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We have performed particle-resolved direct numerical simulations of many heavy
non-spherical particles settling under gravity in the dilute regime. The particles are oblate
spheroids of aspect ratio 1.5 and density ratio 1.5. Two Galileo numbers are considered,
namely 111 and 152, for which a single oblate spheroid follows a steady vertical and
a steady oblique path, respectively. In both cases, a strongly inhomogeneous spatial
distribution of the disperse phase in the form of columnar clusters is observed, with a
significantly enhanced average settling velocity as a consequence. Thus, in contrast to
previous results for spheres, the qualitative difference in the single-particle regime does
not result in a qualitatively different behaviour of the many-particle cases. In addition,
we have carried out an analysis of pairwise interactions of particles in the well-known
drafting–kissing–tumbling set-up, for oblate spheroids of aspect ratio 1.5 and for spheres.
We have varied systematically the relative initial position between the particle pair and
we have considered free-to-rotate particles and rotationally locked ones. We have found
that the region of attraction for both particle shapes, with and without rotation, is very
similar. However, significant differences occur during the drafting and tumbling phases. In
particular, free-to-rotate spheres present longer drafting phases and separate quickly after
the collision. Spheroids remain close to each other for longer times after the collision, and
free-to-rotate ones experience two or more collision events. Therefore, we have observed a
shape-induced increase in the interaction time which might explain the increased tendency
to cluster of the many-particle cases.
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Figure 1. Single-particle regimes for heavy (ρ̃ = 1.5) spheres and oblate spheroids with aspect ratio χ = 1.5
as a function of the Galileo number Ga. Reference data for dilute suspensions of spheres with the same density
ratio and Galileo number from Uhlmann & Doychev (2014) are also included. The vortical flow structures in
each regime are indicated with the aid of iso-surfaces of Q, the second invariant of the velocity gradient tensor
(Hunt, Wray & Moin 1988).

1. Introduction

Particle-laden flows play an important role in natural and industrial systems, such
as sediment transport in rivers, fluidized beds and pollutants or hydrometeors in the
atmospheric boundary layer. It is well known that an isolated particle settling under
gravity in an otherwise ambient fluid exhibits a variety of regimes of motion depending
on its shape, mass density and size (Ern et al. 2012). Even for spherical particles diverse
path regimes have been observed, ranging from steady vertical to chaotic motion, and
including various intermediate states of different kinematic complexity (Jenny, Dušek
& Bouchet 2004; Zhou & Dušek 2015, cf. also figure 1). The transitions between the
distinct regimes of particle motion are the consequence of bifurcations in the flow pattern
around the mobile particle, arising as the values of the governing parameters are varied.
These parameters in the simplest single-particle case are the solid-to-fluid density ratio,
ρ̃ = ρp/ρf , and the Galileo number, Ga = DUg/ν, where D is the particle diameter (in
the case of non-spherical particles D is defined as the diameter of a sphere with the
same volume), Ug = (|ρ̃ − 1|‖g‖D)1/2 is a gravitational velocity scale, ν is the kinematic
viscosity and g is the vector of gravitational acceleration.

Whenever the volume fraction (Φ) of the particulate phase becomes non-negligible,
particle–particle interactions can lead to significant collective effects. For dilute
systems, these interactions are predominantly of indirect type, acting through long-range
hydrodynamic forces. For denser systems, direct contacts between two or more particles
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come into play more frequently, thereby contributing to the exchange of momentum. In the
present work we are interested in dilute systems (with solid volume fractions below one per
cent), which is why we will concentrate on this regime in the following literature review.
Depending on the values of the parameter triplet (Φ, ρ̃, Ga), dilute suspensions can exhibit
spatial particle distributions with significant non-homogeneity. A non-homogeneously
distributed particle phase in turn is often accompanied by important macroscopic effects,
such as an altered mean settling velocity and a modification of the induced fluid flow
features.

At Galileo numbers of O(10) and density ratio ρ̃ = 2 it has been observed that dilute
suspensions of spherical particles tend to form horizontally aligned pairs (Yin & Koch
2008), while at larger Galileo numbers (Ga ≈ 200) and similar density ratios, where the
wake flow features a significant recirculation region, a vertical alignment is more probable
(Kajishima & Takiguchi 2002; Uhlmann & Doychev 2014). Kajishima & Takiguchi (2002)
were the first to investigate the formation of large, columnar-shaped particle clusters due
to wake effects. Their particle-resolved direct numerical simulations (PR-DNS) in triply
periodic boxes showed that clusters tend to form for particle Reynolds numbers exceeding
200 . . . 300 (Ga ≈ 153 . . . 210), leading to strongly enhanced average settling velocities. In
their initial work, the particle rotation was suppressed for computational simplicity, and a
density ratio ρ̃ = 8.8 was considered. In the follow-up work of Kajishima (2004), the effect
of particle rotation was taken into account, and it was found that rotational motion leads
to a lower concentration of particles in clusters, since particles tend to escape a cluster
through a rotation-induced lift effect. Kajishima (2004) also determined a lower limit of
the solid volume fraction for the occurrence of clustering. The PR-DNS of Uhlmann &
Doychev (2014) were performed at a fixed density ratio ρ̃ = 1.5, and it was observed
that columnar clusters do form for Ga = 178 (which corresponds to an isolated particle
in the steady oblique regime), while no clusters are formed at Ga = 121 (steady vertical
regime). The authors suggest that the onset of clustering in dilute suspensions of spherical
particles is triggered by the bifurcation of the wake flow from steady axisymmetric to
steady oblique, with the consequence that the particles in the latter case drift horizontally
(with random azimuthal angle) leading to an enhanced probability of particle–particle
encounters. Further data on collective effects upon clustering are available from the
PR-DNS studies of Zaidi, Tsuji & Tanaka (2014), Fornari, Picano & Brandt (2016a)
and Seyed-Ahmadi & Wachs (2021), which were all performed in similar triply periodic
configurations, and from the work of Huisman et al. (2016), who conducted experiments in
a settling column with glass beads in water. An overview of the average settling velocities
from these various datasets for dilute suspensions of spherical particles in an otherwise
ambient fluid is given in figure 2. The PR-DNS results appear to give a consistent trend: for
increasing values of the Galileo number the particles tend to settle at an average rate which
is enhanced with respect to the velocity of an isolated particle, and there appears indeed
to be a cross-over (from a reduced settling velocity to an enhancement) for Ga ≈ 150. The
limited available experimental data in this parameter range are not inconsistent with this
picture, however, showing a settling enhancement already at lower Galileo number of 110
and mild columnar cluster formation. Huisman et al. (2016) have identified the presence
of the bounding container walls, which presumably causes a large-scale recirculating flow,
as a possible cause for the observed discrepancy.

Dilute suspensions of non-spherical particles have received much less attention, mainly
due to the complexity associated with the particle shape and the corresponding increase
in the size of the parametric space. Spheroids have been the preferred choice of several
authors, partly due to their convenient parametrization. Their shape is defined uniquely
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Figure 2. Mean settling velocity vs Galileo number for spherical and non-spherical suspensions of heavy
particles with density ratio O(1) in the dilute regime. The velocity data are normalized with the corresponding
mean settling velocity of an isolated particle in the asymptotic (long-time) limit. The error bars in the
experimental data of Huisman et al. (2016) indicate minimum and maximum values of the repetitions
performed by the authors. Present results are included for completeness.
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Figure 3. View of the ith spheroid in its body-fixed reference system (a) along the symmetry axis and
(b) perpendicular to it. The blue line in (a,b) represents a sphere with the same volume. (c) Sketch of the
problem in the global reference system.

by the aspect ratio χ = d/a, where d and a are the equatorial diameter and the length
of the symmetry axis, respectively (see figure 3a,b). The spheroidal shape allows for a
smooth transition between flat, disk-like shapes (for very large values of χ ), and elongated,
fibre-like geometries (for very small values of χ ), while a sphere is recovered for χ = 1.
When oblate spheroids (χ > 1) are considered, the regime maps of a single particle are
more complex when compared with spheres (Zhou, Chrust & Dušek 2017). Despite this
increase in complexity, specific combinations of χ and ρ̃ result in a single oblate spheroid
exhibiting the so-called ‘sphere-like scenario’ in which the first bifurcation for increasing
Ga is regular, transitioning from a vertical to an oblique regime (see figure 1, Zhou et al.
2017; Moriche, Uhlmann & Dušek 2021). Fornari, Ardekani & Brandt (2018) studied the
settling of dilute suspensions of almost neutrally buoyant (ρ̃ = 1.02) oblate spheroids with
a moderately flat shape χ = 3. They considered both dilute and dense regimes at Galileo
numbers at which a single particle follows a steady vertical path (Ga = 60) or an unsteady
path which is vertical in the mean (Ga = 140). For their most dilute cases they observed
a large enhancement of the mean settling velocity compared with the single-particle case,
with only small differences between the two Galileo numbers (cf. figure 2). Fornari et al.
(2018) have also detected non-homogeneous particle distributions in the form of vertical
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particle trains with lateral dimensions of the order of 10 times the length of the symmetry
axis, based upon visualization and on the analysis of pairwise distribution functions. The
authors attributed the enhancement of settling velocity to the occurrence of particle-pair
interactions which lead to the formation of piles of particles which practically stick to each
other in the case of oblate spheroids with χ = 3.

Turning now to other shapes, Seyed-Ahmadi & Wachs (2021) more recently studied
the behaviour of settling cubes with ρ̃ = 2, Φ = 0.01 . . . 0.2 and Galileo numbers for
which a single cube tends to a steady oblique path with very small tilting angle (Ga = 70)
and to a helical path (Ga = 160) for large times. For their smallest solid volume fraction
these authors report an increase in the relative settling velocity, which is similar to what
is observed in suspensions of spheres (cf. figure 2). Interestingly, Seyed-Ahmadi & Wachs
(2021) observe that the intensity of columnar cluster formation (measured with the aid of
particle-pair distribution functions) is somewhat lower in the case of cubes as compared
with the spherical counterpart. This effect is attributed by the authors to higher rotation
rates in the former case, leading to an enhanced lift force that increases their probability
to escape from an existing cluster.

As noted above in the case of spheres, the settling regime of a single particle appears
to be relevant to the macroscopic behaviour of dilute suspensions. As a next step towards
the understanding of collective effects, it is useful to investigate the interaction of settling
particle pairs, a set-up which may lead to the so-called drafting–kissing–tumbling (DKT)
process (Fortes, Joseph & Lundgren 1987). For sufficiently high Galileo number, a trailing
sphere initially released inside of the wake region of a leading sphere will approach the
latter one during the drafting phase, they will touch (‘kissing’), and then interchange
positions (‘tumbling’), since a vertically aligned pair of spheres is unstable, before
eventually separating. The reduced size of the problem compared with the many-particle
cases makes (DKT) simulations a useful laboratory to understand the underlying physics of
many-particle cases. Indeed, Fortes et al. (1987) used auxiliary cases with the DKT set-up
to support their results on the spatial structure of many spherical particles in a fluidized
bed. Regarding non-spherical particles, Ardekani et al. (2016) observed a suppression of
the tumbling phase in pairwise interactions of moderately flat oblate spheroids (χ = 3),
as well as an increased collision domain. The authors conjectured that the essentially
infinite interaction time of piled up particles would lead to enhanced clustering in the
corresponding many-particle case. This conjecture was later indeed confirmed by Fornari
et al. (2018).

The numerical simulations of DKT cases in the literature use a common configuration:
two particles settling in an initially quiescent fluid inside a container, whose vertical size
should be large enough to accommodate the different stages of the DKT case, and also
minimize the (undesired) influence of the lower boundary of the computational domain.
The vertical size of the container varies from 20D (Glowinski et al. 2001; Breugem 2012)
to approximately 40D (Patankar et al. 2000; Ardekani et al. 2016). The main drawback of
this configuration is that any modification of the parameters (for example the relative initial
position between the particles) which increases the duration of the drafting phase, would
require a further increase of the computational domain. As a result, the simplicity of the
DKT set-up is somehow diminished. Using periodic boundary conditions in the vertical
direction, as some authors have done for single-particle cases (Kajishima & Takiguchi
2002; Doychev 2014), also demands large domains in order to minimize wake effects from
periodic repetitions. To overcome these difficulties, in the present work we propose to
use inflow/outflow boundary conditions along the vertical direction along with a carefully
adjusted vertical velocity at the inflow. Thus, the settling particles are not perturbed by
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their own wakes, and the domain size becomes less of a critical parameter. To the best
of our knowledge, this strategy has not been employed previously. Here, it allows us to
employ moderately small computational domains, so that we can perform a campaign of
simulations varying the relative initial position of the particle pair and, therefore, we can
obtain statistically significant results.

In the present work we analyse the clustering behaviour of dilute suspensions of
spheroids with a relatively low aspect ratio χ = 1.5, a density ratio ρ̃ = 1.5 and two
Galileo numbers Ga = {111, 152}. For these spheroids a single particle exhibits the
so-called ‘sphere-like scenario’ (Zhou et al. 2017), and for suitable initial conditions a pair
of them undergo the three stages in a pairwise interaction (DKT). Our aim is to explore
collective effects for non-spherical particle shapes, while remaining relatively close to
the well-explored spherical shape. The overarching question is: How do relatively small
deviations from the spherical shape affect the settling behaviour of a dilute suspension of
rigid particles? In addition to many-particle simulations in large domains, we perform a
large set of DKT simulations of the mentioned spheroids as well as for the reference case
with spheres in which we analyse the effect of particle shape and of the angular motion by
either suppressing or allowing the latter.

The manuscript is structured as follows: in § 2 we present the mathematical model
describing the settling of particles in unbounded, otherwise quiescent fluid and, in § 3
we specify the numerical method and the physical and numerical parameters. Results are
presented in two steps: in § 4.1 we focus on many-particle cases, which represent the core
of this work, and in § 4.2 we analyse a set of auxiliary simulations of a DKT configuration
in order to support the observations made in the many-particle cases. In § 5 we discuss
the implications of the DKT results for the many-particle case. Finally, a summary and
conclusions can be found in § 6.

2. Problem description

We study the settling of particles under the action of gravity in an unbounded, initially
quiescent fluid. We consider an incompressible Newtonian fluid of density ρf and
kinematic viscosity ν. Particles are oblate spheroids of equatorial diameter d and aspect
ratio χ = d/a, where a is the length of their symmetry axis (see figure 3a,b). The particles
are assumed to be rigid with homogeneous mass density ρp, which is larger than that of
the fluid (ρp > ρf ). The gravitational acceleration g points in the negative z-direction,
g = −gez, where g is the modulus of the gravitational acceleration (see figure 3c).

The fluid velocity u = (u, v, w) is governed by the Navier–Stokes equations for an
incompressible, constant density fluid

∂u
∂t

+ (u · ∇) u = −∇p
ρf

+ ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

where p is the pressure. No-slip and no-penetration boundary conditions are
imposed on the surface of each particle. The linear and angular velocities of the
particles, up = (up, vp, wp) and ωp = (ωpx, ωpy, ωpz), respectively, are governed by the
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Newton–Euler equations

Vpρp
dup

dt
=

∫
S
τ · n dσ + (

ρp − ρf
)

Vpg + F , (2.2a)

d
(
Ipωp

)
dt

=
∫

S
r × (τ · n) dσ + T , (2.2b)

where Vp and S are the volume and the surface of the particle, respectively, n is a unit
vector normal to S pointing towards the fluid, τ is the stress tensor (τ = −pI + ρf ν(∇u +
∇uT)), r is a position vector with respect to the centre of gravity of the particle and F and
T are the solid–solid contact force and torque, respectively.

The problem is governed by four non-dimensional parameters, namely the density ratio
between the particles and the fluid, ρ̃ = ρp/ρf , the aspect ratio of the particles, χ , the
Galileo number, Ga, and the solid volume fraction, Φ. The solid volume fraction is defined
as Φ = Σp/(Σp + Σf ) where Σp and Σf represent the volume occupied by the particles
and the fluid, respectively.

In this work we are interested in the dilute regime, and we set the solid volume fraction
to Φ = 5 × 10−3. Regarding the shape of the particles, we select oblate spheroids of
aspect ratio χ = 1.5, which is a moderately small deviation from the spherical reference
geometry, that in turn has been extensively investigated in the past. In particular, it is
known that the settling regime map for oblate spheroids with χ = 1.5 resembles that of
a sphere (Moriche et al. 2021). We fix the density ratio at ρ̃ = 1.5 (which corresponds
e.g. to some plastic materials in water), and we select two values of the Galileo number:
one for which a single particle follows a steady vertical path (Ga = 110.56), and another
which leads to a single particle following a steady oblique path (Ga = 152.02).

2.1. Definitions
A velocity scale based on the gravitational acceleration, the density ratio and the size of
the particle can be defined as follows:

Ug =
√

|ρ̃ − 1| gD, (2.3)

where D = dχ−1/3 is the diameter of a sphere with the same volume as the spheroid
considered. Based on the velocity scale Ug (2.3) the Galileo number is defined as

Ga = UgD
ν

, (2.4)

and an a priori gravitational time scale can be formed as follows: τg = D/Ug. For future
reference let us define the relative velocity u(i)

pr = (u(i)
pr , v

(i)
pr , w(i)

pr ) of the ith particle with
respect to the mean fluid velocity as

u(i)
pr (t) = u(i)

p (t) − 〈u〉f (t), (2.5)

where the average operator 〈·〉f indicates spatial averaging over the entire domain occupied
by the fluid Ωf , viz.

〈·〉f = 1
Σf

∫
Ωf

(·) dx. (2.6)
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Let us also introduce the time-dependent settling velocity, averaged over the set of particles
as

ws(t) = 〈wpr〉p(t), (2.7)

where the average operator 〈·〉p indicates the ensemble average over the dispersed phase,
which for a set of Np particles is expressed as

〈·〉p =

Np∑
i=1

(·)(i)

Np
. (2.8)

Similarly, the standard deviation of the vertical and horizontal components of the linear
and angular particle velocity are defined as

wstd
s (t) = 〈w′(i)

pr w′(i)
pr 〉1/2

p , (2.9a)

ustd
h (t) = ((〈u′(i)

pr u′(i)
pr 〉p + 〈v′(i)

pr v′(i)
pr 〉p)/2)(1/2), (2.9b)

ωstd
v (t) = 〈ω′(i)

pz ω′(i)
pz 〉1/2

p , (2.9c)

ωstd
h (t) = ((〈ω′(i)

px ω′(i)
px 〉p + 〈ω′(i)

py ω′(i)
py 〉p)/2)(1/2), (2.9d)

where the prime symbol indicates that the quantity is the fluctuating part of the variable,
defined as

(·)′ = (·) − 〈·〉. (2.10)

Finally, it should be mentioned that the definition of the Galileo number used in this work
is equivalent to that used in Fornari et al. (2016b) and Ardekani et al. (2016) for spheroids,
and to that of Seyed-Ahmadi & Wachs (2021) for cubes. We have selected this definition
over the one used in some works dealing exclusively with spheroids (Zhou et al. 2017;
Moriche et al. 2021) in order to recover the same value of Ga when working with spheres
(χ = 1).

For a multiparticle case with a given parameter pair (Ga, ρ̃), independently of its solid
volume fraction Φ, we define the reference velocity wref as

wref (Ga, ρ̃) = ∣∣wpr
∣∣ , (2.11)

where the value of wpr in (2.11) is taken from the corresponding single-particle case. Please
note that, for the cases considered here, the single-particle case regime is steady, therefore
no (temporal or statistical) averaging is needed to compute wref in (2.11).

According to the above definitions of ws and wref , we define the average particle
Reynolds number

ReD = |〈ωs〉t| D
ν

, (2.12)

and the single-particle Reynolds number

Re0
D = wref D

ν
, (2.13)

where the operator 〈·〉t indicates temporal averaging.
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Case χ Ga ρ̃ [Lx × Ly × Lz]/D3 N Φ Work

G111 1.5 110.56 1.5 54.9 × 54.9 × 219.8 6336 5 × 10−3 Present
G152 1.5 152.02 1.5 54.9 × 54.9 × 219.8 6336 5 × 10−3 Present

M121 1 121.24 1.5 68 × 68 × 341 15 190 5 × 10−3 Uhlmann & Doychev (2014)
M178 1 178.46 1.5 85 × 85 × 171 11 867 5 × 10−3 Uhlmann & Doychev (2014)

Table 1. Parameters of the present cases and of those in Uhlmann & Doychev (2014).

3. Methodology

3.1. Numerical method
The Navier–Stokes equations (2.1) are integrated in time by means of a three-stage
Runge–Kutta scheme in which the viscous term is treated implicitly and the advective
term explicitly (Rai & Moin 1991; Verzicco & Orlandi 1996). The fractional step method
proposed by Brown, Cortez & Minion (2001) is used to fulfil the continuity constraint.
Spatial derivatives are approximated with central finite differences of second order on a
staggered, uniform, Cartesian grid.

The presence of the body is modelled by the direct-forcing immersed boundary method
proposed by Uhlmann (2005) and later extended to track the motion of non-spherical
particles by Moriche et al. (2021), where extensive validation of the method can be found.
Collisions are modelled with a repulsive short-range normal force (with a range �x) so as
to avoid non-physical overlapping of particles (details can be found in Appendix A).

In a triply periodic set-up, gravity continuously accelerates the system. Therefore, in
order to allow for a steady state, we add a constant-in-space source term to the vertical
momentum equation whose volume integral is equal (and opposite in sign) to the net force
exerted by the particles on the fluid (Höfler & Schwarzer 2000).

3.2. Computational set-up
The computational domain is a cuboid with triply periodic boundary conditions, whose
size is the result of a compromise between computational resource requirements and
physical realism. Based on preliminary tests we choose a domain size of approximately
55D in the lateral directions and approximately 220D in the vertical direction. Please
note that a full decorrelation in the vertical direction is not warranted once clustering
sets in, and in the horizontal direction once the clusters grow to a size comparable to
the computational domain. This lack of full decorrelation, which was also observed in
the case of corresponding spheres (Doychev 2014), is further discussed in Appendix B.
We select a spatial resolution of D/�x ≈ 21 (d/�x = 24), which is supported by the
work of Moriche et al. (2021). In their work the authors show that, compared with
a spectral/spectral-element solution, the error in the mean settling velocity of a single
spheroid of aspect ratio χ = 1.5, density ratio ρ̃ = 2.14 at Ga = 152.02 is smaller than
2 %. In the present case this results in a grid of [1152 × 1152 × 4608] points. Table 1
shows the parameters of the two simulations presented in this work.

3.3. Initialization
In order to initialize the flow around the particles we simulate an initial transient during
a time interval of 66.67D/〈w〉f in which the particles are fixed. The initial position of the
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Case Regime single part. Re0
D ReD

〈ws〉t

wref

〈wstd
s 〉t

wref

〈ustd
h 〉t

wref

〈Ṽ ′
i Ṽ

′
i 〉1/2

t

〈Ṽ ′
i Ṽ

′
i 〉1/2

rnd

G111 steady vertical 105 130 −1.2343 0.3753 0.1715 0.8695 Present
G152 steady oblique 158 192 −1.2135 0.3806 0.1784 0.9282 Present

M121 steady vertical 141 142 −1.0035 0.0924 0.0596 0.3452 Uhlmann & Doychev (2014)
M178 steady oblique 234 263 −1.125 0.1853 0.1249 0.6193 Uhlmann & Doychev (2014)

Table 2. Single-particle regime and time-averaged results of the present cases and those in the work of
Uhlmann & Doychev (2014).

particles follows a random uniform distribution. Their orientation is randomly distributed
with a maximum deviation of ±5◦ tilting angle with respect to the vertical axis. The
objective of constraining the angular position is to obtain a slight perturbation of the
angular position with respect to the stable position of settling spheroids at moderate Ga.
The same initial distribution of particles is used in both cases presented in table 1.

During the fixed-particle transient we impose the Reynolds number of the flow relative
to the particles, Re0

D, as obtained (as an output parameter) in the simulations with an
isolated mobile particle at the target value of the respective Galileo number, cf. table 2.
This is realized by means of a constant vertical pressure gradient, similar to the body
force which counteracts the acceleration of the system when particles are freely mobile
(Uhlmann & Doychev 2014). As will be shown later, the flow around the particles during
the initial fixed-particle transient mostly resembles that of the analogous single-particle
case at the given Re0

D, due to the low concentration of particles in both cases. It should
be mentioned that during this initial transient we obtain good decorrelation of all flow
velocity components in all spatial directions (see Appendix B). Once the particles are
released, the mean fluid flow relative to the particles is maintained through the above
mentioned body force. Therefore, if perfectly adjusted, a single particle would not exhibit
any vertical motion in the computational reference system, while the vertical motion of
the many-particle ensemble is entirely due to mutual interactions (Uhlmann & Doychev
2014).

4. Results

In this section we present the results obtained for many-particle cases after particles are
released. We also present additional simulations of settling particle pairs in order to analyse
their ‘DKT’ dynamics.

4.1. Clustering phenomena in many-particle cases
When particles are released, they start to interact with their neighbours by repeated DKT
events. The interaction between particles is intense in both cases G111 and G152, and rather
similar (see animations in the supplementary material). In the following we present: (i) the
enhanced settling and quantification of clustering, (ii) the angular motion of the particles,
(iii) the arrangement of particles’ trajectories and (iv) a visualization of the main features
of the flow.
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Figure 4. Time history of (a) enhancement of the settling velocity (ws), and standard deviation of (c) settling
and (d) horizontal velocity, normalized with the reference settling velocity from the single-particle counterpart
(wref ). (b) Temporal evolution of the standard deviation of Voronoï cell volumes (〈Ṽ ′

i Ṽ
′
i 〉1/2), normalized with

the value obtained for a random Poisson process (〈Ṽ ′
i Ṽ

′
i 〉1/2

rnd ). Reference data for spheres are from Uhlmann &
Doychev (2014).

4.1.1. Enhanced settling and quantification of clustering
Figure 4(a) shows the time history of the average particle settling velocity defined in
(2.9). It can be seen that, in both present cases, the ensemble of mildly oblate spheroids
reaches on average a much enhanced settling velocity magnitude after an initial transient
of approximately 400τg, after which the values saturate and continue fluctuating around
a value of roughly −1.25. This behaviour is quite in contrast to the known results for
spheres (also included in the figure for reference) for which a transition from expected
settling to enhanced settling occurs in the corresponding range of Galileo numbers, and
for which the enhancement of the settling velocity was found to be less pronounced (only
roughly half of the present increase). Instead, the present suspension of spheroids with
χ = 1.5 appears to behave qualitatively similar to the much more flattened (χ = 3), almost
neutrally buoyant (ρ̃ = 1.02) spheroids of Fornari et al. (2018), for which the magnitude
of the mean collective settling velocity was found to increase by over 30 %.

For completeness, let us report that the amplitude of the particle velocity fluctuations
(cf. figure 4c,d) follows a similar trend as the mean settling velocity, with a nearly
linear growth during the initial transient and subsequent fluctuations around time-averaged
values of approximately wstd

s ≈ 0.4wref , ustd
h ≈ 0.2wref . It should be noted that a clear

signature of the oblique motion of individual particles just after their release is visible in
case G152, as can be seen in terms of an initial peak of the intensity of the horizontal
particle motion visible in the inset in figure 4(d). After approximately 10τg this peak
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disappears, and the two suspensions of spheroids at different Galileo numbers exhibit very
similar temporal evolutions.

In order to investigate the spatial structure of the disperse phase, we make use of the
normalized Voronoï cell volume

Ṽi = V(i)
v

〈Vv〉p
, (4.1)

where V(i)
v is the volume of the ith cell of the Voronoï diagram obtained from a

three-dimensional tessellation of space based on the centroid locations of the particles
(Monchaux, Bourgoin & Cartellier 2012; Uhlmann & Doychev 2014). In order to quantify
the tendency to cluster we compare the standard deviation of Ṽi with the same quantity
obtained in a random Poisson process (RPP) of particles with the same shape and
with the same solid volume fraction. For a mean concentration of particles such that
Φ = 5 × 10−3, these RPP reference values are 〈Ṽ ′

i Ṽ
′
i 〉1/2

rnd = 0.4176 for oblate spheroids
of χ = 1.5 (determined in the framework of the present work) and 〈Ṽ ′

i Ṽ
′
i 〉1/2

rnd = 0.4146 for
spheres (given in Uhlmann 2020). The graph in figure 4(b) shows the temporal evolution
of the standard deviation of the Voronoï cell volumes, normalized with the reference
value from RPP. A direct qualitative correspondence with the temporal evolution of the
(magnitude of the) mean settling velocity in figure 4(a) can be observed. More specifically,
after a similar initial transient with an approximately linear growth of 〈Ṽ ′

i Ṽ
′
i 〉1/2, the

present suspensions of spheroids at both Galileo number values reach very large clustering
intensities, which by far exceed those reported for spheres (cf. case M178 from Uhlmann
& Doychev 2014). Based on the previous knowledge for settling spheres, and on the fact
that the present spheroids with χ = 1.5 are not too far from a spherical shape, the strong
clustering of the lower Galileo number case G111 is unexpected.

Next, we present time-averaged data of some of the time-dependent quantities discussed
above. We discard the initial transient, and we start collecting statistics at t = 500τg,
resulting in a sampling time interval of approximately 1000τg. Figure 5(a) shows the
time-averaged values of 〈Ṽ ′

i Ṽ
′
i 〉1/2 plotted vs the Galileo number. It can be clearly seen

that the present suspensions of spheroids feature strong clustering with little effect of
varying the value of the Galileo number. Interestingly, it turns out that the magnitude of the
mean settling velocity normalized by the single-particle reference value is approximately
proportional to the standard deviation of the Voronoï cell volumes normalized by its
random value, i.e. to the clustering intensity. This relation is shown in figure 5(b), for
the present spheroids and for the sphere suspensions of Uhlmann & Doychev (2014) and
of Doychev (2014). This observation should be checked with the help of additional datasets
in the future, since – if confirmed – it might open up a possibility to determine the mean
settling velocity of a collective from knowledge on the spatial structure of the dispersed
phase alone.

The distinct spatial arrangement of the spheroids compared with spheres can be further
characterized with the aid of the probability density functions (p.d.f.s) of the normalized
Voronoï cell volumes Ṽ . Figure 6 shows the p.d.f. of Ṽ of both cases with spheroids (G111
and G152) together with the p.d.f. of a RPP (Uhlmann 2020) and the p.d.f.s of two cases
with spheres taken from Uhlmann & Doychev (2014) (their cases M121 and M178). The
same qualitative behaviour is observed in both cases with spheroids: the probability of
finding volumes smaller than the average (Ṽ = 1) is high compared with a RPP. This
indicates that most of the particles form part of clusters. Similarly, the probability of
finding large volumes (Ṽ � 2) is higher than that of a RPP, which implies the presence
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i′ 〉1
/2

/
t

||〈w
s〉 t||

/w
re

f

(b)(a)

〈Ṽi
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Figure 5. (a) Time-averaged values of the standard deviation of Voronoï cell volumes, 〈Ṽ ′
i Ṽ

′
i 〉1/2

t , normalized
with the RPP reference values vs Ga. (b) Magnitude of the time-averaged mean settling velocity, ws, vs
〈Ṽ ′

i Ṽ
′
i 〉1/2

t . Reference data for spheres from Uhlmann & Doychev (2014) and Doychev (2014).
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Figure 6. Probability density function of the normalized Voronoï cell volumes in (a) linear and
(b) logarithmic scale. Reference data for spheres are from Uhlmann & Doychev (2014).

of particles in large void regions. Contrarily, case M121 from Uhlmann & Doychev (2014)
shows a tendency to a more ordered state, where the probability of finding volumes similar
to the average value is higher.

4.1.2. Angular velocity and orientation of particles
Figure 7(a) shows the time history of the standard deviations of the horizontal and vertical
components of the angular velocity of the particles normalized with wref /D. Figure 7(b)
shows the time history of the averaged and standard deviation of the tilting angle ϕv , which
is defined as the angle between the symmetry axis of the spheroid and the vertical direction
(0 ≤ ϕv ≤ 90◦). The time evolution of these four quantities is remarkably different from
the time evolution of the quantities reported in figure 4. Within a few gravitational time
units after the particle release all quantities in figure 4 increase from zero to values close
to their asymptotic time averages, after which they vary only very mildly. This indicates

963 A1-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.261


M. Moriche, D. Hettmann, M. García-Villalba and M. Uhlmann

0 500 1000 1500

0.05

0.10ω
D

/w
re

f

ωh
std

ωv
std

5ϕ
v
 (

d
eg

.)

〈ϕv〉p

〈ϕ′
vϕ

′
v〉p

10

1/2

t/τg

0 500 1000 1500

t/τg

(b)(a)

Figure 7. Time history of (a) standard deviation of the angular velocity and (b) average and standard
deviation of the orientation angle ϕv .
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Figure 8. Probability density functions of the (a) vertical and (b) horizontal components of the angular
velocity. The curves are fitted to a Laplace distribution whose parameter β is indicated in the legend. The
Gaussian curve is shown for comparison purposes.

that the angular motion of the particles shows less sensitivity to collective effects than
does the linear motion. Note that the converged values are slightly higher in case G152
when compared with case G111, except for 〈ϕ′

vϕ
′
v〉1/2

p , that presents values which are
approximately equal in both cases.

Now let us focus on the p.d.f. of these angular quantities. Figure 8 shows the p.d.f. of the
vertical and horizontal components of the angular velocity. We have tried several known
p.d.f.s and we found Laplace’s distribution

f (x;β) = (2β)−1 exp (|x| /β) , (4.2)

with β being a free parameter (cf. fitted numerical values in the figure), the best
fit to both components of the angular velocity. This highlights the exponential tails,
i.e. the importance of extreme events of the angular particle motion. The vertical
component shows, however, an approximately 20 % smaller value for β than the horizontal
counterpart, indicating a more localized distribution with higher kurtosis. Similarly, we
found the best fit of the estimated p.d.f. of the tilting angle ϕv with respect to the vertical
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Figure 9. (a) The p.d.f. of the tilting angle ϕv of cases G111 and G152 (the same information with the y axis
in logarithmic scale is shown in (b). A fitted gamma distribution is included (parameters from fitting included
in the legend).

to be a gamma distribution

f (x; k, θ) = xk−1

θkΓ (k)
exp (−x/θ) , (4.3)

where k and θ are the shape and scale parameters. Figure 9(a) shows the p.d.f. of ϕv

and the fitted Gamma distribution. The obtained fitting shows very good agreement in
the range 0◦ < ϕv � 30◦. For higher values ϕv > 30◦, the p.d.f. of each case shows a
lower decay rate compared with the fitted gamma distribution for both cases. The shape
parameter of the fitted gamma distribution in both cases (k ≈ 2.3) indicates a fast, but
non-abrupt approach to zero of the p.d.f. in the limit ϕv → 0+. Please recall that, from the
shape parameter of the gamma distribution, we can infer the following: when k ≤ 1 the
maximum probability is located at ϕv = 0 and then the p.d.f. decreases monotonically as
ϕv increases, when k > 1 the limit of the p.d.f. as ϕv → 0+ is zero (with strong gradients
in the vicinity of ϕv = 0 for values of k closer to unity), and when k ≥ 3 the distribution
shows a slow increase of the probability in the vicinity of zero (see figure 9b). Finally,
the non-intuitive zero value of the p.d.f. in the limit ϕv → 0+ can be explained by the
circumferential shape of the bins used to generate it. In order to obtain the p.d.f. for a
specific value of ϕv0, we define a bin by its edges [ϕva, ϕvb], where ϕva < ϕv0 < ϕvb. In
the limit ϕv → 0+ and for increasing resolution of the p.d.f. (ϕvb − ϕva → 0), the area
on the surface of a sphere between the edges tends to zero, and as a consequence the
probability of finding occurrences of ϕv such that ϕva < ϕv < ϕvb, also tends to zero.

4.1.3. Trajectories
Now we turn our attention to the trajectories of the particles. Figures 10, 11 and 12 show
the trajectories followed by the centre of gravity of the particles during a time span of
0.54τg leading up to three successive time instants in two perpendicular projections. With
this representation, considering the initialization procedure (§ 3.3) and if, hypothetically,
collective effects were absent, particles would be represented by single points in the case
G111 (single particle follows steady vertical trajectory) and by straight horizontal lines
in the case G152 (single particle follows steady oblique trajectory). The time instants
selected are t/τg ≈ 10 400 and 1500, which correspond to: (i) shortly after the particles
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Figure 10. Top view of trajectories of the particles’ centre of gravity during a time span of [t0 − Tt, t0], where
Tt = 0.54τg for cases G111 (a,c,e) G152 (b,d, f ). Trajectories are coloured according to the particle’s velocity
relative to the mean velocity of the mixture (red downwards, blue upwards).

are released, (ii) the end of the linear growth of ws and 〈Ṽ ′
i Ṽ

′
i 〉1/2 (see figure 4) and (iii) the

asymptotic state close to the end of the simulated time, respectively. Shortly after particles
are released (t/τg ≈ 10), there is almost negligible motion of the particles in case G111
(figures 10(a) and 11(a) show point-like trajectories) and a small lateral motion in case
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g

10D
t/τg = 8 t/τg = 428 t/τg = 1490

(b)(a) (c)

Figure 11. As in 10 but for case G111 only and viewed from the side.

G152 (figures 10(b) and 12(a) show trajectories with a noticeable horizontal component).
As both cases evolve, the trajectories show elongated shapes along the vertical direction,
indicating an enhancement of the settling velocity compared with the single-particle
configuration. On average, the length of the trajectories in the vertical direction keeps
growing during the constant acceleration phase (t � 400τg) forming columnar clusters
whose size is comparable to that of the computational domain (figures 10c and 10d, 11b
and 12b). Again, the similarity of both cases is clearly noticeable. There is, however, a
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g

10Dt/τg = 8 t/τg = 428 t/τg = 1490

(b)(a) (c)

Figure 12. As in 10 but for case G152 only and viewed from the side.

tendency of the clusters in the case of lower Galileo number to be more stable compared
with the case of higher Galileo number when t ≈ 400τg (see figures 11b and 12b). We
believe that the smaller flow disturbances of the low Galileo number case allow the
presence of clusters with a cross-section of the order of tens of D (see figure 10c) to fill the
entire domain in the vertical direction, whereas clusters of the same size in the horizontal
direction of the higher Galileo number case (see figure 10d) are not stable and thus, appear
to be more localized. This could explain the higher enhancement of the settling velocity
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, t/τg = 0 , t/τg = 0 , t/τg = 1388.52 , t/τg = 1167.13

g

g(e) (g) (h)

(b)(a) (c) (d )

( f )

Figure 13. Visualization of isocontours of QD2/U2
g = 0.7 (case G111) and 0.83 (case G152) and w̃ = 〈w〉f −

0.5Ug. Particles are represented in pink, isocontours of Q with grey-coloured surfaces and isocontours of w̃
with yellow surfaces. (a–d) Show the whole domain (Q and w̃), (e–h) show a part of the domain (only Q).
First and second columns correspond to the instant before the release of the particles of cases G111 and G152,
respectively. Third and fourth columns correspond to a converged state of each case.

with respect to the single particle case observed in the case at lower Galileo number
(figure 4a) but it should be noted that this is only possible due to the periodic configuration.
Therefore, the larger enhancement in ws observed in figure 4(a) for case G111 should be
interpreted with care. In the horizontal direction, clusters show a continuous growth until
they reach a size comparable to the computational domain (figure 10e, f ).

4.1.4. Flow visualization
Figure 13 shows visualizations of the cases G111 and G152 just before releasing the
particles (panels a,b,e, f ) and two converged states (panels c,d,g,h). In the figure the
particles are represented together with isocontours of the second invariant (Q) of the
velocity gradient tensor (Hunt et al. 1988) and isocontours of the filtered vertical velocity
w̃. The filter applied to w is a Gaussian filter of width 2.3D used to visualize large-scale
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velocity fluctuations. Just before particles are released (t/τg = 0) we observe that in
case G111 (Re0

D = 105) the most common flow structure is a toroidal vortex around
each particle (figure 13e), whereas in case G152 (Re0

D = 158) we also frequently observe
a double-threaded wake (figure 13f ). The similarity of these vortical structures with
the analogous single-particle case at the given Re0

D is due to the low concentration of
particles in both cases. After convergence has been reached (t/τg > 1000) both cases
show large regions of high-speed downward flow, which are absent when particles are
released (t = 0). The strong clustering of both cases discussed above is clearly seen when
comparing the initial and converged snapshots of both cases.

4.2. Drafting–kissing–tumbling
Since animations show that interactions between particle pairs occur frequently in the
many-particle cases, we now proceed to an analysis of the interaction of such pairs in
isolation. As we will see, these interactions are quite sensitive to the particle shape, and
we believe that pairwise interactions are the key to understanding the tendency of oblate
spheroids to cluster at Galileo numbers for which spheres do not exhibit clustering. We
restrict the analysis to one combination of Galileo number and density ratio (Ga = 111,
ρ̃ = 1.5) for which a single spheroid of aspect ratio χ = 1.5 and a single sphere result in
a steady vertical regime (Jenny et al. 2004; Moriche et al. 2021). As mentioned above,
many-particle cases in the dilute regime (Φ = 5 × 10−3) with this combination of Ga and
ρ̃ present strong clustering in the case of oblate spheroids with χ = 1.5 and no clustering
in the case of spheres (Uhlmann & Doychev 2014). We include an additional series in this
set of DKT cases, in which the angular motion is suppressed. Therefore, we have these
four configurations:

(i) Free-to-rotate spheres (angular motion enabled).
(ii) Rotationally locked spheres (angular motion suppressed).

(iii) Free-to-rotate spheroids (angular motion enabled).
(iv) Rotationally locked spheroids (angular motion suppressed).

This is motivated by the study of Kajishima (2004) who demonstrated that suppressing
the rotation of spheres leads to an enhanced clustering tendency. We perform a parametric
sweep of 72 initial relative particle positions for each configuration, resulting in a total
number of 288 simulations (see figure 14i). The problem set-up is analogous to the set-up
of the many-particle cases presented in § 3, except that only two particles are present, and
that we use an inflow/outflow configuration in the vertical direction as described in detail
in Appendix C.

Figure 14 shows the trajectories of 16 selected cases projected onto a vertical plane
intersecting the particles at their initial position. These cases correspond to different initial
conditions of the four selected configurations. Please note that in these four cases particles
do collide at least once, while this is not the case for all initial separations (as will be shown
in figure 16 below). If we focus on the trajectories of the trailing particles, there is a clear
similarity in free-to-rotate and rotationally locked spheroids: for these two configurations
the trailing particle of the four initial conditions shown in the figure moves laterally until
its centre is vertically aligned with the leading particle. Then, the trailing particle drifts
towards the leading particle following an almost vertical path. On the contrary, spheres
present a different path along which the trailing particle approaches the leading particle.
The trailing particle of both free-to-rotate and rotationally locked spheres presented in
the figure drifts towards the leading one following an oblique path for a significant time
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Figure 14. Trajectories of the trailing and leading particles for selected initial positions of spheres (a–d) and
spheroids with χ = 1.5 (e–h), all with ρ̃ = 1.5 at Ga = 111. The reference frame is translating downwards at a
constant speed slightly smaller than the settling velocity of a single particle (0.975wref ). Each panel contains the
data of the cases with angular motion enabled and suppressed for a single initial condition and particle shape
(see legend). (i) A sketch of the problem and the coordinates used is presented, in which the leading particle
is represented with its actual shape and the trailing particle with a marker. The point markers correspond to all
the initial conditions which we have computed, and the symbol markers to those initial conditions which are
shown in panels a–h. (j) Sketch of the x′, y′ coordinates.
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Figure 15. Trajectory of the trailing particle relative to the leading one for (a) spheres and (b) spheroids. The
close-up trajectories shown in the insets in (a,b) are coloured with the angular velocity perpendicular to the
plane shown (see legend). Line colour and marker type follow the same convention as in figure 14.

during the final approach. Interestingly, free-to-rotate spheres present a lateral shift (by
roughly D/4) in their trajectory compared with their rotationally locked counterparts. This
is clearly evident in figure 14(a), where the trailing particle of the free-to-rotate pair first
moves away laterally from the leading particle, then makes its way in a straight, oblique
path towards it.

In figure 15 we show the trajectories of the trailing particle relative to the centre of the
leading particle for the same configurations as presented in figure 14. It can be seen how the
rapid alignment along the vertical axis exhibited by the spheroidal particles results in the
possibility of finding the trailing particle on either side of the vertical axis after the initial
contact. Spheres, on the other hand, which do not fully align vertically, do not cross the
vertical axis through the leading particle during the entire interaction. A very interesting
result is the robustness of the lateral shift of the trailing particle for free-to-rotate spheres.
Independently of the four initial conditions shown in the figure, the path followed by the
trailing particle in the free-to-rotate sphere configuration converges to a single master
curve. This feature has been observed for a number of other initial conditions. We attribute
this lateral shift to a rotation-induced lift force resultant from the finite angular velocity
(around the horizontal axis perpendicular to the plane shown in the figure) reached by these
particles (see inset of figure 15a). The origin of the rotation of the particles (ωp,y′ < 0) is
the shear seen by the trailing particle because of the deficit in vertical velocity in the wake
of the leading particle. A detailed analysis of the forces acting on a particle in motion in
the wake of another particle, however, is outside the scope of the present contribution, and
it is left as a worthwhile topic for future studies.

Next we consider on the complete set of initial conditions of all four configurations.
Figure 16 shows maps of the time to first collision, tcI , and the interaction time, tcR,
for the cases showing at least one DKT event. The interaction time, tcR, measures the
time between the first collision and the smallest time after which the distance between
the particles grows monotonically (see precise definitions in Appendix C), evaluated as
a function of the initial position of the trailing particle. The curve which delimits those
initial conditions that lead to particle contact from those which do not is very similar in all
four cases (figure 16a,b). This means that the region of attraction in the explored range of
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Figure 16. Maps of (a,b) time to first collision tcI and (c,d) interaction time of the DKT cases as a function of
the initial condition of the trailing particle. The x′ axis for the rotationally locked cases is flipped to facilitate
the comparison. Cases in which no interaction occurred in the evaluated time are represented with black dots
and interacting cases are represented with coloured markers. The red line in panels (a,b) is an isocontour of
tcI = 100τg. Panels (e, f ) contain the ratio of tcI of free-to-rotate cases with respect to their rotationally locked
counterparts (tFTR

cI /tRL
cI ).

relative positions is essentially insensitive to the precise particle shape (sphere vs mildly
oblate spheroid) and to their ability to rotate. Both spheres and the spheroids considered,
independently of angular motion being suppressed or not, present a roughly cylindrical
region of radius approximately 3D located downstream of the leading particle in which
particles will interact. Now let us consider the time to first collision, tcI , which can give us
insight into the particles’ response to wake attraction mechanisms in an integral sense, as a
function of the initial relative position of the particles (figure 16a,b). We find similar values
of tcI for free-to-rotate spheroids and rotationally locked spheroids and spheres, whereas
free-to-rotate spheres present somewhat larger values for the same initial conditions. This
result suggests that the angular motion of spheres causes these particle pairs to approach
more slowly than corresponding non-rotating spheres and oblate spheroids. The latter
do not rotate continuously, instead the angular motion during the approach phase is
characterized by small oscillations around the equilibrium position (with the symmetry
axis vertically aligned). For the sake of clarity we include the ratio of tcI of free-to-rotate
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particles with respect to their rotationally locked counterparts in the auxiliary panels (e, f )
for each initial condition. It can be seen that free-to-rotate spheres with a small horizontal
shift in their relative position show ratios as large as 2.5. Furthermore, this ratio increases
with the vertical distance within the range of parameters evaluated. These differences
disappear for the cases whose initial relative position has almost no horizontal shift,
indicating that a larger horizontal shift is required to trigger the rotation of the trailing
sphere. Next let us focus on the interaction of particle pairs after the first collision. Only a
maximum of one collision is observed in the entire datasets for rotationally locked spheres
and spheroids and free-to-rotate spheres. Free-to-rotate spheroids, however, present two
or three collision events per parametric point for most of the chosen initial conditions,
except for a few of them in which a single, or even four collisions occur. Figure 16(c,d)
shows the interaction time tcR, where a clear ascending order of configurations with
respect to the duration of particle-pair interactions is identified: (i) free-to-rotate spheres
present an almost negligible interaction time, (ii) rotationally locked spheres interact
during approximately 5τg, the value of tcR increases to approximately 20–40τg for the (iii)
rotationally locked spheroids and it reaches values above 100τg for the (iv) free-to-rotate
spheroids.

In the following we will analyse the temporal evolution of the distance separating the
two interacting particles after the first contact. For this purpose we set the time of the first
contact arbitrarily to zero, and then average the data over the ensemble of realizations with
different initial separations. We define the average post-collisional distance as follows:

L
(
t̃
) =

N∑
i

‖xi
r,trail

(
t̃
)‖

N
, (4.4)

where xi
r,trail represents, for each case i, the relative position of the trailing particle with

respect to the leading particle and t̃ measures the time after the first collision (recall
from figure 16(c,d) that the value of tcI is case dependent). Figure 17 shows the average
post-collisional distance, L(t̃), for the four investigated configurations. First, let us compare
rotationally locked spheres vs rotationally locked spheroids. On average, rotationally
locked spheres drift away from each other a distance of approximately 2.5D in the first
10τg after the initial contact (figure 17b). The scenario for rotationally locked spheroids
is, on average, slightly more complex. There is a local maximum of the inter-particle
distance at t̃ ≈ 20τg, after which particles start to approximate each other again, and a
local minimum of L at t̃ ≈ 30τg, after which particles drift away from each other. Second,
let us focus on the effect that angular motion has on both particle shapes considered. For
the spheres, the angular motion results in particles staying much further away from each
other after the collision, with an approximately constant offset of around 1D for t̃ > 10τg.
This considerable effect due to the spheres’ rotation can be understood from figure 18,
which depicts the relative motion of particle pairs for exemplary cases, as will be discussed
in more detail below. Conversely, when angular motion is allowed for spheroids, particles
remain on average closer to each other at times larger than approximately 10τg after the first
collision, and the local maximum of L observed for the rotationally locked counterparts is
more pronounced.

Let us now identify possible phenomena that lead to the strong differences in the
pairwise interaction times after the first collision. First, the larger separation observed
in spheres as compared with spheroids just after the first collision may be attributed to
the mechanism by which pairs of particles start to tumble after they contact each other.
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Figure 17. (a) Time history of average distance (4.4) after the first contact for the four configurations
considered in the DKT configuration (see legend). Non-colliding cases are excluded from the plot. (b) Zoom
of panel (a) (see dashed rectangle in (a)).

According to Fortes et al. (1987), vertically aligned spheres which are in contact form an
unstable system which is the actual cause of the tumbling phase. This instability is due to
the fact that two spheres vertically aligned can be seen as an elongated body. Such body
would tilt so that it settles maximizing drag. Since the pairs of particles considered are not
connected, they separate from each other shortly after they start to tilt. The ratio between
height and width of the body formed by two vertically aligned and touching spheres is
equal to 2, while the same quantity for spheroids (with their axis of symmetry aligned
with the vertical) equals 2/χ , which amounts to 4/3 in the present case. Therefore, we
can expect a more abrupt initial tumbling motion in the case of spheres. Please note
that if the oblate spheroids considered had an aspect ratio of χ = 3, as considered by
Fornari et al. (2018), the ratio between height and width becomes 2/3, which is smaller
than unity. In such a situation the tandem of vertically aligned particles would be even
more stable. Indeed, Fornari et al. (2018) reported a stick mechanism in which the oblate
spheroids stay together, suppressing the tumbling phase. Regarding the angular motion,
two different effects are considered as candidates to explain the lower values of the
particle-pair separation distance L for spheroids and higher values of L for spheres, when
compared with their rotationally locked counterparts. In the case of spheroids the angular
motion allows the particles to have a stronger rocking motion around a horizontal axis after
their first collision. This rocking motion is a consequence of the leading particle tilting
when pushed downwards by the trailing particle. Figure 18(d) shows the tilting of the
leading particle and the consequent rocking motion after the first collision. This results in
a zig-zag trajectory and, as a consequence, particles stay, on average, closer to each other,
thereby increasing the probability for repeated collisions. The subsequent collisions show
similar features, but the amplitude of their rocking motion is decreased, and the distance
between the particles after the collisions is increased. In the case of spheres, the distance
between centres of free-to-rotate spheres is approximately 1.5 times larger than that of the
rotationally locked counterparts. We attribute this to a rotation-induced lift force on the
trailing particle that increases the distance between the two particles. This rotation can be
appreciated in figure 18(b), and its effect on the relative trajectory between the particles is
visible in figure 15(a).
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Figure 18. Overlay of consecutive snapshots of the different DKT configurations for the cases whose trailing
particle starts at xr = (0.625, 7.5)D. The initial and final snapshots are indicated by highlighting the particles’
contour. The time interval selected is such that it starts at the first contact (t = tcI) and ends after 16τg for
spheres and 32τg for spheroids, sampling 8 equispaced time instants. The time between consecutive snapshots
�t is indicated in the figure. The reference frame is translating downwards at a speed slightly smaller than
the settling velocity of a single particle (0.975wref ). Particles are identified by colour (trailing: green, leading:
purple). Time and angular position are indicated with a small mark whose colour changes with time.

5. Discussion

On the one hand, our present many-particle simulations show that mildly oblate spheroids
(with an aspect ratio of 1.5) form strong clusters at a comparably low value of the Galileo
number, for which an isolated particle in ambient fluid settles in the steady vertical regime.
This observation is in contrast to the known behaviour of ensembles of spheres, for which
the Galileo number has been identified as a critical parameter with respect to the onset of
wake-induced clustering (Uhlmann & Doychev 2014). This clustering transition in the case
of spheres occurs in the range Ga = 121 . . . 178 which encloses the value Ga = 155.8 at
which an isolated particle’s path regime bifurcates from steady vertical to steady oblique
(Zhou & Dušek 2015). The explanation proposed by Uhlmann & Doychev (2014) links the
onset of clustering in the case of spheres to the enhanced horizontal mobility of individual
particles above the oblique-path threshold, which causes an increase of the frequency of
particle–particle encounters. In order to make this point clearer, let us consider the fact
that, in the wake of a given particle, a ‘region of attraction’ can be defined, i.e. a spatial
region of limited extent within which a trailing particle near equilibrium will experience
a modified hydrodynamic force which has the effect that – without further perturbations –
it will continuously approach the leading particle until contact. Now let us consider the
hypothetical case of a set of mono-disperse particles which are initially all located outside
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of any other particles’ region of attraction. If these particles are settling in the steady
vertical regime in an unbounded ambient fluid, they simply move as a group without
changing their relative positions, and they will, therefore, never come into contact. If,
however, each individual particle of this ensemble settles in a steady oblique regime
(with a random azimuthal angle), there exists a finite probability for individual particles
to encounter another particle’s region of attraction, and to come into direct contact. If
the conditions are such that an interacting particle pair (on average) encounters one (or
more) additional particle(s) before separating again, initial seeds will eventually lead to
large-scale cluster formation through accretion. Hence, we can conclude that horizontal
particle mobility can have the effect of enhancing the tendency to cluster in this scenario.
However, as we have observed in the present many-particle simulations, oblate spheroids
with aspect ratio χ = 1.5 apparently do not require this mechanism in order to form
columnar clusters. This is in accordance with the results of Fornari et al. (2018) for oblate
spheroids at larger aspect ratio (χ = 3), lower Galileo number (Ga = 60) and smaller
density ratio (ρ̃ = 1.02) which likewise appear to form clusters.

On the other hand, we have seen in the present series of DKT simulations that pairs
of mildly oblate spheroids, which are initially positioned such that the trailing particle
is located inside of the leading particle’s region of attraction, interact for a significantly
longer time than spherical counterparts at corresponding parameter points. We have
observed that the difference in interaction time is caused by two factors: first, spheroids
approach each other at a somewhat faster rate than spheres during the drafting phase;
second, spheroids remain in close proximity over a significantly longer duration after
the first contact. This is qualitatively in line with the results of Ardekani et al. (2016)
in their DKT simulation of spheroids with larger aspect ratio (χ = 3), smaller Galileo
number (Ga = 80) and smaller density ratio (ρ̃ = 1.14). These authors observe that those
flatter objects do not tumble, but instead remain locked in position as a stack after the
initial contact. Translating our result on the isolated pairwise interaction to the (dilute)
many-particle configuration implies that the observed increase in the interaction time
between pairs of particles can also enhance the tendency to form large-scale clusters.
This is due to the fact that once a pair of particles gets into contact, it will have a higher
probability of attracting an additional particle before separating, if the original pair has an
extended contact duration. Hence, this argument suggests that an increase in the interaction
time between pairs of particles can lead to large-scale clustering, which is a mechanism
that is different from (and complementary to) the above process by enhancement of lateral
mobility.

Figure 19 shows a sketch which is intended to contrast the above two routes of cluster
formation in the dilute regime for sphere-like particles. Starting from the (non-clustering)
baseline case with spherical particles at a Galileo number of O(100) in the steady
vertical regime (lower left corner of the (Ga, χ)-plane in figure 19), clustering can be
enabled by either one of the following two options: (i) by increasing the probability of
particles entering their peers’ attractive wake region (which is achieved by increasing
the horizontal particle mobility, i.e. through increasing the spheres’ Galileo number
Ga); (ii) by increasing the temporal interval over which particles remain close to each
other during wake-induced encounters (which can be achieved by replacing spheres with
oblate spheroids, i.e. by way of increasing the particles’ aspect ratio χ ). Please note
that additional triggers of cluster formation (besides lateral particle mobility and close
interaction duration) might be at play, such as the growth of the spatial extent of the wake
with increasing Galileo number. In addition, it remains to be understood how the density
ratio influences the mechanisms mentioned above. Further research would be necessary to
properly answer these questions.
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Figure 19. Summary sketch of clustering mechanisms analysed in this work (intense DKT interactions) and
from the reference work of Uhlmann & Doychev (2014) (promoted particle encounters by horizontal motion).

6. Conclusions

We have performed PR-DNS of many heavy non-spherical particles settling under gravity.
The particles are oblate spheroids of aspect ratio 1.5 (which represent a modest deviation
from a spherical shape) and density ratio ρ̃ = 1.5; the global solid volume fraction is
0.005 such that the suspension can be considered as dilute. Two Galileo numbers are
considered, namely 111 and 152 for which a single oblate spheroid follows a steady
vertical and a steady oblique path, respectively. In contrast to previous results for spheres
(Uhlmann & Doychev 2014) we have found that the qualitative difference in the single
particle regime does not result in a qualitatively different behaviour of the multiparticle
cases: at both Galileo number values a strongly inhomogeneous spatial distribution of the
disperse phase in the form of columnar clusters is observed, with a significantly enhanced
average settling velocity as a consequence. A similar result has previously been reported
for PR-DNS of significantly flatter spheroids (with χ = 3) and for lower density ratio
(ρ̃ = 1.02) by Fornari et al. (2018). Here, we have used Voronoï tessellation as a basis for
the analysis of the structure of the particulate phase. The intensity of clustering has been
measured with the aid of the standard deviation of the Voronoï cells’ volume, normalized
with the value obtained from a RPP (Monchaux, Bourgoin & Cartellier 2010). It turns
out that the enhancement of the average settling speed is approximately proportional to
the standard deviation of the Voronoï cell volumes when considering both the present
spheroids as well as the spheres of Uhlmann & Doychev (2014) as a joint dataset. This
result, however, requires further confirmation through additional data points before its
potential implications can be evaluated. Note that the amount of enhancement of the
settling velocity may still depend on the domain size, since the size of particle clusters
approaches the former.
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Motivated by the lack of influence of the single-particle regime upon the statistical
features of the multi-particle settling we have carried out a thorough analysis of pairwise
interactions of particles in the well-known DKT set-up, conducted in a computational
domain with inflow/outflow boundary conditions in the vertical direction. We have
considered four configurations, namely oblate spheroids of aspect ratio 1.5 and spheres,
with and without suppression of the angular motion, with density ratio ρ̃ = 1.5 and a
Galileo number such that a single particle would follow a steady vertical path (Ga = 111).
Through systematic variation of the particle pair’s relative initial position we have found
that the region of attraction for both particle shapes, with and without rotation, is very
similar. However, in the case of free-to-rotate spheres the trailing particle’s trajectory is
horizontally shifted towards larger radial distances, resulting in a prolonged drafting phase.
Regarding the particles’ tumbling phase, we have shown that spheres and spheroids behave
in a qualitatively different manner. Spheres undergo at most a single collision, and they
quickly separate afterwards. Rotationally locked spheroids also experience a maximum
of one collision, but they remain close to each other for relatively long times. Finally,
free-to-rotate spheroids exhibit two collision events in most of the cases in which a DKT
event is observed, and, consequently, their average interaction time is the maximum out of
the four investigated configurations.

To summarize, we observe a shape-induced increase in the interaction time when two
particles happen to ‘meet’ (i.e. when one of them enters the other particle’s wake region),
such that the probability of additional particles joining the initial pair is increased with
respect to the baseline case of spheres. Hence, the tendency to form a large-scale cluster
increases. This is in contrast to the mechanism for spheres (as proposed by Uhlmann &
Doychev 2014), where the clustering transition is believed to be triggered by the primary
bifurcation of the isolated particle’s wake flow (from axisymmetric vertical to planar
oblique) that leads to lateral mobility, hence increasing the probability of mutual particle
encounters. As a consequence of these two observations, we conclude that the mechanism
for the initiation of columnar clusters in the case of a dilute suspension of modestly oblate
spheroids is in a sense orthogonal to the mechanism that is believed to be at work in the
counterpart with spherical particles.

Since the qualitatively different behaviour of spheroids (as compared with spheres) has
now been established both for moderately flat geometries (χ = 3, Fornari et al. 2018)
and for modestly flat ones (χ = 1.5, present work), the question of a possibly finite
critical aspect ratio poses itself naturally. Future work should be aimed in this direction.
Furthermore, a thorough analysis of collective effects in prolate spheroids in a comparable
parameter range is still lacking.

Supplementary data. Supplementary material (animations) are available at https://doi.org/10.5445/IR/
1000151148.
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Appendix A. Collision model

Here, we describe the algorithm used to handle particle–particle contact in this work. For
the present case of a dilute suspension we adopt a simple repulsion model in which contact
forces are determined from the distance separating a given particle pair. Each contact
event involves only a pair of particles, and the resultant contact force is assumed to be
a point force. Hence, we need to define a contact point, a direction and a force intensity.
In this work we consider only normal forces with a quadratic law similar to the one used
in Uhlmann & Doychev (2014) for spherical particles, originally proposed by Glowinski
et al. (2001).

The main issue when working with non-spherical particles is that the contact point and
the normal direction are not uniquely defined. The most popular methods to determine
the contact parameters between spheroids in the literature are the common normal (Lin
& Ng 1995) and the geometric potential (Ng 1994). The common normal method is very
attractive since it naturally yields the contact point and the normal direction. However,
the resultant system of equations is under-determined and undesired solutions can be
obtained. Kildashti et al. (2018) overcame this issue by an iterative process. There is,
however, a non-solved issue which arises when the overlapping distance between the
spheroids is exactly zero, or very small, leading to an ill-determined system. On the other
hand, the geometric potential approach is particularly attractive when dealing with simple
geometries like spheroids, in which the contact point is easily determined. The main
drawback of the geometric potential is the definition of the normal direction. In this work
we propose to use the geometric potential to determine the contact point, but determine
the normal direction with a slight modification of the algorithm originally proposed by Ng
(1994).

In order to apply the geometric potential method we consider the continuous function
representation (CFR) of a spheroid using the potential Γ defined as

Γ (x, y, z) = Ax2 + By2 + Cz2 + 2Fyz + 2Gzx + 2Hxy + 2Px + 2Qy + 2Sz + E, (A1)

where the coefficients {A, B, C, E, F, G, H, P, Q, S} are functions of the spheroid
parameters (equatorial diameter d and symmetry axis length a) and the particle’s position
and orientation. For a point on the surface of the spheroid Γ = 0. The coefficients in (A1)
are easily obtained from the CFR of the spheroid expressed in the body-fixed reference
system

Γ (xb, yb, zb) =
(

xb

d/2 + �x/2

)2

+
(

yb

d/2 + �x/2

)2

+
(

zb

a/2 + �x/2

)2

− 1, (A2)

where (xb, yb, zb) are the coordinates of a point xb expressed in the body-fixed coordinate
system (see figure 3a) and where we have included a force range of �x/2 in order to
minimize the effect of overlapping support of the diffuse interface during particle approach
(see figure 20b). After some algebra and using the relation xb = R(x − xp), where R is the
rotation matrix to obtain body-fixed coordinates from the global coordinate system, one
reaches

A =
∑

i

UiR2
i1, (A3a)

B =
∑

i

UiR2
i2, (A3b)
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C =
∑

i

UiR2
i3, (A3c)

F = 1
2

∑
i

UiRi2Ri3, (A3d)

G = 1
2

∑
i

UiRi3Ri1, (A3e)

H = 1
2

∑
i

UiRi1Ri2, (A3f )

P = −1
2

∑
r

xp,r
∑

i

UiRirRi1, (A3g)

Q = −1
2

∑
r

xp,r
∑

i

UiRirRi2, (A3h)

S = −1
2

∑
r

xp,r
∑

i

UiRirRi3, (A3i)

E =
∑

s

xp,s
∑

r

xp,r
∑

i

UiRirRis − 1, (A3j)

where U = ((d/2 + �x/2)−2, (d/2 + �x/2)−2, (a/2 + �x/2)−2). In the following we
introduce the subscript 1 or 2 to identify each of the spheroids participating in a collision,
which are defined by their potentials Γ1 and Γ2. The contact point is defined as the
midpoint between the deepest point of spheroid 1 in 2, c1|2, and the deepest point of
spheroid 2 in 1, c2|1. To obtain the deepest point of 1 in 2 we minimize the function
L = Γ2 + λΓ1. The following linear system is obtained:

⎡
⎣A2 + λA1 H2 + λH1 G2 + λG1

H2 + λH1 B2 + λB1 F2 + λF1
G2 + λG1 F2 + λF1 C2 + λC1

⎤
⎦

⎡
⎣xλ

yλ
zλ

⎤
⎦ = −

⎡
⎣P2 + λP1

Q2 + λQ1
S2 + λS1

⎤
⎦ . (A4)

We can obtain a solution for the linear system (A4) in terms of λ with Cramer’s rule

xλ = K1

K
, yλ = K2

K
, zλ = K3

K
, (A5a–c)

where K, K1, K2 and K3 are the determinants of the matrix of the linear system (A4).
Substituting (A5a–c) in the potential of spheroid 1 leads to a sixth-order polynomial for λ

Γ1 (xλ, yλ, zλ) = 0. (A6)

Now, we define λmin as the real-valued solution out of the set λi (i = 1, 6) for
which Γ (λmin) = mini Γ (λi). The deepest point of spheroid 1 inside spheroid 2 is
c1/2 = (xλmin, yλmin, zλmin). If Γ2(c1|2) > 0, then contact does not exist, and the
computation of c2|1 is skipped. If Γ2(c1|2) = 0, c2|1 = c1|2. If Γ2(c1|2) < 0, the point c2|1
is obtained analogously to c1|2. In the event of collision, the contact point c is defined as
the arithmetic average position c = (c1|2 + c2|1)/2.
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Spheroid 1 Spheroid 2

c c1|2c2|1

n1

n2
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(orig.)
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Surface
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Force range




δ

Force range

Spheroid 2

Surface

r1
r2

n
c

F1

F2

T1

T2

(b)(a)

Figure 20. (a) Sketch of the two spheroids indicating the contact force and torque in each particle and the
normal direction at the contact point. (b) Sketch of the elements involved in determining the contact point (c),
the normal direction at the contact point (nc) and the overlapping distance (δ). The normal direction given by
the original method (Ng 1994, n(orig.)

c in panel b) is also included for comparison purposes.

The normal direction to the contact, nc, according to the original method is defined
by the line connecting the points c1|2 and c2|1, nc = (c2|1 − c1|2)/‖c2|1 − c1|2‖. However,
the line connecting the two deepest points is not (in general) aligned with the direction
obtained from the common normal method. Therefore, we propose to define the normal
direction at the contact point as nc = (n1 − n2)/2, where n1 (n2) represents the unitary
normal vector to spheroid 1 (2) at point c1|2 (c2|1). It should be noted that nc is not exactly
normal to any of spheroids 1 or 2.

Finally, the modulus of the normal contact force is defined as Fn = δ2/J, where δ is the
overlapping distance (δ = nc · (c1|2 − c2|1)) and J is a constant whose value depends on
the submerged weight of a single particle, Ws, as J Ws/D2 ≈ 2.5 × 10−4 (we have checked
that our DKT results are not sensitive to the precise choice of the stiffness constant J). This
leads to the following forces and torques on each of the colliding two particles in a pair:

F 1 = −F 2 = −Fnnc, (A7a)

T 1 = r1 × F 1, (A7b)

T 2 = r2 × F 2. (A7c)

Please note that, compared with spheres, normal forces can generate torque in the
non-spherical case (see figure 20a). Furthermore, the pair of torques does not need be
equal in magnitude.

Appendix B. Two point autocorrelation functions

Figures 21 and 22 show the two point autocorrelation functions of the horizontal fluid
velocity component, Ruu, (panels a–c) and of the vertical counterpart, Rww, (panels d–e)
for cases G111 and G152, respectively, together with the time history of Rww at the furthest
vertical and horizontal position (panel f ). When particles are fixed (t < 0) all signals are
fully decorrelated within the domain. After particles are released the horizontal velocity
remains fully decorrelated until the end of the simulated time (see figures 21a–c and
22a–c), whereas the vertical velocity acquires correlations which do not decay to zero
at later times (figures 21d–e and 22d–e) as will be discussed in the following.
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Figure 21. Autocorrelation functions of the (a–c) horizontal fluid velocity component, Ruu, and of the (d–e)
vertical counterpart, Rww, for case G111. ( f ) Time history of Rww at the furthest vertical and horizontal position.
The time interval to compute each curve in panels (a–e) is shown in the legend, and the corresponding line styles
are used piecewise in panel ( f ).
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Figure 22. Same as 21 but for case G152.

Along the vertical direction, Rww presents an initial fast growth (0 � t/τg � 300). For
later times, the curves Rww(rz) are similar, except for a small oscillating behaviour in
time. They show a monotonic decreasing behaviour in space with positive values over
the entire domain (0 < rz/D < 110). This is the footprint of the fast formation of robust
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columnar structures that occupy the whole domain in the vertical direction. The temporal
evolution of Rww at its furthest distance (rz,max = 110) supports the fast growth and the
small oscillation with time commented above.

The behaviour of Rww along the horizontal direction is somehow more complex than
along the vertical direction. First, it presents an almost decorrelated solution until 300τg.
In both cases there is a turnover point of the value of Rww, and for the case G111, even
two when 300 � t/τg � 600. This can be explained by the growth of the clusters in
the horizontal direction being a slow process compared with their growth in the vertical
direction. Furthermore, once the clusters grow to a size comparable to the computational
domain and because of continuity, there are negative values at rx,max = 55. The first
crossing of Rww with the zero value gives an estimate of the size of the clusters in
the horizontal direction. This measures approximately 15 − 20D, which implies that the
clusters ultimately grow to a size for which the current computational domains are not
sufficient.

Appendix C. Drafting–kissing–tumbling computational set-up

Here, we describe the computational set-up of the DKT simulations presented in § 4.2. The
problem description is the same as in the multiparticle cases (§ 2), but the methodology
presents a few differences compared with the one presented in § 3. First, we impose a free
stream of constant velocity at the lower boundary plane, an advective boundary condition
at the top and periodicity at the lateral boundaries, instead of periodicity in the three spatial
directions. Second the number of particles is exactly two. Thus, the solid volume fraction
is not a parameter anymore, and the governing parameters of the DKT cases are Ga and ρ̃.
We explore two different particle shapes, namely spheres and oblate spheroids with χ =
1.5, both with ρ̃ = 1.5 and Ga = 110.56. The size of the computational domain measures
[10.66 × 10.66 × 21.33]D3, where D is the diameter of a sphere with the same volume
as the particle considered. Finally, for each particle shape we perform simulations with
angular motion enabled or suppressed.

Figure 23 shows a sketch of the computational set-up, indicating the set of initial particle
positions. We refer to the particle which is initially at a lower vertical position as the
leading particle, and to the other particle as the trailing particle. The initial position of the
leading particle is always at 8D above the bottom boundary of the computational domain.
The initial condition of the trailing particle is varied, sweeping an area of [5 × 8.75]D2

in the horizontal and vertical direction, respectively. This area is uniformly sampled with
horizontal (vertical) steps of 0.625D (1.25D) between neighbouring initial conditions.
This results in 72 simulations for each configuration, a total number of 288 DKT cases.
In order to reduce the influence of mirror particles due to periodicity, we locate the plane
containing the initial condition of the trailing particle in the plane x = y. We define the
horizontal coordinate contained in this plane as x′ and the relative position of the trailing
particle with respect to the leading particle in this plane as

xr = xtrailing − xleading. (C1)

One of the key aspects in this computational set-up (non-periodic in the direction of
gravity) is to keep the particles inside the computational domain for sufficiently long
time intervals. Therefore, we need a good estimate of the average settling velocity of
the system (both particles), and a sufficiently large domain in the vertical direction to
accommodate the variations of this settling velocity. It should be mentioned that these
variations can be large due to collision events. From trial simulations we found that
imposing the reference Reynolds number based on the free-stream velocity imposed at
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Figure 23. Outline of the DKT simulations from (a) lateral and (c) top views. (b) View perpendicular to the
plane where the trailing particle initial condition is located.

the inlet Reref = Uref D/ν slightly higher than the terminal Reynolds number obtained
for a single particle in the same configuration leads to successful simulations. From this
experience we set Reref = 1.025Re0

D in all the cases. The following phases of the evolution
of the system are identified:

(i) Initial upward drift: if particles are initially at a sufficient distance away from each
other, they slowly drift upwards in the computational domain because Reref > Re0

D.
For cases in which collisions do not occur, this is the only phase of the problem. For
cases in which particles are close enough to each other the DKT event is triggered
since the start of the simulations, and this phase is skipped.

(ii) DKT event: if the trailing particle is attracted by the wake of the leading one,
the former drafts towards the latter and they eventually collide. This results in
an enhancement of the settling velocity of both particles. Having drifted upwards
in the previous phase leaves more clearance for the DKT event to occur without
encountering the bottom boundary.
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Figure 24. Time history of the vertical positions of (a) spheres and (b) spheroids of χ = 1.5 and the distance
between particle centres (c,d). In both cases (xr/D, yr/D) = (2.5, 7.5) and the time is shifted so that the instant
of the first collision is t = 0. In (a,b) the trailing particle is represented with a solid line and the leading particle
with a dashed line. The grey shading indicates the time interval in which particles are in contact. The vertical
dotted lines illustrate the definition of the time to first collision, tcI , and the interaction time, tcR.

(iii) Final upward drift: after the DKT event both particles end up at a similar height and
both drift upwards while repelling each other.

We have verified that all the non-colliding cases have been run for at least the maximum
time to first interaction observed (678τg, from rotationally locked spheroids with relative
initial position of the trailing particle (3.125, 10)D) plus 100τg. This results in all the cases
simulated for at least 778τg.

Figure 24 shows the time history of two DKT simulations as an example. In both
cases the angular motion is enabled and the initial condition of the trailing particle is
(x′

r/D, zr/D) = (2.5, 7.5). For every simulation in which a collision takes place, we define
the time to first collision, tcI , and the interaction time tcR. The former is the time between
the begin of the simulation and the first collision. The latter is defined as the time between
the first collision and the last time instant in which the particle centres approach each other.
The definition of these two quantities is indicated in figure 24. Please note that for most of
the cases of spheres with angular motion enabled the interaction time is almost negligible
(see figure 24c).
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