A COMPLETELY GENERAL RABINOWITSCH CRITERION FOR COMPLEX QUADRATIC FIELDS

R. A. MOLLIN

ABSTRACT. We provide a criterion for the class group of a complex quadratic field to have exponent at most 2. This is given in terms of the factorization of a generalized Euler-Rabinowitsch polynomial and has consequences for consecutive distinct initial prime-producing quadratic polynomials which we cite as applications.

1. Introduction. In [4], we gave necessary and sufficient conditions for the *class* group C_{Δ} to have exponent $e_{\Delta} \leq 2$ when $\Delta < 0$ is a discriminant. The criterion was given in terms of the Euler-Rabinowitsch polynomial

$$F_{\Delta}(x) = x^2 + (\sigma - 1)x + (\sigma - 1 - \Delta)/4$$

where $\sigma = 2$ if $\Delta \equiv 1 \pmod{4}$ and $\sigma = 1$ otherwise. This is, in fact, a generalization of the well-known Rabinowitsch class number one criterion for complex quadratic fields. What we provide herein, is an even more general and very useful criterion based upon a generalization of the Euler-Rabinowitsch polynomial as follows.

DEFINITION 1.1. Let q be a positive squarefree divisor of Δ . Put

$$F_{\Delta,q}(x) = qx^2 + (\alpha - 1)qx + \left((\alpha - 1)q^2 - \Delta\right)/(4q)$$

where $\alpha = 1$ if 4q divides Δ and $\alpha = 2$ otherwise. We call $F_{\Delta,q}(x)$ the qth-Euler-Rabinowitsch polynomial. (Thus, q = 1 yields the aforementioned Euler-Rabinowitsch polynomial).

We need therefore, a more general setting than that in [4], so we provide:

DEFINITION 1.2. Let $\Delta < 0$ be a discriminant and let $q \ge 1$ be a squarefree divisor of Δ . Let $F(\Delta, q)$ denote the maximum number of (not necessarily distinct) primes dividing $F_{\Delta,q}(x)$ for any integer $x \in S(q) = \{0, 1, 2, \dots, \lfloor |\Delta|/(4q) - 1 \rfloor\}$. (Thus, $F(\Delta, 1)$ is the $F(\Delta)$ of [3, Definition 1, p. 178] and S(1) = I of [3, Lemma 3, p. 178].)

In the next section, we will need some ideal theoretic notation. Let $[\gamma, \beta]$ denote the Z-module $\{\gamma x + \beta y : x, y \in Z\}$ and let D be a negative squarefree integer called the *radicand* of the complex quadratic field $Q(\sqrt{D}) = K$. Let $\omega = (\sigma - 1 + \sqrt{D})/\sigma$ called the *principal surd*, then the *discriminant* mentioned above is $\Delta = (\omega - \omega')^2 = 4D/\sigma^2$

Research supported by NSERC, Canada grant # A8484.

Received by the editors July 11, 1994; revised August 22, 1995.

AMS subject classification: 11R09, 11R11, 11R29.

Key words and phrases: prime-producing quadratics, class number, exponent, class group.

[©] Canadian Mathematical Society 1996.

where ω' is the algebraic conjugate of ω . Thus, $O_{\Delta} = [1, \omega]$ is the maximal order (or ring of integers of K). It is well-known that I is an ideal of O_{Δ} if and only if $I = [a, b + c\omega]$ where $a, b, c \in Z$ with $c \mid a, c \mid b$ and $ac \mid N(b + c\omega)$ where N is the norm from K to Q (i.e., $N(\alpha) = \alpha \alpha'$ for $\alpha \in K$). If a > 0 and c = 1 then we say that I is primitive.

We have provided the essentials for what is needed in the next section. The reader is referred to [3]–[4] for further background and data.

2. Exponent two and Rabinowitsch. First we standardize a hypothesis which we will use repeatedly.

HYPOTHESIS 2.1. Let $\Delta = \Delta_0 < 0$ ($\Delta \neq -3, -4$) be a discriminant divisible by exactly N + 1 ($N \ge 0$) distinct primes q_i ($1 \le i \le N + 1$) with q_{N+1} being the largest, and let $q \ge 1$ be a squarefree divisor of Δ , divisible by exactly $M \ge 0$ of the primes q_i for i = 1, 2, ..., N.

Now we prove a technical result which is of interest in its own right.

LEMMA 2.1. Let Δ and q satisfy Hypothesis 2.1. Then

$$F(\Delta, q) \ge N + 1 - M$$

PROOF. If M = 0, then this is just [4, Corollary 3, p. 180]. We now assume that $M \ge 1$. If $Q = \prod_{i=1}^{N} Q_i$ is the product of the unique O_{Δ} -ideals above the primes q_i for $1 \le i \le N$, then we may always find a representative of the ideal as $Q = [Q, b + \omega_{\Delta}]$ where $0 \le b < Q = \prod_{i=1}^{N} q_i < |\Delta|/4$ and Q divides $N(b + \omega_{\Delta})$. Moreover, Q cannot be principal since it is the product of the generators of the elementary abelian 2-subgroup of C_{Δ} . Therefore, $N(b + \omega_{\Delta})$ is divisible by at least N + 1 primes.

CLAIM. $2b + \sigma - 1 = q(2x_0 + \alpha - 1)$ for some non-negative integer $x_0 \leq (|\Delta|/(4q) - 1)$.

If $\sigma = \alpha$, then q is forced to divide $2b+\alpha-1$, so $2b+\sigma-1 = q(2x_0+\alpha-1)$. If $\alpha \neq \sigma$, then we must have $\alpha = 2, \sigma = 1$, and q even. Therefore, q divides $2b = 2b+\sigma-1$ where b is odd, i.e., $2b+\sigma-1 = q(2x_0+\alpha-1)$. Since $0 \le b < |\Delta|/4$, then $0 \le x_0 \le |\Delta|/4q-1$.

By the Claim, $N(b + \omega_{\Delta})/q = (q^2(2x_0 + \alpha - 1)^2 - \Delta)/4q = F_{\Delta,q}(x_0)$ is divisible by at least N + 1 - M primes.

THEOREM 2.1. Let Δ and q satisfy Hypothesis 2.1. The following are equivalent: (1) $e_{\Delta} \leq 2$

(2) $F(\Delta, q) = N + 1 - M$ and $h_{\Delta} = 2^{F(\Delta,q)+M-1}$.

PROOF. If (2) holds, then $h_{\Delta} = 2^N$, so (1) holds by Gauss. If (1) holds, then by Lemma 2.1, $F(\Delta, q) + M - 1 \ge N$. It remains to show that there is no integer x, with $0 \le x \le |\Delta|/(4q) - 1$, such that $F_{\Delta,q}(x)$ is divisible by more than N + 1 - M primes. Suppose, to the contrary, that such a value does exist. Let

$$y = \begin{cases} qx & \text{if } \alpha = 1, \\ qx + (q-1)/2 & \text{if } \alpha = 2 \text{ and } q \text{ is odd,} \\ qx + q/2 & \text{if } \alpha = 2 \text{ and } q \text{ is even,} \end{cases}$$

then $qF_{\Delta,q}(x) = F_{\Delta}(y)$, with $0 \le y \le |\Delta|/4 - 1$, is divisible by more than N + 1 primes contradicting [4, Theorem 1, p. 179].

The following tables are presented as applications of Theorem 2.1 and are discussed at the end of the paper.

D	q_{N+1}	$F_{\Delta.q}(x)$	В
5	5	$2x^2 + 2x + 3$	2
13	13	$2x^2 + 2x + 7$	6
21	7	$6x^2 + 6x + 5$	3
33	11	$6x^2 + 6x + 7$	6
37	37	$2x^2 + 2x + 19$	18
57	19	$6x^2 + 6x + 11$	9
85	17	$10x^2 + 10x + 11$	8
93	31	$6x^2 + 6x + 17$	15
105	7	$30x^2 + 30x + 11$	3
133	19	$14x^2 + 14x + 13$	9
165	11	$30x^2 + 30x + 13$	5
177	59	$6x^2 + 6x + 31$	29
253	23	$22x^2 + 22x + 17$	11
273	13	$42x^2 + 42x + 17$	6
345	23	$30x^2 + 30x + 19$	11
357	17	$42x^2 + 42x + 19$	8
385	11	$70x^2 + 70x + 23$	5
1365	13	$210x^2 + 210x + 59$	6

TABLE 2.1: $D \equiv 3 \pmod{4}$

D	$q_{N+1} = B$	$F_{\Delta,q}(x)$
6	3	$2x^2 + 3$
10	5	$2x^2 + 5$
22	11	$2x^2 + 11$
30	5	$6x^2 + 5$
42	7	$6x^2 + 7$
58	29	$2x^2 + 29$
70	7	$10x^2 + 7$
78	13	$6x^2 + 13$
102	17	$6x^2 + 17$
130	13	$10x^2 + 13$
190	19	$10x^2 + 19$
210	7	$30x^2 + 7$
330	11	$30x^2 + 11$
462	11	$42x^2 + 11$

TABLE 2.2. $D \equiv 2 \pmod{4}$

D	q_{N+1}	$F_{\Delta.q}(x)$	B
15	5	$3x^2 + 3x + 2$	1
35	7	$5x^2 + 5x + 3$	2
51	17	$3x^2 + 3x + 5$	4
91	13	$7x^2 + 7x + 5$	3
115	23	$5x^2 + 5x + 7$	5
123	41	$3x^2 + 3x + 11$	10
187	17	$11x^2 + 11x + 7$	4
195	13	$15x^2 + 15x + 7$	3
235	47	$5x^2 + 5x + 13$	12
267	89	$3x^2 + 3x + 23$	22
403	31	$13x^2 + 13x + 11$	7
427	61	$7x^2 + 7x + 17$	16
435	29	$15x^2 + 15x + 11$	7
483	23	$21x^2 + 21x + 11$	5
555	37	$15x^2 + 15x + 13$	9
595	17	$35x^2 + 35x + 13$	4
627	19	$33x^2 + 33x + 13$	4
715	13	$55x^2 + 55x + 17$	3
795	53	$15x^2 + 15x + 17$	13
1155	11	$105x^2 + 105x + 29$	2
1435	41	$35x^2 + 35x + 19$	10
1995	19	$105x^2 + 105x + 31$	4
3003	13	$231x^2 + 231x + 61$	3
3315	17	$195x^2 + 195x + 53$	4

TABLE 2.3. $D \equiv 1 \pmod{4}$

An easy application of Theorem 2.1 to prime-producing quadratic polynomials is

COROLLARY 2.1. If Hypothesis 2.1 is satisfied, $e_{\Delta} \leq 2$, and M = N, then $F_{\Delta,q}(x)$ is prime for all non-negative integers $x \leq \lfloor q_{N+1}/(\sigma\alpha) - 1 \rfloor$.

Since it is well known that if $\Delta < 0$ and $e_{\Delta} \le 2$ with $\Delta \equiv 1 \pmod{8}$, then $\Delta = -7$ or -15, we may assume $\Delta \not\equiv 1 \pmod{8}$. We note that, by results of Weinberger [7] (see also Louboutin [2]), under the assumption of the generalized Riemann hypothesis (GRH), all $\Delta < 0$ with $e_{\Delta} = 2$ are known and these are exactly the values in Tables 2.1–2.3. Therefore, under the assumption of the GRH and the hypotheses of Corollary 2.1 we have:

• If $\Delta \equiv 4 \pmod{8}$, then the largest string of primes occurs for $F_{\Delta,q}(x) = 6x^2 + 6x + 31$, which is prime for $x = 0, 1, \dots, 28$, where D = -177 and q = 6 (see Table 2.1). This example was first noted by C. Coxe (see [6]).

• If $\Delta \equiv 0 \pmod{8}$, then the largest string of primes occurs for $F_{\Delta,q}(x) = 2x^2 + 29$, which is prime for $0 \le x \le 28$, where D = -58 and q = 2 (see Table 2.2). This example was cited by Sierpinski in [5], but probably known to Euler.

R. A. MOLLIN

• If $\Delta \equiv 1 \pmod{4}$, then the largest string of primes occurs for $F_{\Delta,q}(x) = 3x^2 + 3x + 23$, which is prime for $0 \le x \le 21$, where D = -267 and q = 3 (see Table 2.3). This example was noticed in 1922 by Levy [1].

The three tables appearing above give all D < 0, by congruence modulo 4, together with their non-monic, consecutive, prime-producing quadratics for an initial string of values of x. Furthermore, we list the largest prime q_{N+1} and the number of initial, consecutive, distinct prime values (the column labelled *B*) generated by the associated quadratic as given by Corollary 2.1.

REFERENCES

- 1. A. Lévy, Bull. de Math., Elémentaires 19(1912), 36.
- S. Louboutin, Minorationes (sous l'hypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires, C. R. Acad. Sci. Paris t., Série 1 310(1990), 795–800.
- 3. R. A. Mollin, Orders in Quadratic Fields I, Proc. Japan Acad., Ser. A 69(1993), 45-48.
- 4. _____, Orders in Quadratic Fields III, Proc. Japan Acad., Ser. A 70(1994), 176–181.
- 5. W. Sierpinski, *Elementary Theory of Numbers*, A. Schinzel, ed., Polish Scientific Publishers, Warsaw (1987).

6. B. Van der Pol and P. Speziali, *The primes in* $k(\zeta)$, Indag. Math. **13**(1951), 9–15.

7. P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta. Arith. 22(1973), 117-124.

Mathematics Department University of Calgary Calgary, Alberta T2N 1N4 e-mail: ramollin@math.ucalgary.ca