64 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.64

Forum of Mathematics, Sigma 13

3.1. The wave equation

For each k € R and (x,1) € R x R, we define the oscillatory integral
We(x, 1) = / ! CoETIED | 7Ty (1g]) de.
Proposition 3. There exist constants C < oo and N > 0 such that
KW, (x,0)] < C(1+ k)N o] 7T 3.1)

orall k € Rand (x,1) € RE xR,
Je

To place this estimate in some context, recall the standard dispersive estimate

' / FOEIED v (le)) de

< min {1, |t|_d5] }

related to the wave equation and the rate of decay % is best possible. By scaling, it easily follows

that |/ el E+1ED Y0 (277 |¢]) dé| < min{297, 2% 7 |¢|=F} for each j € Z. Thus, for any A < %, a
standard dyadic decomposition yields

‘/ei(x-ff#l-fl) |§|i"” d{,—“s Z 2 4 17T Z 2=FJ < |72

27 <t ]! 27 >|t|"!

So, the estimate (3.1) may be regarded as the endpoint case of the above family of estimates. However, it
appears to be difficult to establish Theorem 5 using these weighted estimates, and they seem to be useful
only for the sub-optimal decay rate. The additional oscillation introduced by the factor |£|'¢ allows us to
recover the optimal decay rate %, and this is crucial for the approach taken in this paper. We remark
that the extra « factor in the left-hand side of (3.1) is also important, and it is not difficult to show that the
estimate is not true without this factor (this becomes clear in the proofs of Lemma | and Proposition 3
below).
As preparation for the proof of Proposition 3, we establish the following elementary estimate.

Lemma 1. There exists a constant C < oo, independent of k, € and R, such that we have

R
K/ eitApp—IHK dp
&

In fact, what we shall need in the proof of Proposition 3 is the following estimate:

< C(1+ &%

R
« /0 U(p)e 4074 dol < C(1+ kD> (1 + 1 ). (32)

where the constant C < oo is the same as in Lemma 1 (and hence independent of R > 0, « e R, A > 0
and y € C2°(0, c0)). We note that (3.2) follows immediately from Lemma 1. Indeed, if we set

F(V) — K/ etiApp—1+iK dp,
&
where € > 0 is a sufficiently small number so that ¢ (¢) = 0, then, by integration by parts, we get

R R
K/o w(p)e* M p i dp /Ow’(p)F(p)dp‘,

< W (R)F(R)[+

and thus (3.2) clearly follows from Lemma 1.
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—1+ik

Proof (Proof of Lemma 1). Since %pi" =ikp

R .
K/ p—1+lk dp
&

which gives the desired estimate when A = 0.
Next, note that the case A # 0 follows from the case A = 1 by rescaling p — p/A, and thus it is

sufficient to show that
R
K/ eiipp—l+i:< dp
E

holds with C independent of R, & > 0. We initially assume & < 1 < R and split the integral

R 1 R
K/ e*Pp Itk dp = K(/ +/ )eﬂpp_mk dp:=1+1I.
& € 1

By integration by parts, it is easy to see |[/I| < (1 + |«|)?. For I, if we write

, we obviously have

<2,

< C(1+]«|)?

1 1
I=K/ (eiip_l)pflﬂkdp_i_K/‘ pfl+il<dp’

then it is clear that |I| < C(1 + |«]|), thus completing the argument whene < 1 < R. Ife < R < 1, we
only need the argument for I; and if 1 < &€ < R, the argument for I is enough. O

Proof (Proof of Proposition 3). The trivial estimate

d+l

W, (x0)] < [« / €15 x(1€]) dé < I«

means that we may reduce to the case where |¢t| > 1. Furthermore, in the case |f| > 1, we argue that it
suffices to consider the case where

27| < Ix] < 201). (3.3)

To see this, suppose either |x| > 2|¢| or 2|x| < |¢|. Using the dyadic decomposition (2.2) and rescaling,
we get

—j (45 vik iD; -l ik
Wenin) = Y 27005000 [ i @g s g e,

j=1
where

(&) =27x - £+2771)¢).

In the case |x| > 2|, we have |V®;(£)| 2 27/|x| on the support of xo(| - |), and it follows by repeated
integration by parts that

S min(1, (27 [x)~")

' / o105 (&) |§:|‘dT+l+i'< xo(|€]) d&

for any M > 0. From this, it follows that

Sd-1 . - d-1 d-1
Wee, Dl g D 27T @™+ Y 27T < kT,
j=1 j=1
27 <|x| 2/ >|x|

https://doi.org/10.1017/fms.2020.64 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.64

Forum of Mathematics, Sigma 15

if we choose M sufficiently large, and hence
WeCx,0)] < 1177

holds in the case |x| > 2|¢|. It is easy to see the same estimate holds in the case 2|x| < [¢| by a similar

argument. Since
‘/ iD; ($)|§|——+1K

forany M > 0 if 2|x| < |z|, repeating the argument for the case |x| > 2|¢| yields the desired estimate.
For the remainder of the proof, we assume that (3.3) holds. Since we have

' / P&+t €]) |§|—d2+‘ +iK

it suffices to consider

S min(1, 277 [e) ™)

/ e (re) de < 115

Wi (x,1) :=/ei(x'f”'f')lfl‘ﬁ“'“(l x ([t€1) x (1€1) dé.

To estimate this oscillatory integral, we use spherical coordinates to write
Wi (x, 1) = / der(px) €"2p T (1 = x(Itlp))x (p) dp,

where do is the surface measure on the sphere {x : |x| = 1}. Since ac\r(x) = Cdlxl‘%.l% (]x|), using
an asymptotic expansion for the Bessel function, we get

dor(x) = Colx|" % ﬂ"MZc LT e e (k) x> 1, (34
j=1

_k_N+d

where (%)kE(r) = O(r ). For more details regarding this, see [72, p. 338] and also [72,
Proposition 3, p. 334]. Since we are assuming |x| ~ |f| = 1, for the contribution from the leading term
in this expansion, it is enough to show that

« / HE=1DR 14 (1 (1)) i) dp| < C(1+ [k])2.

However, this immediately follows from (3.2) since ||((1 — x(|¢t]-))x)’|l1 $ 1 uniformly in z. The other
terms can be handled similarly but in an easier manner, so we omit the details. O

3.2. The Klein—Gordon equation

In this subsection, we prove the weighted oscillatory integral estimates that are needed for the proof
of Theorems 6 and 7. The associated surface (&, (£)) to the Klein—-Gordon equation has nonvanishing
Gaussian curvature everywhere, but its Gaussian curvature asymptotically vanishes at infinity. This gives
rise to significant complication in the argument for obtaining the sharp decay rate in the oscillatory
integral estimates.

For each x € R, ¢ > 0 and (x,¢) € RY x R, we define the oscillatory integrals J, r(x,f) and

j{k,s(x’ t) by
i, e(x,1) :/ i(x E+t<§>)$(8€:)(1+|§|2)———1K de
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and

Keolxit) = [ €Ny (o) (14165 e

Here, ¢ € C°(—1,1). We insert ¢ (&l€|) to guarantee the existence of the integral. However, the
presence of the additional factor ¥ (£|£]) does not have any significance, and the overall argument below
works as if there were no such factor. It is easy to see by integration by parts that, for # # 0, the limits
limg0 di, e (x, 1) and lim g0 Ky o (x, 1) exist.

The following , respectively, give the optimal wave-like and Schrodinger-like dispersive estimates
for the Klein-Gordon equation.

Proposition 4. There exist constants C < oo and N > 0 such that
_d-1
|kdx.o(x.0)] < C(L+ kDN Jr 72 3.3)

orallk e R, € > 0and (x,t eRY xR
Je

Proposition 5. There exist constants C < oo and N > 0 such that
Ny, -4
Ko (x, )] < C(1+|k|)™ ]2 (3.6)

forallk € R, & > 0and (x,t) eRYxR.

Before starting the proof, we recall the following (see [39, Appendix]), which is an easy consequence
of the stationary phase method.

Lemma 2. Let y be a smooth function supported in {& : 27! < |£| < 2}. For 0 < p < 1, let us set

lp = / ! ENIHED () d.

Then we have the estimate |I,| < m1n(|t| ,p 1|t|‘7)

For convenience of the reader we briefly explain how to show this. Via a finite decomposition and
rotation, we may assume the cutoff function y is supported in a small conic neighborhood of e; such
that &; € [272,22]. Thus we may write

‘/p2+|§|2=§d(1 P ;lflz)z—f + = (fd |§f)+ error,

where £ = (&, £4). To get the estimate |1, < |t| We may simply ignore &, and apply the stationary
phase method in €. For the estimate lI,| < p '|t| 2, note that one of the eigenvalues of the Hessian
matrix of y/p2 + |€|? is ~ p? while the other d — 1 eigenvalues are ~ 1.

Proof (Proof of Proposition 4). As before, we break the integral dyadically. Using (2.2), we write

Gt S, = / i(x-£41(6) w<e|§|>)(§+|lf|> i
,-Zo ' (1+ [&]2) %5 +ix

N Y (el x, (€D
+ i (s+t<§>>—1d+1d
e (1+ Jg) “Fin
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In what follows, we assume 2/ < 2/e even if it is not explicitly mentioned. Clearly, |Jo| <«
min(1, |¢]~4/?) since det H{-) # 0 on the support of y(| - |). Thus, it is sufficient to show that

d-1
|ZKJj| < 75 3.7
Jj=0
After rescaling, we see that
J] — 2(d—%—2ki)j / ei(zjx-f+2jt\/m)/’v"j(lgl) dg’ (38)

where ¥ is a smooth function supported in [1/2,2] that satisfies || ¥;llcv < (1 +|«|)V for any N. As
before, we may also assume that

27N < |x| < 201

Otherwise, |V (2/x - & +2714/2727 + |€[?)| 2 2/ max(|x|, |¢]). By integration by parts we see that, for
any M,

@)™ if x| > 2],

d-1 -
J: < 277 J .
il =« {(21|;|)M if |¢] > 2|x].

This gives | 320J;] S 220277 /)™ <, 1|7
To show (3.7), we now consider the following cases separately:
A:lt]=1, B:|t] < 1.
From Lemma 2, we have

Jj] < 2T min(2 T )e|7%, (27T, ). (3.9)

Case A

Since |t| = 1, from (3.9), we observe that

1. d d-1
Do Wilse DL 2T s T

20<27 <t 20<2i <t
Let us set
Xori= > x() (3.10)
lt]<2/
and set

Iy =« / T EHEN (1 4 gy~ K (1D (el€]) dé.

Then to show (3.7), we are reduced to showing that

d-1

s/l S 77

As before, since |x| ~ |¢t| > 1, using polar coordinates, we may apply the asymptotic expansion (3.4).
Taking into account the main contribution from the leading terms in (3.4), it is sufficient to consider

Ld i(+ —dH i 4L
x|'5 / FEPTON (1 4 )=k, 5 (o) (ep) dp.
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The other terms can be handled similarly, but they are easier. Since we are assuming |x| ~ |¢|, the matter
reduces to showing

‘ / IO (1 4 1) T T () (ep) dp| <4 1. (3.11)

Since |¢| > 1, from the mean value theorem we note that

® —dHl —dHl g da-1
/0 (1 4+ p2)~ 4% (D)% o ()T dp 54 1.

Let us set

J=« / e/l D o1y () (2p) dp.

Then (3.11) follows if we show that
1] <« 1.

Changing variables, we have
J= K|t|_iK/ e/ Illon NI 57110y () (£lt]p) dp.
Now let us set

Far(r) = kli] /0 ¢4 o1 (p)us(eli]p) dp, (3.12)

G(I’) — eit(Vl+12r27|t|r)X>272(r)'

Since y>1X-2-2 = ¥>1, We note that

d
9= / ap 1.1 (P)G (p) dp = —/ Flejxlx), 101 (0) G (p) dp.

Since || (x>1¥ (|tle-))’|li < 1°,by (3.2), we have |Fa ;(r)| <, 1. Thus, itis sufficient to check ||G”||; < 1.
This follows from

—it|t|

G’(r) — eit(\/1+t2r2—|t|r)
V1+2r2(|t)r + V1 +£2r2)

X>2-2(r) + x5 (1)

and the fact that y , , is supported in [-1, 1].

Case B

In this case, we have |f| < 1. To begin with, from (3.9), we note that

‘We set
[(x- —@—ik
i = / AEE) (1 4 122)E iy (1D (slé]) de,

3Recall that Xx., is supported in [—1, 1] because 1 — x = x>.
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where y.,-1 is given by (3.10). From the above observation, for (3.7), it is sufficient to show that
_d-t
|J>t*1| Seltl™ 2.
Similar to before, since |x| ~ |t], |¢]|£] ~ |x||¢] = 1 on the support of x,-1(-). Thus, we may apply

(3.4) after using polar coordinates. Considering the main contribution from the leading terms in (3.4),
we need only to handle

4 i(+ —dH i 4L
x| 2 /e( oAt o) (14 p2) =5 p T o 1 (p)0 (8p) dp.

Thus the desired estimate (3.7) follows from

‘ / I (1 4 p2)= ik Ty () (ep) dp| i 1.
Let us set
J= T/ e/ It N p=1Ziy (P (ep) dp.
Proceeding along the lines of the case A, we are further reduced to showing that
131 < 1. (3.13)

Changing variables p — p/|t|, we see that
_ ) o lxl X
3=l [ e NED o (phuep ) dp.

Let us set
H(r) = e 00y o ().
Then
3=/Fsgm%,|r|4 (p)H(p) dp:—‘/Fngt%’ltl,l(p)H (p) dp,

where Fa . is given by (3.12). Since |[(x>1¢(/[t]))'lli < 1, by (3.2) |F4 s~ (r)| S« 1. Finally, we
note that

X>2-2(r) +x,(r)].
g V2 +r2(r+ VN2 +12) 2

: 2
H'(r) — eisgnt(Vt2+r2—r) ( —1sgntt

Since we are assuming |7| < 1, it follows that ||H’||; < 1. Therefore we get (3.13). This completes the
proof of Proposition 4. o

Proof (Proof of Proposition 5). Compared with the proof of Proposition 4, that of Proposition 5 is much
more involved since we show the damped oscillatory integral estimate to recover the best possible decay.
We provide the proof by dividing it into several steps.

Step 1: Reduction to the case |t| 2 1 and |x| ~ |t|.

As before, we begin with a dyadic decomposition of the integral. Using (2.2), we have

Kk, & =Ko+ ) K,
j=0
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where

d+2

Ko (x, 1) ::/ﬂ»fﬂ(f))Md&
(1+[¢f) P

d+2 ’ =

ij(x,t) = / ei(x~§+t<§>) XJ(|E|)$(‘9|§|) d i 0.
(1+]g2) e

From the stationary phase method, it follows that |K, (x, t)| <, min( |t|_%, 1). Thus, to show (3.6), it is
enough to show

‘Z:Kj(x, t)‘ < 1% (3.14)

j=0
After rescaling, we see that
K (x.1) = 2 (452 -2iK) j / ei(Z-fx~§+2-ft\/2-2.f+|§\2)/’\/'j(|§|) dé,

where ) is a smooth function supported in [1/2, 2] that satisfies || x;llcy < (1+ [k|)N for any N. Thus,
from Lemma 2, we have the following estimate for j > 1:

16, 1) S 2T min(27 T )75, (7)), D). (3.15)

With the estimate (3.15), we justify that it suffices to prove (3.14) in the case where
lf]>1 and 27| < |x| <21 (3.16)

Indeed, in the case |7| < 1, from (3.15), we have

1 d-1 d-1 d
| 225 n] se Y2 s 107 <ot

izl izl

Now we assume |7| > 1 and |x| > 2|¢, in which case we have |V (2/x - € +2/14/272 + |£]2]| 2 27|x| on
the support of (] - |) and thus

1,6, )] 6 279 (2 )x)™ < 27T 27|y,

which follows by repeated integration by parts. Applying this with M > %, we obtain

|Zij(X, l)| <« Zz%j(zj“D—M <™ < |t|_%,

izl izl

By similar arguments, we may handle the case |¢| > 1and |¢| > 2|x| where |V ¢ (2/x-£+271/272 + |¢]2] 2
27|t|. We omit the details.

Step 2: Reduction to a one-dimensional oscillatory integral.
For the remainder of the proof of Proposition 3, we assume that x and 7 satisfy (3.16). Since 3. ;50 x; (") =
1 — x, to show (3.14), it is sufficient to show that

~ No_d

1K (x, )] < C(1+ &)™ |72, (3.17)

where
ylelghds
(1 +[¢]2) “F+ix

Rixt) = / FETE) (1 (le]))
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By changing to spherical coordinates, we write this expression as

9~<(x,t) :/@-(px)eit@(l — x(p))pd! 'P(EP)SP

42 .. "
Y +iKk

Since p 2 1 on the support of the integrand and |x| > 1, we may use the asymptotic expansion (3.4). In
fact, as before, it is sufficient to consider the contributions from the leading terms, which take the form

'3 [ e (o) ap,
where
d-1 DN A2 i _3
a(p) =C:(1=x(P)p T ¢Y(ep)(1+p°)" ™ =0(p2)

for some constant C... We note that a satisfies, for £ > 0,

¢
d
(&) =
Since we are considering the case |x| ~ |¢| > 1, to show the desired estimate (3.17), we are reduced to
showing that

< Co(1+k|)Nep=31, (3.18)

‘/ammwwwmpsca+me%,|n~mz1 (3.19)

for some N. If r and ¢ have the same sign, then |% (rp +1t{p))| = |t| holds, and therefore (3.19) follows
easily by integration by parts. Thus it is enough to consider (3.19) for the case » < 0 and ¢ > 0, and the
case r > 0 and r < 0. We provide the details of (3.19) when r < 0 and ¢ > O since the case r > 0 and
t < 0 will follow by essentially the same argument.

Forr,t 2 1, we set Y<;(p) = X1<2i< Xj(+) and set

Rmn=/?*””@7ammmmﬂ
Rj(m)=/ei(‘”’”“’”}(/(;O)a(p) dp.

From (2.2), we have

/ PN a(p)dp = K(r,0) + Y| K;(r,1).

2/ >t

la(p)|dp < 277/2. Hence

From (3.18), we have trivial estimates |R(r, )| < /p oy

1
DKl s 2,
2J 2t

Therefore, to show (3.19) for the case r < 0 and ¢ > 0, we need only to show that
IR0 < CA+ DV, r~t2 1. (3.20)

This will be taken up in Steps 3 and 4 below, corresponding to the cases ¢ < r and ¢ > r. The first case
is easier since the phase function —rp +1{p) does not have a stationary point. However, in the latter case
the phase may have a stationary point, so we make use of additional dyadic decomposition away from
the stationary point.
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Step 3: Proof of (3.20) whent < r.

From (2.2), we note that

K= > K1), (3.21)
1<2i<t
Note that, for p ~ 2/, we have |d —rp+t{p))| = t(1 - <p>) 557 and from (3.18), it follows that
d _3; _3;
|55 000, 527, HX]-(-)an se2 ¥, (3:22)
Thus, by Proposition 2, we have
2712
IR (r, 0] <« — (3.23)
From this, (3.20) immediately follows.
Step 4: Proof of (3.20) when t > r.
We set
3 r

which is the stationary point of the phase function —rp + {p), and note that p, > 1/V3 since 2r > 1.
Also, we may write

P ds
—( rp+t(p>) —r+ﬂ [‘/p* m (3.24)

Now we distinguish the cases:
() pe >2°t and (i) ps € (271, 2%).

Case (i). This case is easier to handle since the stationary point p. does not appear in the region of
integration. We estimate each of &; in (3.21). For each & ;, we may clearly assume p < 21. If p ~ 2/

and p < 2t, then
P+ ds t :
~l/ —32—2“'272][.
p S P

Therefore, by Proposition 2 and (3.22), we again obtain (3.23), from which (3.20) follows.
Case (ii). The remainder of Step 4 is devoted to proof of (3.20) for Case (i7), and here we split

d
‘E(—rp +1(p))

K1) = / ST T (p)alp) dp + /0 SO T (p)a(p) dp
P

and make decomposition away from the stationary point p,. For the integral over (p., o), we make use
of a dyadic decomposition to write

[ ez patrao= Y 85 Y S5

P 27 2p. 2/ <p,
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where

80 = [ PO (apbxs o - o) dp.
P

We first consider the former sum 5/, Rj.’*, which is easier to handle. If 2/ > p, and p — p, ~ 2/,
from (3.24), it follows that

Pds 12/ .
Zt/ —2—221‘2_2/.
P

d
—(- t
‘dp( rp +1{p)) 72

Since p ~ 2/ on the support of integrand, from (3.18), it is easy to see that || y<; @ x; (- = p«) [l < 273712
and || %()?q ayi(-=p)Ilh S« 2737/2_ Thus, by Proposition 2, we have

I8 (r,0)l s 2P

Therefore

DRl s (3.25)

27 >p.

Here we also use 2/ <  (otherwise the integral is zero).
Now we consider the second sum 35, Rf*. Since 2/ < p, and p — p. ~ 2/, using (3.24), we have

d 27 12
= (rprip))| ~ 5 2
‘dp pp? Pl

We also note that p ~ p.. on the support of integrand. From (3.18), it follows that
_ d _
— 3/2 ~ 3/2
e =poll < 002 || (araxs =) et (326)
3.
Hence, Proposition 2 and the trivial estimate |RJ’7* (r,0)] < p. 22/ yield
NP R
|R7" (r,0)] S« min(p2 277177, p.727).

. 3 ) 3
Therefore, by splitting the summation further into the cases 2/ > p? 2 and 2/ < o2 £~7, we obtain

DUIKE ()] s 17

27 <p,

Thus, combining this with (3.25), we get

_1
Skl 2.

/ SO T (p)alp) dp
Pu

To complete the proof, it remains to show

pe
/ PO T (p)a(p) dp| s, 172 (3.27)
0
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Letset xp, (0) = 1 = 2nj o2, Xj(p+ — p). As before, we break the integral

P irprton
[ e oz atordo= Y, R0+ Kep )
0 2/ <272p,

where

Px _
Rp*,j(r»t):'é RO Y (pa(p)x;(p - ps) dp,

" girpr o) & =
Rep (1) = /0 FTPHOD T (p)a(p)To. () dp.

For 2/ < 272p,, p € [27!p., p.] whenever p is contained in the support of the integrand of the
integral 8, ;(r, ). Thus the sum X5 .»-2, Ky, j(r, 1) can be handled as it was for X»j ., R';.’*, Indeed,

t2J 127

note that Idip(—rp +t{p))| ~ P > o and we also have (3.26). Thus, similarly to before, by

3 3.
Proposition 2 and the trivial estimate, it follows that |}, ; (7, )| <. min(p; 27/ 1=, p. ?27). This gives

DU R (D] S le72

2/ <272p,
Thus, to show (3.27), it remains to show that
Rep. (r D] S 172 (3.28)
We make a dyadic decomposition away from the origin. Let us set
Ae = X< (p)a(p)xp.(P)xe(p).
We may write

pe
KReop ()= ) T E) A4 (p) dp. (3.29)

152¢5p. 0

We note that Y<; Xp. X (0.p,) is supported in the interval [27!, (1-27%)p,]. Since p ~ 2! and p. — p ~ p.
on the support of A, by (3.24), we have
/P* ds ¢ t
2 =~ 5~ _7
b 53 p2 22t

provided p is contained in the support of A,. Also from (3.18), it follows that ||A¢|le S 27
I %Ag Il < 273¢/2. By making use of Proposition 2, we get

d
’@(—rp +1{p))

3¢/2 and

<2301,

Px
/0 e TP 4 (p) dp

Since 2¢ < p. < t, by this and (3.29), we now obtain (3.28). This completes our proof of Step 4 and
thus Proposition 5. O

Remark 2. The estimates (3.5) and (3.6) continue to be valid with higher order of damping. Such
estimates can be shown without difficulty by following the argument in the proofs of Proposition 4 and
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Proposition 5, so we state the estimates without proof. For y > 0, there exist constants C < oo and
N > 0 such that

| / e EEN Y () (1416 F 7% dg| < L+ )V, (3.30)

| [ efrenieny ey 1+ ey v ae] < 1w ) (3:31)
forallk € R, & > 0and (x,7) € R xR.

3.3. The fractional Schrodinger equation

We now provide the damped oscillatory integral estimates that are key to the proof of Theorem 4. For
our purpose we only need to consider the oscillatory integrals with phases of the form x - & + ¢|£|?, but
our method here admits extension of |£|¢ to more general symbols ¢ that are basically perturbations
of a homogeneous function. To this end, we first introduce the notion of an almost homogeneous phase
that is inspired by the condition introduced by Kenig—Ponce—Vega [49, Lemma 3.4].

Definition 1. Let @ € R\ {0,1}. We say ¢ € R(a, B,A,d,, d>) if y € CH?(R? \ {0}) and there are
positive constants d1, d», A and B such that, for all &£ € R? \ {0},

di|£]%7" < |Vp(&)] < da€]*7, (3.32)
107¢(£)] < Ble|“ M, |yl <d+2, (3.33)
A1€1972 < W HP(E)v], Wy e s (3.34)

We also say ¢ is almost homogeneous of order « if ¢ € R(a, B, A,d1, d,) for some positive constants
dl, dz,/l and B.

Kenig—Ponce—Vega [49] considered phase functions ¢ satisfying (3.32), (3.33) and
A1) < |detH g (£)] < o€ (3.35)

for some A1, A, instead of (3.34). It is easy to see that (3.33) and (3.34) imply (3.35). Indeed, (3.33)
implies that all the absolute values of the eigenvalues of detH¢ (&) are at most d>B|£|%~2, and from
(3.34), we see the absolute values of all eigenvalues of detH¢ (&) are at least 1|&| 2. Thus we get (3.35)
with 15 = (d’B)¢ and A; = 19. The converse is also not difficult to see. For this we use the following
simple observation, which is also useful in what follows. This can be shown by direct computation, so
we omit the proof.

Lemma 3. Let @ € R\ {0, 1} and p > 0. Set

¢y (€) = p~ " (pé).

Then if ¢ satisfies (3.32), so does ¢;. The same is true with the conditions (3.33), (3.34), (3.35). That
is to say, for any p > 0, ¢ € R(a, B, A, d1,d2) if and only if ¢5 € R(@, B, A,d}, d2).

Proof of implication from (3.35) to (3.34).

Now we show (3.35) implies (3.34) under the condition (3.33). Let & € R4\ {0} and suppose |£| € (4, 21]
for some A > 0, then the conditions (3.33), (3.34) and (3.35) are invariant under ¢ — ¢¢ by Lemma 3.
Thus it is enough to show that, for |£| € (1,2], the conditions (3.33) and (3.35) imply (3.34). By
the condition (3.33), we see the eigenvalues uy, yz, . .., ug of the matrix Hp(¢) satisfy |u;| < b :=
d’Bmax (2972, 1) fori = 1,...,d. Since 1tz - - - ptg = det Hp(€) and A; min(2972, 1) < | det Hp(&)|,
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it follows that
b2 min(2°7%,1) < |l

Since miny; < VH¢(&)v < maxpy; for v € S9!, we see that (3.34) holds with 1 =
b4 2; min(2972, 1)(max (2272, 1))~!. This completes the proof of the implication. O

For a given ¢ that is almost homogeneous of order @ € R \ {0, 1}, the definition of the relevant
oscillatory integral depends on the sign of @. If @ > 0, for each x € R and (x,7) € R? x R, we define
the oscillatory integral

S = [ e dentto o) .
R
If @ <0, for each k € R and (x,1) € R4 x R, we define the oscillatory integral

T () = /R oV EHIED yo (6718 detH (€)1 d,

where yo := 1 — y. Note that the cutoff function y has compact support, and y. is supported away
from the origin. Observe also that

|detHg(£)['/? ~ |¢]T4 (3.36)

fora # 0, 1. Thus, J ﬁ::, J ﬁ”,: are well defined for the cases @ > 0, @ < 0, respectively.
Our main oscillatory integral estimate is as follows.

Proposition 6. Let @ € R\ {0, 1} and ¢ be almost homogeneous of order a. Then there exist C < oo
and N > 0 such that

1927 (x, 0] < C(1+ (k)N 2|42, +a > 0, (3.37)

foralle >0, k € Rand (x,1) € R X R.

Remark 3. As is to be clearly seen from the proof, for the estimate (3.37) with + it is enough to have
the conditions (3.32), (3.33) and (3.34) for |£| < 2&~!. Similarly, for (3.37) with —, we only need to
consider |£| > 2e&. Also, we remark that Proposition 6 has been already proved by Kenig, Ponce and
Vega [49, Lemma 3.4] when a > 2.

The proof of Proposition 6 relies heavily on stability of the oscillatory integral estimates that
are obtained by the stationary phase method. For example, see [43, p. 220, Theorem 7.7.5] and [1,
Theorem 1].

Lemma 4. Let « € R\ {0, 1}. Suppose ¢ € R(a, B, A,dy, d>) for some positive constants A, d, dy and
W is a smooth function supported in the set {¢€ : 271 < |£| < 2}. Then there exists a constant C < oo
depending only on A, B, dy, d, such that

'/Rd eI EHPE g (£) de| < Cll || can 172 (3.38)

This may be seen as a simple consequence of [1, Theorem 1]. Since (3.34) gives uniform lower
bounds for the eigenvalues of the Hessian matrix, the lemma also can be proved by making use of the
standard argument that relies on the Morse Lemma.

Proof. Since y is supported in the set {¢ : 27! < |£] < 2}, from (3.32), it is easy to see that there are
c1,c¢2, b1, and by > 0, depending only on dy, d>, such that [V (x - & +t¢(&))| > c1lt| if [¢] > by|x| and
[Ve(x - &+1p(€))| = calx| if x| > by|t|. Thus, in either case, by integration by parts, we get (3.38)
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with C depending only on ¢y, ¢ and B. Thus we may assume b, x| < |t| £ by|x|. We may rewrite the
estimate as

'/ P&y, (£) dg| < Cle|7?
R4

with @ (&) = t7'x - &€ + ¢(£). We note that ®,; is uniformly bounded in C9*? and |det(H®, ;)|
has a nonzero uniform lower bound. Once we have ensured these conditions, then we may employ the
stationary phase method for the oscillatory integral (see [1, Theorem 1]* or, alternatively, Theorem 7.7.5
in [43], and Theorem 3 and Example 4 in [1], for more explicit statements), to have the desired uniform
bound. O

Proof (Proof of Proposition 6). First of all, we observe that it suffices to show the estimate when
= 1. Let ¢ € R(a,B,A,d;,d,) for some positive constants «, B, A, d;, d,. Since detH(ﬁg(f) =
p?2= det Hp(pé) for any p > 0, after rescaling &€ — £*'¢, we have

ad | : 0+ —
90 (x,1) = &* —Tﬂd(z—amjl O )

By Lemma 3, ¢, € R(a, B, A,d1, d>). Thus, the desired estimate follows if we show

x]
90 G 0] S 117472, (3.39)

whenever ¢ € R(a, B,A,d;,d>). Since |J¢ i| < 1 by (3.36), we may assume |¢t| > 1; otherwise the
estimate is trivial. To show (3.39), we need to consider two cases, @ > 0 and @ < 0, separately.

The case a > 0: estimate for J‘f:

We use the dyadic decomposition y = Z‘]’.';l x0(27) (recall (2.2)). By changing variables, we write

=3 1= G / !XT E 0 ) detH g ; (£)]VF o (1€]) dE,
A

where ¢; = ¢3’; (recall the notation in Lemma 3), and Cy, ; is a complex number with |Cx,jl = 1. Let
us set

ai =27'd; min(2'7?,2%7Y), a4, = 2d, max(2'7,297").
We consider the following three cases:

A 2@ DIy > anlt],
B: ailtf] <2 Vx| < at],

C: 2@ Vi < a.

In case B, there are only finitely many j. By Lemma 3, ¢; € R(a, B, 4, d1, d2). Thus, applying Lemma 4

to each I, we see
da .
Dl <€ Y 27 ey AR L g,
jeB jeB

For case C, since ¢; satisfies (3.32), we have
IVe(277x - €+27%19;(£))] 2 2% dy min(2'7%, 297N |#] = 277 |x| > @27 1]
4Here we need the condition ¢ € C4*2.
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_da

on the support of yo. So, integration by parts gives |/;| <, 272 /min (|27%¢|™N,1) for N < d + 2.
Since a > 0, taking N > d/2, we get

Sl s 2 % min (12717, 1) < [,
jeC jeC
We now consider case A. As before, we know from (3.32), Lemma 3 and assumption j € A that
IVe(277x - €+27Y1g;(£))] = 27 x| = 27 dy max(2'7, 297N |¢| = 27127 |«

Integration by parts yields |7;] <, 2~%/min (|2~/x|™, 1) for any M < d + 2. In particular, taking
M =d/2, we get

|1;] < min (25 =g~ 25y, (3.40)
To sum each estimate, we need to separate two cases 0 < @ < 1 and @ > 1. First, consider 0 < a < 1.
In this case, 2/ < (|x|/|t|)ﬁ, and using (3.40), we have

Z 1] <« |x|‘% Z rditi-a) |f|_%.

i . 1
jeA 1<2i<(|x|/1t]) e

For the case a > 1,27/ > (Jt]/|x])"/ (@D Thus, by (3.40), we have

(o)
d - d d
Dlse > 2O g pfE
JeA 272 (Jel/|x]) /(@D

This completes the proof of (3.39) with + for the case o > 0.
The case a < 0: estimate for I]f’K_.

This can be handled in a similar manner, so we shall be brief. Using the dyadic decomposition yo =
Z;io x; () and changing variables, we write

~ oo _ oo . da ; (2 % @i, 7. - ix
1o = T= ) G 27 / o/ X E61(ED) | detH G ()25 o (1€]) dE,

where 5 j = ¢5; and 5& j is a complex number with |5,<, il = 1. As before, we consider the following
three cases:

A 20791 > anlt],
B: at] <29 x| < aslt],
C: 20=9J|x| < ayt.

For case B, there are only finitely many j. By Lemma 3 and Lemma 4, it follows that

DU < Y 2B ey o g2,

jeﬁ jel~¥
In case C, similar to before, we see [Ve(2/x - €+ 2"ft$j (€))| = 2%/|t|. Hence, integration by parts
gives |f,~| < 2% Jmin (1297¢|=N, 1) for N < d + 2. Since a < 0, again taking N > % and splitting the
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sum into the cases 2/ < |¢f|"/® and 2/ > |¢|71/ 2, we see

(o]
—_ da - ]
15l e Y 2 min (129N, 1) s o2,
jeC J=0

Finally, for case A, we have |V¢(2/x - € + 2%71¢;(£))| 2 2/|x|. Integration by parts yields |I;| <
da ;

2% Jmin ((2/]x[)™N, 1) for N < d + 2. In particular, taking N = d/2, we see

DL < clx|? > 2% (aDi < j=d/2,
jeA 272 (|e]/|x)/ (=)

Combining these estimates for the cases A,Band C gives (3.37) with —. This completes the proof. O

We conclude this section with some remarks on our results by comparing them with previously
known results.

Remark 4. First, the estimate for the wave case (Proposition 3) is of a different nature from the standard
context of damped oscillatory integral estimates since the determinant of the Hessian matrix is identically
zero. As far as we are aware, no such result has previously appeared in the literature. The same also
applies to Proposition 4. Secondly, concerning Proposition 5, note that if |£] is large, then |V(£)| ~ 1 and

det H(g) = (&) |&242 ~ g7,

which means (£) is not almost homogeneous. Thus, the estimate (3.6) cannot be covered by Proposition 6,
and we extend the result in Kenig—Ponce—Vega [49]. Also, (3.6) cannot be deduced from Carbery and
Ziesler’s work [12] since the result in [12] is local in its nature and the basic convexity assumption is
not satisfied (precisely, ¢(r) = (r) is convex, but ¢’ is not convex).

4. Strichartz estimates for orthonormal families: the sharp admissible case

In this section, making use of the weighted oscillatory integral estimates in the previous section, we
prove the sufficiency parts of Theorems 5, 6, 7 and 4 (in this order). The necessity part is to be discussed
later in Section 6.

We begin by stating the following result, which formalizes the argument we use to establish the
orthonormal Strichartz estimates.

Proposition 7. Let o > 0, and assume that (q, r) is sharp o-admissible such that’>
max{l + 20,2} <7 <2+20. 4.1

Let S be a domain in the complex plane that contains the strip {z € C : =r7/2 < Rz < 0}. Suppose
that (8,), is an analytic family of functions for z € S° that satisfies the following: for some constants
Ag, Ay and N > 0,

sup @ (&) < (1 +|«[)N Ao, (4.2)
£eRd
‘ / eI 5 (&) dé| < (1+ kDN Aule] ™. 43)

SEquivalently, @ <r<wif0< o < %, or 2((:1) <r< 2(22(‘:']1) if o > %

6This means the map z — O (&) is an analytic function on S for each & € R9.
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Additionally, if ®_ is nonnegative, then

vilUp\O_1 (D) f;I?
j

1- 2
g5 2 S A oA lIvlles
L27L?

t

holds for all families of orthonormal functions (f;); in L? and B = = +2

The assumption that ®_; is nonnegative is not essential. As long as 4/0@_; (D) can be properly defined,
Proposition 7 is valid.

Proof. Consider the analytic family operators (7)., which are given by

F1.6) 6 = AL Fale @6 ).
Note that
1 +2 -2 .
T = EA VA U¢® 1(D)U;

Therefore, by Proposition 1, it suffices to prove

IWIT_1Waller < IWill(g,27) 7 lIW2ll(G,27) .7 -

=20

Since (g, r) is sharp o--admissible, we note that é =
the estimates

. By analytic interpolation, this follows from

(Wi TiuWallee < CellWilloo,00 I W2lloo,00 4.4

and

W\ T Walle2 < CK”W]”(%’4)’2”‘4/2”(#,4)’2 (4.5)

*+lK

for constants C,., which grow at most exponentially with . Since (4.4) is equivalent to the L? boundedness

of Tjy, the estimate in (4.4) is an easy consequence of Plancherel’s theorem and the assumption (4.2).
For (4.5), let z = =% + ik, in which case the kernel of T is given by

;_/Tzem o (/ ) E90E G | (£)de ) dr
(1 -5 +ix) T

Thus, by the assumption (4.3), we see’ that the kernel K_7 W, satisfies the

bound

of the operator WT_7

~L+ix SHIK

1K 450 (51,3, 9)] < ClWi G0l = 51775 Wa(y, )]

for some constant C,, which grows at most exponentially with «. Using (2.1) and the assumption (4.1),

we obtain
T Walle < G [[]] WPl = 512 27w )P axysar
< CellWill w21 11W3 2.1
where % =7 — 20 The estimate in (4.5) follows. ]

z . . .
THere we are using the fact that ?(ﬁ)(‘r) = ie'#7/2 (7 +0)~3"! = i(e‘z”/z‘r;z_1 — e7i27/2272-1) where the latter
equality is true if z ¢ Z (see [33, p. 172]).
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4.1. The wave equation

Since we now have Proposition 7, to show the sufficiency part of Theorem 5, we need to choose an
appropriate analytic family ®,(£). However it is already more or less clear from the perspective of
Proposition 3.

Proof (Proof of Theorem 5 (sufficiency part)). It suffices to prove

Dvle VA g < Vlles (4.6)
J 2:P)3
for (g, r), which are sharp ——adm1ss1ble B= +2, and
2(d+1) 2d
_— — 4.7
i-1 " Ta-2 @7
where (f;); is an orthonormal family in HS and s = %( % - }). Indeed, for such (g,r), we have

% > 3, and thus the strong type estimate (1.12) follows by embedding between Lorentz spaces. Since
this estimate is trivially valid when (g, r, 8) = (0,2, 1), by interpolation we may extend the range to
the full range 2 < r < 2d

a-2
Let us set
d+1 ( 1_ l)
g = |D| 2 \27F fj-
Clearly, (g;); is an orthonormal family in L?. To prove (4.6) under the condition (4.7), we use Proposi-
tion 7 with
T+ 2z dil
0.(§) = Ifl e,
Then (4.2) holds, and from Proposition 3, we have (4.3) with o = _1 . Also, note thatd < 7 < d+1 from

(4.7). Since O_; (&) = |¢]” (d”)(’")/\/ (|€1), it follows from Proposmon 7 that we have the estimate

Dovfe

J

< vlles

2
Tr(IDDIDI )|

'((2,’:8)’;

with s = %(% - %) and g = +2 This immediately yields

D vile™ (D £

J

S lles
($.8).5

for all families of orthonormal functions (f;); in H®, with s = %(% - %) and 8 = r% Note that the
sharp L _admissible estimate (4.6) with s = d; 1 (% - %) is invariant under rescaling. Thus, it is easy to
see that rescahng the above estimate gives

D vile™ Ry (elD)) 2 f

J

S lles
($.8).5

uniformly in & > 0, and letting ¢ tend to zero, we obtain (4.6). O

4.2. The Klein—-Gordon equation

As mentioned in the introduction, we separately handle the Schrodinger-like case and the wave-like case.
As before, the proof is rather straightforward once we have the right analytic family, so we shall be brief.
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d+1( _
2

Proof (Proof of Theorem 7 (sufficiency part)). We only handle the critical case s = 1) since
d+1

the other case s > - 5 - —) can be shown in exactly same manner by making use of the estimate
(3.30) instead of (3.5).

In a similar manner to the proof of Theorem 5, it suffices to prove the estimate

D vile™ Ay (eI £
J ($.8).5

< Vlles 4.8)

uniformly in € > 0. Here, (q,r) is sharp —-admlsmble with r satisfying (4.7), B = and an

orthonormal family (f;); in H*, s = drl (2 - i). To this end, we use Proposition 7 with

r+2’

7+ 2z

0:(6) = = @*Z%M)

and we see (4.2) holds with A¢ independent of &; and from the estimate (3.5) in Proposition 4, we obtain
(4.3) with o = 4! and A; independent of &. Since ©_;(¢) = (£) > x*(¢l&) and ((D)~* f;); forms an
orthonormal family in L2, the desired uniform estimate (4.8) follows from Proposition 7. O

Proof (Proof of Theorem 6 (sufficiency part)). Asbefore, we only handle the critical case s = d+2 (— -

since the other case s > % (% - %) can be shown by following the argument below if we use the estnnate
(3.30) instead of (3.5).

It is enough to show that (4.8) holds uniformly in & > 0 for sharp %-admissible (g,r)with2 <r <

2(d+l) ﬁ d+2(
2

=1 %). We use Proposition 7 with

r +2, and an orthonormal family (f;); in H®,

0.(£) = (&) Tix(el).

Then the assumption (4.2) trivially holds, and from Proposition 5, we have (4.3) with o = %, which
is uniform in &. Since ©_; (&) = (£) > x*(&l€|) and ((D)~ % f;); is an orthonormal family in L?, we
deduce from Proposition 7 that (4.8) holds for all families of orthonormal functions (f;); in H*, 8 = =5

r+2
and where (g, r) is sharp 5—adm1331ble with
2(d +2) 2(d+1)
. 4.9
p <r< -1 4.9)
Since this estimate holds trivially when (¢, r, 8) = (0,2, 1), by interpolation we may extend the range
to2<r< 22;“11) and this completes the proof. O

Remark 5. In the proofs of Theorem 7 and Theorem 6, the noncritical cases s > %(% - %) and

s > %(% - %) can also be deduced from the critical cases by making use of the inequality

(Z |gj|2) 2

J

<

~

p

[l

p

)

which is valid for § > 0 and 1 < p < oo with any (g;), not necessarily orthogonal. This inequality may
be shown from the trivial inequality [[(D)7? ]| p» S fllp, 1 £ p < oo, and randomization (Kintchin’s
inequality).

4.3. The fractional Schrodinger equation

Clearly, our phase function ¢,(¢) = |£]%, @ € R\ {0, 1} is almost homogeneous of order a and
|det Hp o (£)| = Cy.0lé]? (@=2) for some constant Cg4.o- Hence, Theorem 4 may be deduced from the
following theorem.
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Theorem 8. Let d > 1, @ € R\ {0, 1} and ¢ be almost homogeneous of order a. Suppose (q, r) is sharp
%’-admissible. Then the following hold for all families of orthonormal functions (f;); in L2

(i) If2<r< 2(d+1) and B = then we have the estimate

+2’

HZVJ|U¢(|detH¢(D)| = fj)‘

ENE S lles- (4.10)

(ii) fd=2and 6 <r < oo,orifd > 3 and =;~ 2(d+]) <r< 2d then(4l())holdsw1th,8<

Proof (Proof of Theorem 8). 1t is enough to prove (i). Indeed, the standard argument combined with
the Littlewood—Paley inequality® gives the estimate

v 1 det (D) 5

sy S W10,

for all ‘2—1—admissible (g, r). For example, see [48, p. 978]. The estimate is trivially equivalent to (4.10)
with ﬁ = 1. In particular, for d > 3, interpolation between the estimate in (i) and (4.10) with (g, 7, 8) =
(2, 2 5 2 , 1) proves (ii). When d = 2, a similar argument works, except that we must interpolate between
(i) and (4.10) with 8 = 1 and (g, r) sharp 1-admissible with (r , q) arbitrarily close to (0, 2).

To show (i), first let us consider @ > 0, in which case it suffices to prove the estimate

vj’U¢(| det Hp(D)| 7 X(sIDI)fJ))
J

< [Vlles (4.11)

LL

uniformly in & > 0. Here, (f;); is an orthonormal family in L% B = +2 ,and (q, r) is sharp E-admlsmble
satisfying (4.9). Indeed, once this is established, we take the limit & — 0 and then interpolate the resulting
bound with the case (g, r, 8) = (0,2, 1) to obtain the desired estimates for the range 2 < r < %.

To prove (4.11), we consider

0,(¢) = |det Hp (&)™ ¥ (elé]).

Obviously, (4.2) holds, and we use Proposition 6 to verify (4.3) with o = % Since O_(¢) =

| det Hp(&)|5 x*(e]¢]), we obtain (4.11) from Proposition 7.
The case @ < 0 can be proved in a very similar manner. It suffices to prove the uniform bound (4.11)
with y replaced by y, upon which we take the limit € — oo. To this end, we apply Proposition 7 to

@,(£) = | det Hp(&)| /" x 2 (elél)

and again use Proposition 6 to verify (4.3). The remainder is identical to the previous case, so we omit
the details. O

Remark 6. Since the proofs of Theorems 4-7 all rely on Proposition 7, it is clear that the estimates in
part (i) of Theorems 5 and 7 are true with the Lorentz norm || - || (4,209 r 0N the left-hand side for sharp

%—admissible (gq,r) satisfying (4.7), and similarly the same is also true for the estimates in part (i) of

Theorems 4 and 6 if (g, r) is ‘—zl—admissible and satisfies (4.9).

8 After a Littlewood—Paley decomposition, one may use a rescaling argument with Lemma 3 to get uniform bounds for each
dyadic piece.
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5. Strichartz estimates for orthonormal families: the non-sharp admissible case

In this section, we present extensions of Theorems 4—7 to the corresponding non-sharp admissible
cases. In this case, emphasis lies on proving the estimates with initial data of the sharp regularity. If the
dispersion relation is homogeneous, the optimal regularity is naturally determined by the homogeneous
degree of the dispersion relation. In the case of the classical Strichartz estimates, the sharp regularity
estimates are well known for the non-sharp admissible case. However, in contrast to the classical
Strichartz estimates, generalizing to the estimates for orthonormal families with the optimal summability
exponent £ is no longer trivial. For a discussion on why more elementary arguments, such as those based
on Littlewood—Paley type considerations, do not seem to yield the desired estimates, we refer the reader
to [5]. However, for the Schrodinger equation, this issue was resolved in [5] with an argument that made
use of improved estimates in the scale of Lorentz spaces (see Remark 6). The basic strategy devised
in [5] also works for the propagators under consideration here to recover the non-sharp admissible
bounds. However, here we provide a somewhat more straightforward proof based on Lieb’s version of
the Sobolev inequality for families of orthonormal functions [56].

In what follows, the estimates we have already obtained in the sharp case play an important role in
establishing the non-sharp case, and to a certain degree, this ‘deduction’ can be captured in an abstract
framework. Thus, prior to the statements for each particular equation, we present some results that hold
in a level of generality.

To facilitate our presentation, we introduce some notations. For o > %, we introduce the points A,
and B, in [0, %] x [0, %] given by

As

_ 200 -1 loa _ loa o
2@+ 1) 20+1) 77 \2(0+ 1) 2(c+ 1))

For g,r > 2, define B, (gq,r) € [1, o] by
o 1 20
— =+ —.
Bo(q.r) g r
We also introduce the points

and, for o > 1, the point E, by

E = o-11
T\ 20 72)
See Figure 1. Additionally, if Py, P», ..., P, are points in [0, %] X [0, %] by int(PP; - - - Pp,), we denote
the interior of the convex hull of the set {Py, P2, ..., P,}.

Proposition 8. Let o > % s(q,r) = g +d(% - %)for some a € R, and V(&) be |&| or (£). Assume that

for sharp o-admissible (q, r) satisfying (4.1) and, for all families of orthonormal functions (f;); in L?,
the estimate
D vilUs (D) g2

J

S vlles (5.1)

4 r
2°2

holds with 8 = Bo(q,r). Then for all (q,r) that are non-sharp o-admissible with q > 2;’;1& the
estimate

2 vilUs¥ (D)) 2

J
holds for all families of orthonormal functions (f;); in L? with B8 = B (q,1).

S lles (5.2)
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Figure 1. The points Ay, By,C, D, E in the case o > 1.

Remark 7. (1) Suppose o > 1; and, in addition to the assumptions in Proposition 8, we assume that
the (single-function) Strichartz estimate

1Us¥ (D) fllo, < 1If 12

holds for 07—1 < r < oo; that is, (%, %) lies on the line segment (D, E ). Then for such r, clearly (5.2)
holds with (g, 8) = (2, 1). We also note that 8, (g, r) = % whenever (}, }1) belongs to the line segment

(0, A.). Thus, by complex interpolation between estimates (5.2) with (% é) on (D, E,) and points
in the region int(O A C) arbitrarily close to the line segment (O, A, ), we deduce that (5.2) holds if
i é) belongs to int(ODE,A,) and B < %.
(2) If (g, r) is sharp o-admissible, then B, (¢,r) = % As we have seen, = % is the sharp
summability exponent appearing on the right-hand side of the estimates in Theorems 4 and 6 for (}, é
lying on the line segment (A%, Cl.

Proof (Proof of Proposition 8). The key estimate is the following version of the Sobolev inequality for
orthonormal functions, due to Lieb [56]. For all 1 < p < oo,

D vl¥D) g2

J

S Vllgpa (5.3)
LP (R9)

holds for all families of orthonormal functions (f;); in L*(R%) and sequences v in £7-!. Notice that
for each fixed 1 € R, (Ugyf;(2,-)); remains to be an orthonormal family in L*(R9). Also, note that
s(00,r) = 55935+ S0, (5.3) implies

< vllp5.0- (54)

2 vilUs D)0 f

J

r
00,7
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In view of B4 (o0, 7) = %, complex interpolation between (5.4) and (5.1) implies

D vilUg¥(D) @ g2

J

S Al gs.t (5.5)

g r
2°2

for (%, é) belonging to int(O A, C), with 8 = B, (g,r); we shall, in fact, only need to make use of this
estimate for (% é) inint(OA,By).

The estimate (5.5) already provides the sharp estimates for various equations if we accept the
weaker Lorentz space norm on the right-hand side; however, we need to strengthen (5.5) to the desired
strong-type estimate (5.2), and this can be done by using real interpolation. We fix (%, é) belonging to
int(O A B ) and choose two distinct points (qo, o), (¢1, ro) such that (%, qi) belongs to int(OA s B,)

J J

and s(q,r) = s(q,,r;) for j = 0, 1. By real interpolation, this” yields

D vilug (D)@ g2

J

< v a
eeg, S Mg
2°12°2

where 8 = B, (g, r). Now, notice that
2> Bola.r) (5.6)

holds whenever (%, é) belongs to int(OA 4B, ). Since we have both (5.6) and ¢ < r when (rl,é
belongs to int(OA, B, ), we obtain (5.2) whenever (%, é) lies in int(OA B ), from the embeddings

4 r 4 4 r
L7L2? C LML and (P C (P3,

Finally, we observe that (5.2) trivially holds when (¢, r,8) = (0,2, 1). Indeed, from the trivial
estimate

1Ugflleo2 < NI f 12

and since s(o0,2) = 0, we see that (5.2) follows by the triangle inequality. By interpolation, we obtain
the desired estimate (5.2) whenever (}, }1) belongs to int(OA,C). O

Once we have Proposition 8, obtaining the desired estimates for non-sharp admissible (g, r) is rather
straightforward. We prove the sufficiency parts of the theorems stated below, and the necessity parts
will be shown in Section 6.

Theorem 9 (The wave equation; non-sharp %—admissible). Letd > 2, and suppose (q, r) is non-sharp
%-admissible.

(i) ]f(%, é) belongs to int(OA% C), then (1.12) holds for all families of orthonormal functions ( f});
in HY, withs = § — ¢ — 2, and B = Ba1(q.7)-

(ii) Ifd = 4and (%, é) belongs to int(ODA 4-1 E a-1), then (1.12) holds for all families of orthonormal

2 2
functions (f;); in H®, with s = % -4 _ 1 andp < % This is sharp in the sense that the estimate

r g
fails if B > 4.

Proof (Proof of Theorem 9 (sufficiency part)). From the classical Strichartz estimates (1.6) and (1) in
Remark 7, the claimed estimates in (if) follow from those estimates in (i) by interpolating them with
trivial estimates. To prove the claimed estimates in (i), we apply Proposition 8 with ¥(¢) = |£] and

s(q,r) = % - % - é. Thus, it is sufficient to verify (5.1). This follows from Theorem 5. O

9Here, we are using the fact that (L20(L"0), L9 (L"))g,q = L9(L"?) holds whenever qq, q1,79,71 € [1, ), é =
-0, 0 1_10, % 0 € (0, 1) (see [58] and [27]).

=Y _:r()

a " a’r
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Following an argument similar to that used to prove Theorem 9, we prove the following theorems

concerning the Klein—Gordon equation in the non-sharp o-admissible cases, where o = £, 451, Also,

2°7 2
we later discuss further estimates that are available for the Klein—Gordon equation.

Theorem 10 (The Klein—Gordon equation; non-sharp %—admissible). Let d > 2, and suppose (q,r)
is non-sharp %-admissible.
(i) If(l l) belongs to int(OAd 1C), then (1.13) holds for all families of orthonormal functions ( f});
in H, with s > 4— g - = andﬂ ﬂd 1(gq,71).
(ii) Ifd = 4 and (— —) belongs to 1nt(0DA a1 Ed 1), then (1.13) holds for all families of orthonormal

functions (f;); in H®, with s > %’ -d_1 and B < 2. This is sharp in the sense that the estimate

fails if B> %.

Proof (Proof of Theorem 10 (sufficiency part)). As we have noticed before, it suffices to prove the esti-
mates in (7) since (i) follows by 1nterp01at10n between the estimates in (i) and the trivial estimates. We

only consider the critical case s(q,7) = § - % - é since the other case can be shown by the same ar-
gument with a little modification, or usmg the inequality 1n Remark 5. Similar to the proof of Theorem
9, we apply Proposition 8 with ¥ (&) = (£) and s(gq,7r) = § — % — —. For the estimate (5.1), we employ
Theorem 7. O

Theorem 11 (The Klein—Gordon equation; non-sharp %-admissible). Let d > 1, and suppose (q,r) is
non-sharp %-admissible.

(i) If(%, é) belongs to int(OA 4 d C), then (1.13) holds for all families of orthonormal functions (f;);

in H®, with s > % -d_ ‘ilqz and 8 = Bd (g, r). This is sharp in the sense that the estimate fails if

B> Ba(q,r).
(ii) Ifd = 3 and (l l) belongs to int(ODAd Ed) then (l 13) holds for all families of orthonormal
Sfunctions (f;); in H, with s > d_d_ and,B <% Thls is sharp in the sense that the estimate

fails if B > 4.
Proof (Proof of Theorem 11 (sufficiency part)). Similar to the proof of Theorem 10 (sufficiency part),

we only consider the critical case s(g,r) = 4 — £ — d*Z . It suffices also to prove the estimates in (7)
and to this end we apply Proposition 8 with lI’(g?) = <§> and s(q,r) = 5 - % - d 2 . For the estimate
(5.1), we use Theorem 6. O

For simplicity of the exposition, we have presented our main results for the Klein—Gordon equation
(Theorems 6, 7, 10 and 11) in the case where (g, r) is o--admissible for o = ;l, d2 ! . Complex interpola-
tion between these estimates gives the orthonormal Strichartz estimates for the Klein—-Gordon equation
corresponding to the sharp o - admlss1ble cases with o € (£ 3 = 2) However, we can obtain these esti-
mates in a unified way, with o = 2 L+ pfor p € [0, 2] (d = 2),and p € (0, 2] (d = 1). For example,
since the dispersive estimate with O (|¢t|~7") follows if we interpolate the estimates (3.5) ((3.30)) and (3.6)
((3.31), repectively), then simple modification to the proof of Theorems 6 and 7 yields the following.

Theorem 12 (The Klein—Gordon equation; sharp o-admissible, d = 1). Let d = 1, o € (0, %] and
suppose (q,r) is sharp o-admissible. Then (l 13) holds for all families of orthonormal functions ( f});
in HS, with s > (o + l)(% 1) and B = 2L

r+2
Theorem 13 (The Klein—-Gordon equation; sharp o-admissible, d > 2). Let d > 2, p € [0, %] and
suppose (q,r) is sharp (% + p)-admissible.
(i) If2<r< %, then (1.13) holds Jfor all families of orthonormal functions (f;); in H®, with
s2 (4 4p)(d- 1) andp= 2.
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(ii) When d = 2, suppose Z(IT‘L‘O) <r<ooforpe (0,%] When d = 3, suppose 6 < r < oo for

2(d+2 2(d—1+42 2 2(d—1+42
p=0,andd(2++f) <r< (d3++25)f0rp€(0,2] When d > 4, suppose;;fp) Srs(d3—++2pp)

for p € [0, 2] Then (1.13) holds for all families of orthonormal functions (f;); in H®, with

> (d; 14 )(— - —) and B < 1. This estimate is sharp in the sense that the estimate fails for

B> 4%
By following the approach taken to prove our main results in the non-sharp admissible case, it is possible

to extend Theorems 12 and 13 in a similar manner. In Remark 8, we offer some further remarks regarding
the sharpness of the exponent S in the case of the Klein—-Gordon equation.

Theorem 14 (The fractional Schrodlnger equation; non-sharp ——admissible). Let @« € R\ {0, 1} and
d > 1. Suppose (q,r) is non-sharp 5 4 _admissible with < >+ 5 <d.

(i) If(l l) belongs to int(OAd C), then (1.15) holds for all families of orthonormal functions (f;);
in H, with s = 5 -£_2z and,B ﬁd (q,r). This is sharp in the sense that the estimate fails if
B> Ba(qr).

(ii) Ifd = 3 and (l l) belongs to int(ODAd Ed) then (1 15) holds for all families of orthonormal
functions (f); in HS withs=4_-4_ & and B < %. This is sharp in the sense that the estimate

fails if B > 4.

Proof (Proof of Theorem 14 (sufficiency part)). As in the proof of Theorems 9-11, the claimed esti-
mates in (i7) follow from those in (i ). To prove the claimed estimates in (i), we apply Proposition 8 with
W(¢&) = ¢l and s(g,7) = 5 — 4 _ @ For the estimate (5.1), we use Theorem 4. O

6. Necessary conditions

Let Yo € C2(272,22) and o 2 1 on (271,2). For a given (gq,r) € [2,00) X [2, ), consider the
frequency localized estimate

> vilUsxo(IDN £

J

S vlles- (6.1)

4 r
2°2

We show this estimate implies necessary conditions under fairly mild conditions on the dispersion
relation ¢. The following are based on a slight generalization of the construction given in [5].

Proposition 9. Suppose (6.1) holds for all orthonormal family (f;); and ¢ is continuously differentiable
away from the origin. Then we have

B<Balg.r). (6.2)

Additionally if ¢ is nonnegative and radial with ¢(£) = ¢o(|€|) and ¢g is continuously differentiable
away from the origin and increasing, then

B <

YRS

(6.3)

From this, the necessity claims in Theorems 4—7 and Theorems 9—-14 all follow. Indeed, the orthonor-
mal Strichartz estimates in these theorems clearly imply the corresponding frequency localized estimate
of the form (6.1) with suitable choices of (. The exponents ¢, r and B should satisfy (6.2) and (6.3).

It seems reasonable to expect that our estlmates in (i) of Theorems 5, 7, 9 and 10 (corresponding to
the line segment (Ad 1, C) in the sharp 45!-admissible case) are also sharp with respect to the range
of allowable S. This would follow if we could have 8 < 8 1 (g,r). Unfortunately, we are not able to
reach this conclusion yet.
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Proof (Proof of Proposition 9). To show (6.2), we use the family of vectors
(vj)jes = {6 € RT'Z4 127! < €] <2},
where #J ~ R?. If we let
Fi(&) = R (2RIE - v,)

for each j € J, then (f;); becomes orthonormal system in L*(R9) for an appropriate choice of the
constant c¢. Note that
[Ugxo(ID]) fj(x)| 2 R_d/21{|t|sR2,|x+tV¢(Vj)\SR}'

Also, we have |V¢(v])| < 1 since |vj| ~ 1, and this gives the uniform lower bound
Lijr1sRr2, x4V (v;)1<R) R 1{Ir],1xI<R}- Therefore, if we assume (6.1) holds, then

Ra* < RE.
By taking R — oo, we see that 8 < Ba (g,r).
To get the second condition (6.3), let us consider

fi=ceioD)g,

where

—~ _d-1 ,
2(E) = Lot (.05 (s ] (EDIEI T 951D,

c is a constant to be chosen momentarily, and we here choose ¢ € Z so that the set {¢, Lem) < | <

é, Y((£+2)m)} n {27! < |¢| < 2} has nonzero measure. Then by changing to spherical coordinates, it
is easy to check that (f;); is an orthonormal family by choosing an appropriate constant c.
Notice that

> vilUsxo(IDD) £

J

q : 7
. Z/ vz |l t=m D)o |19 dr » ||v||;%,,

q r
2:7 nez

by choosing & > 0 small enough so that [|e??(P)g||, ~ ||g||, uniformly in s € (0, &). Therefore, if we
assume (6.1) holds, then we see ||v||% < |Ivllg, which shows (6.3). |

Remark 8. In cases where the Sobolev exponent s is determined by scaling considerations in terms of
g and r, the summability exponent S is considered as a function of these exponents. In other cases such
as the Klein-Gordon equation

ANT=A 4 (2
Zvﬂe” fil

J

S vlles
g r
2°2

for families of orthonormal functions (f;); in H*, it is reasonable to expect that the sharp value of 3
2+ Regarding

depends on ¢, r and s. To highlight this, for simplicity, we consider the case g = r =
(g, r) as anon-sharp %-admissible pair, it follows from Theorem 11 that we have the estimate

NT=A 4 (2
ZVj|€” fil

J

< llgs (6.4)

2(d+1)
da-1
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for any family of orthonormal functions (f;); in H*', where

([ d d*+3d-2
Brs) =77 a1 )

On the other hand, regarding (g, r) as a sharp %-admissible pair, from Theorem 3, we have

itVI-A |2

§ vile™ 2 £l S [vllees (6.5)
- 2(d+1)

J d-1

for any family of orthonormal functions ( f;); in H*?, where

d+1 1
(B2, 52) = (%5)

Easy computations show 8; > 8, and s; > s». So, from the viewpoint of the regularity, (6.5) is better
than (6.4), but if we want further gain in the summability exponent S, then (6.4) is better. It seems to be
an interesting problem to identify the sharp value of 8 for allowable (g, r, s), but we do not pursue this
here.

7. Applications

In this section, we present several applications of our results toward local well-posedness of infinite
systems of Hartree type, weighted velocity averaging estimates for kinetic transport equations and
refined versions of classical Strichartz estimates. As we touched on in the Introduction, that Strichartz
estimates for orthonormal families of initial data enjoy such a variety of connections has already been
observed by other authors, and we clarify this at appropriate points in the remainder of this section. Our
purpose here is to obtain improvements in various respects over the existing literature in this direction
based on our progress on Strichartz estimates for orthonormal families