LARGE *P*-GROUPS WITHOUT PROPER SUBGROUPS WITH THE SAME DERIVED LENGTH

ELEONORA CRESTANI and ANDREA LUCCHINI

Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy e-mail: crestani@math.unipd.it, lucchini@math.unipd.it

(Received 29 April 2014; accepted 5 October 2014; first published online 23 July 2015)

Abstract. We construct a subgroup H_d of the iterated wreath product G_d of d copies of the cyclic group of order p with the property that the derived length and the smallest cardinality of a generating set of H_d are equal to d while no proper subgroup of H_d has derived length equal to d. It turns out that the two groups H_d and G_d are the extreme cases of a more general construction that produces a chain $H_d = K_1 < \cdots < K_{p-1} = G_d$ of subgroups sharing a common recursive structure. For $i \in \{1, \dots, p-1\}$, the subgroup K_i has nilpotency class $(i + 1)^{d-1}$.

1991 Mathematics Subject Classification. 20D15

1. Introduction. Certain properties of a finite group can be detected from its 2generated subgroups. For example, a deep theorem of Thompson says that *G* is soluble if and only if every 2-generated subgroup of *G* is soluble. Influenced by these results, one could be tempted to conjecture that there exists a positive integer *c* with the property that every finite soluble group contains a *c*-generated subgroup with the same derived length. This is false. Consider the iterated wreath product $G_d = C_p \wr \cdots \wr C_p$ of *d* copies of the cyclic group of order *p*. The derived length of G_d is equal to *d* and coincides with the smallest cardinality of a generating set. However, if p = 2, then every proper subgroup of G_d has derived length smaller than *d* (see, for example, [2, Lemma 2]), so *d* elements are really needed to generate a subgroup with derived length equal to *d*. On the other hand, if $p \neq 2$, then G_d contains several proper subgroups with the same derived length and the following questions arise. Does a counterexample to the previous conjecture exist when $p \neq 2$? Does such counterexample appear among the subgroups of G_d ? The aim of this paper is to answer to the previous two questions.

THEOREM 1. For any prime p, there exist d elements $x_1, \ldots, x_d \in G_d$ such that the subgroup $H_d = \langle x_1, \ldots, x_d \rangle$ of G_d generated by these elements has the following properties:

- (1) the derived length of H_d is d;
- (2) H_d cannot be generated by d-1 elements;
- (3) no proper subgroup of H_d has derived length equal to d.

The interest on *p*-groups without proper subgroups with the same derived length has been related with the problem of bounding the order of a finite *p*-group in terms of its derived length (a long history starting from Burnside's papers, see [5] for more details). Mann [4] showed that if *G* is a finite *p*-group, then $G^{(d)} \neq 1$ implies $\log_p |G| > 2^d + 2d - 2$. For primes at least 5, groups of length *d* and order p^{2^d-2} were constructed

in [1], improving previous examples of Hall of order p^{2^d-1} for all odd primes (see [3, III.17.7]). These examples can be generated by two elements; our interest goes in a different direction: indeed, we want to produce examples of *p*-groups without proper subgroups of the same derived length but with large elementary abelian factors. As a consequence, the order of H_d is large with respect to the lower bound proved by Mann (a detailed investigation of the order of H_d is done in Section 4). However, H_d has other minimality properties. It is well known that if a nilpotent group has derived length *d*, then its nilpotency class is at least 2^{d-1} . The nilpotency class of H_d is precisely 2^{d-1} , the smallest possible value. It follows also that no proper factor group of H_d has the same derived length as H_d .

Our study of the properties of the group H_d is made possible by a particular choice of the notations: the group G_d acts on the p^d -dimensional vector space V_d over the field with *p*-elements and $G_{d+1} = V_d \rtimes G_d$. In section 2, we define a map $\gamma_d : \{0, \ldots, p - 1\}^d \rightarrow V_d$ with the property that the image $\Gamma_d = \gamma_d(\{0, \ldots, p - 1\}^d)$ is a basis for V_d over *F*. We have $G_d = V_{d-1} \rtimes (V_{d-2} \rtimes \cdots \rtimes V_0)$ and $H_d = \langle x_1, \ldots, x_d \rangle$ with $x_i = \gamma_{i-1}(1, \ldots, 1) \in V_{i-1}$. An easy formula (see in particular Lemma 3) allows to express, for any $\omega \in \Gamma_d$ and $i \in \{1, \ldots, d - 1\}$, the commutator $[\omega, x_i]$ as a linear combination of the elements of Γ_d . In Section 5, we discuss a generalization of this construction. For $k \in \{1, \ldots, p - 1\}$, we can consider the subgroup $X_{k,d} = \langle x_{k,1}, \ldots, x_{k,d} \rangle$ of G_d with $x_{k,i} = \gamma_{i-1}(k, \ldots, k)$. If p = 2, then $H_d = G_d$. Otherwise

$$H_d = X_{1,d} < X_{2,d} < \dots < X_{p-2,d} < X_{p-1,d} = G_d.$$

This approach allows to study simultaneously the groups $X_{k,d}$ for the different values of k: for example the nilpotency class of these groups can be determined with a unified argument: we prove that the nilpotency class of $X_{k,d}$ coincides with $(k + 1)^{d-1}$ (see Theorem 30).

2. Notations and preliminary results. We fix the following notations: *p* is a prime number, *F* is a field with *p* elements and $V_n = F^{p^n}$ is a vector space over *F* of dimension p^n . For each positive integer *n*, we define a function $\beta_n : V_{n-1} \times \mathbb{N} \to V_n$ as follows: if $v = (a_1, \ldots, a_{p^{n-1}})$, then

$$\beta_n(v,m) = (0^m v, 1^m v, \dots, (p-1)^m v)$$

= $(0^m a_1, \dots, 0^m a_{p^{n-1}}, \dots, (p-1)^m a_1, \dots, (p-1)^m a_{p^{n-1}}).$

Notice that if a_1, a_2 are positive integers and $a_1 \equiv a_2 \mod p - 1$, then $\beta_n(v, a_1) = \beta_n(v, a_2)$. However, if *t* is a positive integer, then $\beta_n(v, 0) - \beta_n(v, t(p-1)) = (v, 0, ..., 0)$. Given $a \in \mathbb{N}$, we define \overline{a} as follows: if a = 0, then $\overline{a} = 0$; otherwise \overline{a} is the unique integer with $1 \leq \overline{a} \leq p - 1$ and $\overline{a} \equiv a \mod p - 1$. With this notation, it turns out that $\beta_n(v, a) = \beta_n(v, \overline{a})$ for any $a \in \mathbb{N}$. Now, for every positive integer *n*, we define a function

$$\gamma_n:\mathbb{N}^n\to V_n=F^{p^n}$$

in the following way:

$$\begin{cases} \gamma_1(a) = \beta_1(1, a) = (0^a, 1^a, \dots, (p-1)^a) \\ \gamma_n(a_1, \dots, a_n) = \beta_n(\gamma_{n-1}(a_1, \dots, a_{n-1}), a_n) \text{ if } n > 1. \end{cases}$$

Let $I_p = \{0, \ldots, p-1\} \subseteq \mathbb{N}$. Since $\gamma_n(a_1, \ldots, a_n) = \gamma_n(\overline{a}_1, \ldots, \overline{a}_n)$, we have that $\gamma_n(\mathbb{N}^n) = \gamma_n(I_p^n)$. Notice that for any choice of (a_1, \ldots, a_n) in I_p^n , $\gamma_n(a_1, \ldots, a_n)$ is a non zero vector (for example $\gamma_1(0) = (1, \ldots, 1)$). Moreover, a stronger result holds. Indeed, we have:

LEMMA 2. The set $\Gamma_n = \{\gamma_n(u) | u \in I_n^n\}$ is a basis for the vector space V_n over F.

Proof. We use the fact that any $v \in \Gamma_n$ can be uniquely written in the form $v = \beta_n(w, a)$ with $w \in \Gamma_{n-1}$ and $a \in I_p$. Now, for $w \in \Gamma_{n-1}$ and $a \in I_p$, let $\lambda_{w,a}$ be elements of F such that

$$\sum_{w,a}\lambda_{w,a}\beta_n(w,a)=0.$$

For $1 \le i \le p$, we have a linear map $\rho_i : V_n \to V_{n-1}$ defined by $\rho_i(a_1, \ldots, a_{p^n}) = (a_{1+(i-1)p^{n-1}}, \ldots, a_{p^{n-1}+(i-1)p^{n-1}})$. In particular, since $\rho_i(\beta_n(w, a)) = (i-1)^a w$, we get that

$$0 = \rho_i \left(\sum_{w,a} \lambda_{w,a} \beta_n(w,a) \right) = \sum_{w,a} \lambda_{w,a} (i-1)^a w = \sum_w \left(\sum_a \lambda_{w,a} (i-1)^a \right) w.$$

By induction, the vectors of Γ_{n-1} are linearly independent, so for each $w \in \Gamma_{n-1}$ and each $j \in \{0, \dots, p-1\}$, we have that

$$\sum_{a\in I_p}\lambda_{w,a}j^a=0.$$

This means that $(\lambda_{w,0}, \ldots, \lambda_{w,p-1})$ is a solution of the homogeneous linear system associated to the matrix

$$A := \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^{p-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & p - 1 & (p-1)^2 & \cdots & (p-1)^{p-1} \end{pmatrix}$$

Since A is an invertible matrix, we get that $\lambda_{w,a} = 0$ for each $w \in \Gamma_{n-1}$ and $a \in I_p$.

We use the previous definition to construct a sequence of vectors $x_n \in V_{n-1}$:

$$\begin{cases} x_1 = 1 \\ x_{n+1} = \gamma_n(1, \dots, 1) = \beta_n(x_n, 1) \text{ if } n > 0. \end{cases}$$

Now we start to work in the iterated wreath product $G_d = C_p \wr C_p \wr \cdots \wr C_p$, where C_p appears *d*-times. Clearly, $G_1 \cong V_0$ while, if $d \ge 1$, then V_{d-1} can be identified with the base subgroup of the wreath product $G_d = C_p \wr G_{d-1} = V_{d-1} \rtimes G_{d-1}$. In particular, x_1, \ldots, x_d can be viewed as elements of G_d .

Our aim is to study the subgroup $H_d = \langle x_1, \ldots, x_d \rangle$ of G_d generated by these elements. Notice that $V_0 = H_1 = G_1 \cong C_p$ while, if $d \ge 2$, then $H_d = W_{d-1} \rtimes H_{d-1}$, where W_{d-1} is the H_{d-1} -submodule of V_{d-1} generated by x_d .

LEMMA 3. Let $v = \gamma_d(a_1, \ldots, a_d) \in V_d$, with and $i \leq d$. Consider k = (d - i) + 1. If t is a positive integer, then

$$[v, tx_i] = \begin{cases} 0 \text{ if } a_k = 0\\ \sum_{1 \le c \le \overline{a_k}} {a_k \choose c} (-t)^c \gamma_d(a_1, \dots, a_{k-1}, \overline{a_k} - c, a_{k+1} + c, \dots, a_d + c) \text{ otherwise.} \end{cases}$$

Proof. Since $\gamma_d(a_1, \ldots, a_d) = \gamma_d(\overline{a}_1, \ldots, \overline{a}_d)$, we may assume $0 \le a_j \le p - 1$ for all $j \in \{1, \ldots, d\}$. First, we prove this lemma for i = 1. Notice that if $w_1, \ldots, w_p \in V_{d-1}$, then

$$(w_1,\ldots,w_p)^{x_1} = (w_p,w_1,\ldots,w_{p-1}).$$

In our particular case, since $v = \beta_d(w, a)$ for $w = \gamma_{d-1}(a_1, \ldots, a_{d-1})$, we get that

$$[v, tx_1] = -(0^{a_d}w, 1^{a_d}w, \dots, (p-1)^{a_d}w) + (0^{a_d}w, 1^{a_d}w, \dots, (p-1)^{a_d}w)^{tx_1}$$

=(((-t)^{a_d} - 0^{a_d})w, \dots, ((i-t)^{a_d} - i^{a_d})w, \dots, ((p-1-t)^{a_d} - (p-1)^{a_d})w).

If $a_d = 0$, then $[v, tx_1] = 0$. Otherwise, since $(i - t)^{a_d} - i^{a_d} = \sum_{0 \le b \le a_d - 1} {a_d \choose b} (-t)^{a_d - b} i^b$, we deduce

$$[v, tx_1] = \sum_{0 \le b \le a_d - 1} {a_d \choose b} (-t)^{a_d - b} \gamma_d(a_1, \dots, a_{d-1}, b)$$
$$= \sum_{1 \le c \le a_d} {a_d \choose c} (-t)^c \gamma_d(a_1, \dots, a_{d-1}, a_d - c).$$

Now assume i > 1. Since $v = \beta_d(\gamma_d(a_1, \dots, a_{d-1}), a_d)$ and $tx_i = t\beta(x_{i-1}, 1)$, we have

$$[v, tx_i] = (w_1, \ldots, w_p)$$

with

$$w_j = [(j-1)^{a_d} \gamma_{d-1}(a_1, \ldots, a_{d-1}), (t \cdot (j-1)) x_{i-1}] \in V_{d-1}.$$

By induction

$$w_{j} = (j-1)^{a_{d}} \sum_{1 \le c \le a_{k}} \binom{a_{k}}{c} (-t(j-1))^{c} \gamma_{d-1}(a_{1}, \dots, a_{k-1}, a_{k} - c, a_{k+1} + c, \dots, a_{d-1} + c)$$

=
$$\sum_{1 \le c \le a_{k}} \binom{a_{k}}{c} (-t)^{c} (j-1)^{a_{d}+c} \gamma_{d-1}(a_{1}, \dots, a_{k-1}, a_{k} - c, a_{k+1} + c, \dots, a_{d-1} + c).$$

This implies

$$[v, tx_i] = \sum_{1 \le c \le a_k} \binom{a_k}{c} (-t)^c \beta_d(\gamma_{d-1}(a_1, \dots, a_{k-1}, a_k - c, a_{k+1} + c, \dots, a_{d-1} + c), a_d + c))$$

=
$$\sum_{1 \le c \le a_k} \binom{a_k}{c} (-t)^c \gamma_d(a_1, \dots, a_{k-1}, a_k - c, a_{k+1} + c, \dots, a_{d-1} + c, a_d + c).$$

This concludes our proof.

We define a directed graph Ω_d whose nodes are the elements of Γ_d and in which there exists an edge with initial vertex $\omega_1 = \gamma(a_1, \ldots, a_d)$ and terminal vertex $\omega_2 = \gamma(b_1, \ldots, b_d)$ if and only if there exists $k \in \{1, \ldots, d\}$ such that $a_k \neq 0$ and $\gamma(b_1, \ldots, b_d) = \gamma(a_1, \ldots, a_{k-1}, a_k - 1, a_{k+1} + 1, \ldots, a_d + 1)$. Let $\omega = \gamma_d(a_1, \ldots, a_d) \in \Omega_d$: we define the height of ω as follows:

$$\operatorname{ht}(\gamma_d(a_1,\ldots,a_d))=2^{d-1}\overline{a_1}+2^{d-2}\overline{a_2}+\cdots+2\overline{a_{d-1}}+\overline{a_d}.$$

LEMMA 4. If (ω_1, ω_2) is an edge in Ω_d , then $ht(\omega_2) < ht(\omega_1)$.

Proof. We may assume $\omega_1 = \gamma_d(a_1, \ldots, a_d)$ with $0 \le a_i \le p-1$ for each $i \in \{1, \ldots, d\}$ and that $\omega_2 = \gamma(a_1, \ldots, a_{k-1}, a_k - 1, a_{k+1} + 1, \ldots, a_d + 1)$ for some $k \in \{1, \ldots, d\}$ with $a_k \ne 0$. Since

$$\begin{aligned} \operatorname{ht}(\omega_1) &= 2^{d-1}a_1 + \dots + a_d \quad \text{and} \\ \operatorname{ht}(\omega_2) &= 2^{d-1}a_1 + \dots + 2^{d-k+1}a_{k-1} + 2^{d-k}(a_k-1) + 2^{d-k-1}\overline{(a_{k+1}+1)} + \dots + \overline{(a_d+1)} \\ &\leq 2^{d-1}a_1 + \dots + 2^{d-k+1}a_{k-1} + 2^{d-k}(a_k-1) + 2^{d-k-1}(a_{k+1}+1) + \dots + (a_d+1) \end{aligned}$$

we have

$$ht(\omega_1) - ht(\omega_2) \ge 2^{d-k} - \sum_{0 \le j \le d-k-1} 2^j = 1$$

hence $ht(\omega_2) < ht(\omega_1)$.

Given $\omega \in \Omega_d$, we denote by $\Delta_d(\omega)$ the set of the descendants of $\omega \in \Omega_d$, i.e. the set of the $\omega^* \in \Omega_d$ for which there exists a path in Ω_d starting from ω and ending in ω^* .

PROPOSITION 5. If $\omega \in \Omega_d$, then $\Delta_d(\omega)$ is a basis for the H_d -submodule $U(\omega)$ of V_d generated by ω .

Proof. By Lemma 3, $U(\omega)$ is contained in the subspace of V_d spanned by $\Delta_d(\omega)$. To prove the converse it suffices to show that if Ω_n contains the edge (ω, ω^*) , then $\omega^* \in U(\omega)$. Let $\omega = \gamma_d(a_1, \ldots, a_d)$. We assume $0 \le a_i \le p - 1$ for each $i \in \{1, \ldots, d\}$. By definition, there exists a $k \in \{1, \ldots, d\}$ such that $a_k \ne 0$ and

$$\omega^* = \gamma(a_1, \ldots, a_{k-1}, a_k - 1, a_{k+1} + 1, \ldots, a_d + 1).$$

For $0 \le c \le a_k$, let $\omega_c = \gamma_d(a_1, \dots, a_{k-1}, a_k - c, a_{k+1} + c, \dots, a_d + c)$. In particular, $\omega = \omega_0$ and $\omega^* = \omega_1$. By Lemma 3, for $0 \le c \le a_k$ there exist $\mu_{c,c+1}, \dots, \mu_{c,k} \in F$ such that

$$[\omega_c, x_i] = \sum_{c+1 \le j \le a_k} \mu_{c,j} \omega_j$$

Moreover, $\mu_{c,j} \neq 0$ for each $j \in \{c + 1, ..., a_k\}$. Indeed, since $0 \le a_k ,$

$$\mu_{c,j} = \binom{a_k - c}{j - c} (-1)^{j - c} \neq 0 \mod p.$$

Now, for $r \in \{0, \ldots, a_k - 1\}$ consider

$$\rho_r = [\omega, \underbrace{x_i \dots, x_i}_{r \text{ times}}].$$

We claim that

$$\rho_r = \sum_{r \le c \le a_k} \lambda_{r,c} \omega_c, \text{ with } \lambda_{r,c} \in F \text{ and } \lambda_{r,r} \neq 0.$$

If r = 1, then $\rho_1 = [\omega_0, x_i]$ and $\lambda_{1,c} = \mu_{0,c}$. Assume $r \neq 1$.

$$\rho_r = [\rho_{r-1}, x_i] = \left[\sum_{r-1 \le c \le a_k} \lambda_{r-1,c} \omega_c, x_i\right] = \sum_{r-1 \le c \le a_k} \left[\lambda_{r-1,c} \omega_c, x_i\right]$$
$$= \sum_{r-1 \le c \le a_k} \lambda_{r-1,c} \left(\sum_{c+1 \le j \le a_k} \mu_{c,j} \omega_j\right) = \sum_{r \le c \le a_k} \lambda_{r,c} \omega_c$$

with

$$\lambda_{r,j} = \sum_{r-1 \le c \le j-1} \lambda_{r-1,c} \mu_{c,j}.$$

In particular, $\lambda_{r,r} = \lambda_{r-1,r-1}\mu_{r-1,r-1} \neq 0$. Now we can conclude our proof, showing by induction on $a_k - c$ that $\omega_c \in U(\omega)$ for $1 \le c \le a_k$. If $a_k - c = 0$, then $\rho_{a_k} = \lambda_{a_k,a_k}\omega_{a_k} \in U$. Since $\rho_{a_k} \in U$ and $\lambda_{a_k,a_k} \neq 0$, we conclude $\omega_{a_k} \in U(\omega)$. Assume $\omega_{c+1}, \ldots, \omega_{a_k} \in U(\omega)$. Since $\rho_{c,c} = \sum_{c \le j \le a_k} \lambda_{r,j}\omega_j \in U(\omega)$ and $\lambda_{c,c} \neq 0$, we deduce $\omega_c \in U(\omega)$.

3. Derived length and nilpotency class of H_d . We will denote with dl(G) the derived length of G, if G is a soluble group, and with nc(G) the nilpotency class of G, if G is a nilpotent group.

PROPOSITION 6. $dl(H_d) = d$.

Proof. The proof is by induction on d. If d = 1, then H_1 is cyclic of order p and $dl(H_1) = 1$. Assume $d \ge 2$. We have $H'_d \le G'_d \le (G_{d-1})^p$, and so we can consider the projection $\pi_1 : H'_d \to G_{d-1}$. By Lemma 3,

$$[x_i, x_1] = [\gamma_{i+1}(1, \dots, 1), x_1] = -\gamma_{i+1}(1, \dots, 1, 0)$$

= -(\gamma_i(1, \dots, 1), \dots, \gamma_i(1, \dots, 1)) = -(\lambda_{i-1}, \dots, x_{i-1}).

Thus, $\pi_1(H'_d) \ge \langle x_1, \ldots, x_{d-1} \rangle = H_{d-1}$ and by induction

$$d-1 = dl(H_{d-1}) \le dl(\pi_1(H'_d)) \le dl(H'_d) \le dl(G'_d) = d-1.$$

But then, $dl(H'_d) = d - 1$ hence $dl(H_d) = d$.

It is well known that G_d is isomorphic to a Sylow *p*-subgroup of Sym (p^d) , hence H_d can be identified with a subgroup of Sym (p^d) .

COROLLARY 7. H_d is a transitive subgroup of $Sym(p^d)$.

Proof. Assume that $\Omega_1, \ldots, \Omega_r$ are the orbits of H_d on the set $\{1, \ldots, p^d\}$. For each $j \in \{1, \ldots, r\}$, we have $|\Omega_j| = p^{s_j}$ for some $s_j \in \mathbb{N}$. If X_j is the transitive constituent of H_d corresponding to the orbit Ω_j , then X_j is isomorphic to a subgroup of G_{s_j} , since G_{s_j} is a Sylow *p*-subgroup of Sym (p^{s_j}) ; in particular, $dl(X_j) \leq dl(G_{s_j}) = s_j$. We deduce

450

that $d = dl(H_d) \le max\{dl(X_j) \mid 1 \le j \le r\} \le max\{s_j \mid 1 \le j \le r\}$. This is possible only if r = 1.

Define z_d as follows:

$$\begin{cases} z_1 = x_1 & \text{if } d = 1, \\ z_d = \gamma_{d-1}(0, \dots, 0) & \text{otherwise.} \end{cases}$$

It follows immediately from our definitions that $z_d = (1, ..., 1) \in V_{d-1}$. In particular, $\langle z_d \rangle \leq C_{V_{d-1}}(G_{d-1}) \leq C_{V_{d-1}}(H_{d-1})$.

LEMMA 8. $C_{V_{d-1}}(H_{d-1}) = \langle z_d \rangle.$

Proof. Let $v = (x_1, \ldots, x_{p^{d-1}}) \in C_{V_{d-1}}(H_{d-1})$. Since H_{d-1} is a transitive subgroup of $\text{Sym}(p^{d-1})$ it must be $x_i = x_1$ for all $i \in \{1, \ldots, p^{d-1}\}$, hence $v \in \langle z_d \rangle$.

LEMMA 9. Let *d* be a positive integer. If $a_1 \neq 0$, then $[z_d, \gamma_d(a_1, \ldots, a_d)] \neq 0$.

Proof. We prove this statement by induction on d. If d = 1, then $[z_1, \gamma_1(a_1)] = \gamma_1(a_1 - 1) \neq 0$, by Lemma 3. Otherwise, since $z_d = (z_{d-1}, \dots, z_{d-1})$, we have

$$\begin{aligned} [z_d, \gamma_d(a_1, \dots, a_d)] &= \\ &= [(z_{d-1}, \dots, z_{d-1}), (0^{a_d} \gamma_{d-1}(a_1, \dots, a_{d-1}), \dots, (p-1)^{a_d} \gamma_{d-1}(a_1, \dots, a_{d-1}))] \\ &= ([z_{d-1}, 0^{a_d} \gamma_{d-1}(a_1, \dots, a_{d-1})], \dots, [z_{d-1}, (p-1)^{a_d} \gamma_{d-1}(a_1, \dots, a_{d-1})]) \neq 0 \end{aligned}$$

since $[z_{d-1}, \gamma_{d-1}(a_1, \ldots, a_{d-1})] \neq 0$ by induction.

COROLLARY 10. $Z(H_d) = \langle z_d \rangle$ is cyclic of order p.

Proof. If d = 1, then $Z(H_1) = \langle z_1 \rangle = \langle x_1 \rangle$ is cyclic of order p. Assume $d \ge 2$. We have $H_d = W_{d-1} \rtimes H_{d-1}$. By induction, $\langle z_{d-1} \rangle = Z(H_{d-1})$; in particular, z_{d-1} is contained in every normal subgroup of H_{d-1} and it follows from Lemma 9 that the action of H_{d-1} on W_{d-1} is faithful. Hence, by Lemma 8, $Z(H_d) \le C_{W_{d-1}}(H_{d-1}) = \langle z_d \rangle$.

Let a group G act on another group A via automorphism and suppose that $1 = A_0 \le \cdots \le A_m = A$ is a chain of G-invariant subgroups: we say that G stabilizes the chain $\{A_i \mid 0 \le i \le m\}$ if each right coset of A_{i-1} in A_i is G-invariant for all *i* with 0 < i < m. The first proof of following result was given by Kaluzhnin.

PROPOSITION 11. Assume that G acts faithfully on A via automorphisms and that G stabilizes a chain $\{A_i \mid 0 \le i \le m\}$ of normal subgroups of A. Then A is nilpotent of class at most m - 1.

LEMMA 12. Let $\omega \in \Omega_d$ with $m = ht(\omega)$. Define $U_0(\omega) = 0$ and, for any $j \in \{1, \ldots, m\}$, let $U_j(\omega) = \langle \omega^* \in \Delta_d(\omega) | ht(\omega^*) \leq j - 1 \rangle$. Then, H_d stabilizes the chain $\{U_i(\omega) | 0 \leq i \leq m + 1\}$.

Proof. It follows immediately from Lemma 3 and Lemma 4.

LEMMA 13. H_d acts faithfully on the submodule U_d of W_d generated by $\gamma_d(1, 0, ..., 0)$.

Proof. By Corollary 8, $\langle z_d \rangle$ is contained in all the nontrivial normal subgroups of H_d . Now, Lemma 9 guarantees that $[z_d, \gamma_{d+1}(1, 0, ..., 0)] \neq 0$, and this immediately implies that the action of H_d on U_d is faithfull.

THEOREM 14. $nc(H_d) = 2^{d-1}$.

Proof. It is well known that $dl(G) \le log_2(nc(G)) + 1$ for every nilpotent group. Therefore, from Proposition 6, we deduce that $nc(G) \ge 2^{d-1}$. On the other hand, by Lemma 13, H_d acts faithfully on the H_d -submodule U_d of W_d generated by $\gamma_d(1, 0, \ldots, 0)$ and, by Lemma 12, H_d stabilizes a chain of U_d of length at most $ht(\gamma_d(1, 0, \ldots, 0)) + 2 = 2^{d-1} + 2$. Therefore, $nc(H_d) \le 2^{d-1}$ by Proposition 11.

Recall that $x_{d+1} = \gamma_d(1, ..., 1)$ and that W_d is the H_d -submodule of V_d generated by x_{d+1} . Since W_d is a cyclic H_d -module, it contains a unique maximal H_d -submodule, say Y_d . Let $\Delta_d = \Delta_d(x_{d+1})$ and $\Delta_d^* = \Delta_d \setminus \{x_{d+1}\}$. It follows from Proposition 5 that Δ_d is a basis for W_d and Δ_d^* is a basis for Y_d . Now let Z_d be the *F*-subspace of W_d spanned by the vectors $\beta_d(w, a)$ with $w \in \Delta_{d-1}^*$ and $a \in I_p$. Again, we can use Proposition 5 to deduce that Z_d is an H_d -submodule of W_d . More precisely:

LEMMA 15. Let $\tilde{x}_{d+1} = \gamma_d(1, \ldots, 1, 0)$. The set $\Delta_d \setminus \{x_{d+1}, \tilde{x}_{d+1}\}$ is a basis for Z_d . In particular, if $\gamma_d(a_1, \ldots, a_d) \in Z_d \cap \Delta_d$, then $a_i = 0$ for some $i \in \{1, \ldots, d-1\}$.

Proof. Let $\omega = \gamma_d(a_1, \ldots, a_d) \in \Delta_d^*$. We have $\sum_{1 \le j \le d} 2^{d-j}\overline{a_j} < \operatorname{ht}(x_{d+1}) = 2^d - 1$ and this is possible only if $a_i = 0$ for some $i \in \{1, \ldots, d\}$. If $a_i = 0$ for some $i \in \{1, \ldots, d-1\}$, then $w = \gamma_{d-1}(a_1, \ldots, a_{d-1}) \in \Delta_{d-1}^*$ and $\omega = \beta_d(w, a_d) \in Z_d$. Otherwise, $\omega = \gamma_d(a_1, \ldots, a_{d-1}, 0)$ with $a_i \ne 0$ for $1 \le i \le d-1$: again, we deduce from $\operatorname{ht}(\omega) < 2^d - 1$ that $a_1 = \cdots = a_{d-1} = 1$, i.e. $\omega = \tilde{x}_{d+1}$.

Since Y_n is an H_n -submodule of W_n for any $n \in \mathbb{N}$, we have $[Y_i, x_j] \leq Y_i$ whenever $j \leq i$. On the other hand, if j > i then $[Y_i, x_j] \leq [Y_i, W_{j-1}] \leq [H_i, W_{j-1}] \leq Y_{j-1}$. This implies that $F_d = Y_{d-1}Y_{d-2}\cdots Y_1$ is a normal subgroup of H_d and H_d/F_d is an elementary abelian *p*-group of order p^d . Since H_d can be generated by the *d* elements x_1, \ldots, x_d we deduce that $F_d = \operatorname{Frat}(H_d) = H'_d$.

LEMMA 16. $K_d = Z_{d-1}Z_{d-2}\cdots Z_2$ is a normal subgroup of H_d .

Proof. Since Z_i is an H_i -submodule of W_i for any $i \in \mathbb{N}$, and $H_{i+1} = W_i \rtimes H_i$, we have $[Z_i, x_{j+1}] \leq Z_i$ whenever $i \geq j$. So in order to prove our statement, it suffices to prove that if $2 \leq i < j$ then $[Z_i, x_{j+1}] \leq Z_j$. Recall that $ht(x_{j+1}) = 2^j - 1$ and let

$$Y_j^* = \langle \omega \in \Delta_j \mid ht(\omega) \le ht(x_{j+1}) - 2 = 2^j - 3 \rangle \le Y_j.$$

We have $Y_j = \langle Y_j^*, \tilde{x}_{j+1}, \eta_1, \dots, \eta_j \rangle$ with

 $\eta_1 = \gamma_j(0, 2, 2, \dots, 2),$ $\eta_2 = \gamma_j(1, 0, 2, \dots, 2),$ $\dots, \dots, \dots, \dots, \dots, \eta_{j-1} = \gamma_j(1, \dots, 1, 0, 2),$ $\eta_i = \gamma_i(1, \dots, 1, 0) = \tilde{x}_{i+1}.$ Now let $h \in Z_i$. Since $h \in Z_i \le H_{i+1} = \langle x_1, \ldots, x_{i+1} \rangle$, we have $h = x_{s_1} \ldots x_{s_r}$ with $r \in \mathbb{N}$ and $s_1, \ldots, s_r \in \{1, \ldots, i+1\}$. By Lemma 3, $[W_i, H_i, H_i] = [Y_i, H_i] = Y_i^*$ and

$$[h, x_{j+1}] \equiv \sum_{1 \le t \le r} [x_{s_t}, x_{j+1}] \equiv \sum_{1 \le t \le r} \eta_{j+1-s_t} \mod Y_j^*.$$

Let *l* be the numbers of $t \in \{1, ..., r\}$ with $x_{s_t} = x_1$. Since $\eta_k \in Z_j$ if $k \neq j$ and $U_j \leq Z_j$ we deduce that $[h, x_{j+1}] \equiv l\tilde{x}_{j+1} \mod Z_j$. On the other hand, $h \in Z_i \leq W_i \cdots W_2 \leq H_i$ and $h \equiv (x_1)^l \mod W_i \cdots W_2$, so it must be $l \equiv 0 \mod p$ and consequently $[h, x_{j+1}] \in Z_j$.

We are interested in the structure of the factor group H_d/K_d . Let

$$\xi_1 = x_1 K_d, \xi_2 = x_2 K_d, \tilde{\xi}_2 = \tilde{x}_2 K_d, \dots, \xi_d = x_d K_d, \tilde{\xi}_d = \tilde{x}_d K_d.$$

LEMMA 17. The group H_d/K_d has order p^{2d-1} . In particular,

- (1) $\langle \xi_2, \tilde{\xi}_2, \dots, \xi_d, \tilde{\xi}_d \rangle$ is a normal subgroup of H_d/K_d and it is an elementary abelian *p*-group of order $p^{2(d-1)}$.
- (2) $\langle \tilde{\xi}_2, \ldots, \tilde{\xi}_d \rangle$ is a central subgroup of H_d/K_d .
- (3) $[\xi_1, \xi_i] = \tilde{\xi}_i$ for each $i \in \{2, ..., d\}$.

THEOREM 18. If T is a proper subgroup of H_d , then $dl(T) \le d - 1$.

Proof. We prove the theorem by induction on d. It is not restrictive to assume that T is a maximal subgroup of H_d . If $W_{d-1} \leq T$, then T/W_{d-1} is a proper subgroup of $H_d/W_{d-1} \cong H_{d-1}$ and by induction $T^{(d-2)} \leq W_{d-1}$. It follows that $T^{(d-1)} = 1$, and so dl $(T) \leq d-1$. Now assume $W_{d-1} \not\leq T$: we have $TW_{d-1} = H_{d-1}$ and $T \cap W_{d-1} = Y_{d-1}$, since Y_{d-1} is the unique maximal H_{d-1} -submodule of W_{d-1} . In particular, there exist $w_1, \ldots, w_{d-1} \in W_{d-1}$ such that

$$T = \langle w_1 x_1, \dots, w_{d-1} x_{d-1}, Y_{d-1} \rangle = \langle w_1 x_1, \dots, w_{d-1} x_{d-1}, \tilde{x}_d, Z_{d-1} \rangle.$$

Since $Y_{d-1} \leq T$ and $W_{d-1} = \langle Y_{d-1}, x_d \rangle$ we may assume $w_i = c_i x_d$ for some $c_i \in \mathbb{N}$. Therefore, we have $T = \langle (c_1 x_d) x_1, \dots, (c_{d-1} x_{d-1}) x_1, \tilde{x}_d, Z_{d-1} \rangle$ and, since $Z_{d-1} \leq K_d$, it follows

$$TK_d/K_d = \langle (c_1\xi_d)\xi_1, \ldots, (c_{d-1}\xi_d)\xi_{d-1}, \xi_d \rangle.$$

By Lemma 17, $T'K_d/K_d$ is the smallest normal subgroup of TK_d/Kd containing the commutators $[(c_1\xi_d)\xi_1, (c_i\xi_d)\xi_i] = c_1c_i\tilde{\xi}_i$ for $i \in \{2, ..., d-1\}$. This means that $T'K_d/K_d \leq \langle \tilde{\xi}_2, ..., \tilde{\xi}_{d-1} \rangle$, i.e. $T' \leq \langle \tilde{x}_2, ..., \tilde{x}_{d-1} \rangle K_d \leq F_d \leq (H_{d-1})^p$. For $j \in \{1, ..., p\}$, let $U_j = \langle \pi_j(\tilde{x}_2), ..., \pi_j(\tilde{x}_{d-1}) \rangle F_{d-1} \leq H_{d-1}$. Since $d(H_{d-1}) = d - 1$ and $F_{d-1} = \text{Frat } H_{d-1}$, it must be $U_j \neq H_{d-1}$. By induction, $dl(U_j) \leq d - 2$. Moreover, since $\pi_j(K_d) \leq F_{d-1}$, we deduce that $\pi_j(T') \leq U_j$. But then $T' \leq U_1 \times ... U_p$ which implies that $dl(T') \leq \max_j dl(U_j) \leq d - 2$ and consequently that $dl(T) \leq d - 1$.

PROPOSITION 19. If $1 \neq N \leq H_d$, then $dl(H_d/N) \leq d - 1$.

Proof. Since by Corollary 10, $Z(H_d)$ is cyclic of order p, we have that $Z(H_d) \le N$. In particular, $\operatorname{nc}(H_d/N) \le \operatorname{nc}(H_d/Z(H_d)) \le \operatorname{nc}(H_d) - 1 = 2^{d-1} - 1$ and so $\operatorname{dl}(H_d/N) \le \log_2(\operatorname{nc}(H_d/N)) - 1 \le \log_2(2^{d-1} - 1) + 1 < d$.

4. Order of H_d . In this section, we want to say more about the order of the group H_d . If d = 1, then H_1 is cyclic of order p. If d = 2, then W_1 has a basis over F consisting of the two vectors $\gamma_1(1)$ and $\gamma_1(0)$ so $H_2 = W_1 \rtimes H_1$ is a nonabelian group of order p^3 . However, the order of H_3 depends on the choice of the prime p: indeed a basis of W_2 can be obtained considering the set Δ_2 of the descendants of $x_3 = \gamma_2(1, 1)$ in the graph Γ_2 . If $p \neq 2$, then $\Delta_2 = \{\gamma_2(1, 1), \gamma_2(1, 0), \gamma_2(0, 2), \gamma_2(0, 1), \gamma_2(0, 0)\}$: in this case, $|H_2| = |H_1| |W_2| = p^3 p^5 = p^8$. However, for p = 2 we have $\Delta_2 = \{\gamma_2(1, 1), \gamma_2(1, 0), \gamma_2(0, 0)\}$ and $|H_2| = 2^7$.

The dimension of W_n over F is related to the function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ which is uniquely determined by the following rules:

$$f(n, a) = \begin{cases} 1 & \text{if } n = 0\\ p^n & \text{if } a \ge p \text{ and } n > 0\\ \sum_{0 \le j \le a} f(n-1, a+j) & \text{if } a 0. \end{cases}$$

It can be easily proved that $f(n, p-1) = p^n$ for any positive integer *n*.

Our aim is to prove that $|W_d| = p^{f(d,1)}$. This requires a more detailed investigation of the properties of the graph Ω_n .

LEMMA 20. Let $\omega = \gamma_d(a_1, \ldots, a_d)$ with $a_i \in \{0, \ldots, p-1\}$ for every $i \in \{1, \ldots, d\}$. If $0 \le b_i \le a_i$ for every $i \in \{1, \ldots, d\}$, then $\gamma_d(b_1, \ldots, b_d) \in \Delta_d(\omega)$.

Proof. We prove by induction on d - j that if $b_i \leq a_i$ for every $i \in \{j, ..., d\}$ then $\gamma_d(a_1, ..., a_{j-1}, b_j, ..., b_d) \in \Delta_d(\omega)$. This is certainly true if d - j = 0, since Ω_d contains the edge $(\gamma_d(a_1, ..., a_{d-1}, y_d), \gamma_d(a_1, ..., a_{d-1}, y_d - 1))$ whenever $1 \leq y_d \leq a_d$. Now assume that we have proved our statement for a $j \neq 1$, assume that $a_{j-1} \neq 0$ and consider $\omega_1 = \gamma_d(a_1, ..., a_{j-1}, a_j^*, ..., a_d^*)$ with $a_k^* = a_k - 1$ if $a_k > 0$ and $a_k^* = 0$ otherwise. By induction $\omega_1 \in \Delta_d(\omega)$. Moreover Ω_d contains the edge (ω_1, ω_2) for $\omega_2 = \gamma_d(a_1, ..., a_{j-1} - 1, a_i^* + 1, ..., a_d^* + 1)$. By induction,

$$\gamma_d(a_1,\ldots,a_{j-1}-1,b_j,\ldots,b_d) \in \Delta_d(\omega_1) \subseteq \Delta_d(\omega)$$

if $b_i \le a_i^* + 1$ for every $i \in \{j, \ldots, d\}$. Since $a_i \le a_i^* + 1$, we deduce

$$\gamma_d(a_1,\ldots,a_{j-1}-1,b_j,\ldots,b_d) \in \Delta_d(\omega)$$

if $b_i \le a_i$ for every $i \in \{j, ..., d\}$. Repeating this argument, we can conclude $\gamma_d(a_1, ..., b_{j-1}, b_j, ..., b_d) \in \Delta_d(\omega)$ if $b_i \le a_i$ for every $i \in \{j - 1, ..., d\}$.

LEMMA 21. If $\omega = \gamma_d(a_1, \ldots, a_d)$, $a_{i-1} \neq 0$ and $a_i = p - 1$, then

$$\gamma_d(a_1, \ldots, a_{i-1} - 1, b, a_{i+1} + 1, \ldots, a_d + 1) \in \Delta_d(\omega)$$

for every $b \in \{0, ..., p-1\}$.

Proof. By Lemma 20, $\omega_1 = \gamma_d(a_1, \dots, a_{i-1}, p-2, a_{i+1}, \dots, a_d) \in \Delta_d(\omega)$ and consequently $\omega_2 = \gamma_d(a_1, \dots, a_{i-1} - 1, p-1, a_{i+1} + 1, \dots, a_d + 1) \in \Delta_d(\omega_1) \subseteq \Delta_d(\omega)$. Again by Lemma 20, $\gamma_d(a_1, \dots, a_{i-1} - 1, b, a_{i+1} + 1, \dots, a_d + 1) \in \Delta_d(\omega_2) \subseteq \Delta_d(\omega)$ for every $b \in \{0, \dots, p-1\}$.

We define a new graph $\hat{\Omega}_d$ with the same vertices as Ω_d but with a different set of edges: let $\omega_1 = \gamma_d(a_1, \dots, a_d)$ and $\omega_2 = \gamma_d(b_1, \dots, b_d)$ with $0 \le a_i, b_i \le p - 1$: (ω_1, ω_2)

is an edge in $\tilde{\Omega}_d$ if and only if there exists $k \in \{1, ..., d\}$ such that: $a_k \neq 0$, $b_i = a_i$ if i < k, $b_k = a_k - 1$, $b_i = \min\{a_i + 1, p - 1\}$ if i > k. We denote by $\tilde{\Delta}_d(\omega)$ the set of the descendants of $\omega \in \Gamma_d$. It follows immediately from Lemma 21 that:

LEMMA 22. For every $\omega \in \Gamma_d$, we have $\tilde{\Delta}_d(\omega) = \Delta_d(\omega)$.

LEMMA 23. Let $\omega = \gamma_d(b, \dots, b)$ with $0 \le b \le p - 1$. Then, $|\tilde{\Delta}_d(\omega)| = f(d, b)$.

Proof. We prove the statement by induction on *d*. It follows immediately from the definition that $\tilde{\Delta}_1(\gamma_1(b)) = \{\gamma_1(b), \gamma_1(b-1), \dots, \gamma_1(0)\}$ has cardinality b+1 = f(1, b).

Let (ω_1, ω_2) be an edge in the graph $\tilde{\Omega}_d$. We say that (ω_1, ω_2) is a k-edge if

$$\omega_1 = \gamma_d(a_1, \dots, a_d) \text{ with } a_1, \dots, a_d \in \{0, \dots, p-1\}, a_k \neq 0 \text{ and} \\ \omega_2 = \gamma_d(a_1, \dots, a_{k-1}, a_k - 1, \min\{a_{k+1} + 1, p-1\}, \dots, \min\{a_d + 1, p-1\}).$$

Now let $\omega = \gamma_d(b, \ldots, b)$ with $b \in \{0, \ldots, p-1\}$ and let $\omega^* \in \tilde{\Delta}_d(\omega)$. The number of 1-edges in a path connecting ω to ω^* is at most b. For $j \in \{0, \ldots, b\}$, let $\tilde{\Delta}_d(\omega, j)$ be the subset of $\tilde{\Delta}_d(\omega)$ consisting of the descendants of ω connected to ω by a path which contains exactly j 1-edges. Notice that if $\omega^* = \gamma_d(a_1, \ldots, a_d) \in \tilde{\Delta}_d(\omega, j)$, then $a_1 = b - j$ and consequently $\tilde{\Delta}_d(\omega)$ is the disjoint union of the subsets $\tilde{\Delta}_d(\omega, j)$, $0 \le j \le b$, and $|\tilde{\Delta}_d(\omega)| = \sum_{0 \le j \le b} |\tilde{\Delta}_d(\omega, j)|$.

Clearly, $\omega^* = \gamma_d(a_1, \ldots, a_p) \in \tilde{\Delta}_d(\omega, 0)$ if and only if $\omega^* = \gamma_d(b, b_1, \ldots, b_{p-1})$ with $\gamma_{d-1}(b_1, \ldots, b_{d-1}) \in \tilde{\Delta}_{d-1}(\gamma_{d-1}(b, \ldots, b))$ so, by induction, $|\tilde{\Delta}_d(\omega_0)| = f(d-1, b)$. Now suppose that there is a path

$$\omega_0 = \omega, \omega_1, \ldots, \omega_{k+1} = \omega^*$$

where (ω_j, ω_{j+1}) is an 1-edge if and only if j = k. We claim that if $k \neq 0$, then there exist r < k and a path

$$\tilde{\omega}_0 = \omega, \tilde{\omega}_1, \ldots, \tilde{\omega}_{s+1} = \omega^*$$

with $s \ge r$ and where (ω_j, ω_{j+1}) is a 1-edge if and only if j = r. Let $\omega_{k-1} = \gamma_d(a_1, \ldots, a_d)$ with $a_1, \ldots, a_d \in \{0, \ldots, p-1\}$ and assume that (ω_{k-1}, ω_k) is an *i*-edge. Hence,

$$\omega_k = \gamma_d(a_1, \dots, a_{i-1}, a_i - 1, \min\{a_{i+1} + 1, p - 1\}, \dots, \min\{a_d + 1, p - 1\})$$

$$\omega_{k+1} = \gamma_d(a_1 - 1, \min\{a_2 + 1, p - 1\}, \dots, \min\{a_{i-1} + 1, p - 1\},$$

$$a_i, \min\{a_{i+1} + 2, p - 1\}, \dots, \min\{a_d + 2, p - 1\}).$$

Now, the graph $\tilde{\Delta}_d(\omega)$ contains also the 1-edge $(\omega_{k-1}, \omega_k^*)$ and the *i*-edge $(\omega_k^*, \omega_{k+1}^*)$ with

$$\omega_k^* = \gamma_d(a_1 - 1, \min\{a_2 + 1, p - 1\}, \dots, \{a_d + 2, p - 1\})$$

$$\omega_{k+1}^* = \gamma_d(a_1 - 1, \min\{a_2 + 1, p - 1\}, \dots, \min\{a_{i-1} + 1, p - 1\}, \min\{a_i + 1, p - 1\} - 1, \min\{a_{i+1} + 2, p - 1\}, \dots, \min\{a_d + 2, p - 1\}).$$

If $a_i \neq p-1$, then $\omega_{k+1}^* = \omega_{k+1}$ so $\omega_0, \ldots, \omega_{k-1}, \omega_k^*, \omega_{k+1}$ is the path we are looking for. On the other hand, if $a_i = p-1$ then $\min\{a_i + 1, p-1\} - 1 = p-2$ so this case requires a different argument. We may label the path $\omega_0, \ldots, \omega_{k-1}$ with the sequence (i_1, \ldots, i_{k-1}) meaning that (ω_{j-1}, ω_j) is an i_j -edge for any $j \in \{1, \ldots, k-1\}$. Now we consider the sequence (i_1^*, \ldots, j_i^*) obtained from (i_1, \ldots, i_k) by removing the entries i_j whenever $i_j > i$ and let $\omega_0, \omega_1^*, \ldots, \omega_t^*$ be the unique path starting from ω_0 and labelled by the sequence (i_1^*, \ldots, j_t^*) . It is not difficult to see that

$$\omega_t^* = \gamma_d(a_1..., a_{i-1}, p-1, ..., p-1).$$

Now we can continue the previous path adding the 1-edge $(\omega_t^*, \omega_{t+1}^*)$ with

$$\omega_{l+1}^* = (a_1 - 1, \min\{a_2 + 1, p - 1\}, \dots, \min\{a_{l-1} + 1, p - 1\}, p - 1, \dots, p - 1\}).$$

By Lemma 20, there is a path $\omega_{i+1}^*, \ldots, \omega_u^* = \omega_{k+1}$, involving only *j*-edges with $j \ge i$. In particular, $\omega_0, \omega_1^*, \ldots, \omega_u^*$ is the path we are looking for.

This completes the proof of our claim. Iterated applications of this remark allow to conclude that if $\omega^* \in \tilde{\Delta}_d(\omega, 1)$ then

$$\omega^* \in \tilde{\Delta}_d(\gamma_d(b-1, \min\{b+1, p-1\}, \dots, \min\{b+1, p-1\}))$$

In particular,

$$|\tilde{\Delta}_d(\omega, 1)| = |\tilde{\Delta}_{d-1}(\gamma_{d-1}(\min\{b+1, p-1\}, \dots, \min\{b+1, p-1\})|.$$

If b + 1 = p, then $|\tilde{\Delta}_d(\omega, 1)| = |\tilde{\Delta}_{d-1}(\gamma_{d-1}(p-1, \dots, p-1))| = p^{d-1} = f(d-1, b-1)$ by Lemma 20. If b + 1 < p, then $|\tilde{\Delta}_d(\omega, 1)| = |\tilde{\Delta}_{d-1}(\gamma_{d-1}(b-1, \dots, b-1))| = f(d-1, b-1)$ by induction.

A similar argument allows us to conclude that for any $j \in \{0, ..., b\}$ we have

$$|\tilde{\Delta}_d(\omega, j)| = |\tilde{\Delta}_{d-j}(\gamma_{d-j}(\min\{b+j, p-1\}, \dots, \min\{b+j, p-1\})) = f(d-j, b+j).$$

But then $|\tilde{\Delta}_d(\omega)| = \sum_{0 \le j \le b} |\tilde{\Delta}_d(\omega, j)| = \sum_{0 \le j \le b} f(d-j, b+1) = f(d, b).$

COROLLARY 24. dim_F
$$W_d = f(d, 1)$$
 and $\log_p |H_d| = \sum_{0 \le i \le d-1} f(i, 1)$.

Proof. By the previous Lemma, dim_F $W_d = |\tilde{\Delta}_d(\gamma_d(1, ..., 1))| = f(d, 1)$

COROLLARY 25. If p = 2, then $H_d = G_d = C_2 \wr \cdots \wr C_2$.

Proof. For any positive integer *n*, we have that dim $W_n = f(n, 1) = f(n-1, 1) + f(n-1, 2) = 2^{n-1} + 2^{n-1} = 2^n = \dim V_n$, hence $W_n = V_n$ and $H_d = W_{d-1} \cdots W_0 = V_{d-1} \cdots V_0 = G_d$.

On the other hand, if p > 2 then $|H_d|$ is much smaller then $|G_d|$. Indeed, we have PROPOSITION 26. $\log_p |H_d| \le \frac{1}{p-1} \left(\frac{p^d-1}{p-1} + (p-2)d \right) = \frac{1}{p-1} (\log_p |G_d| + (p-2)d).$

Proof. First, we prove by induction that $f(n, 1) \le 1 + (p^n - 1)/(p - 1)$ for each $n \in \mathbb{N}$. This is clearly true if n = 0 since f(0, 1) = 1. On the other hand, if n > 0 then

$$f(n,1) = f(n-1,1) + f(n-1,2) \le 1 + \frac{p^{n-1}-1}{p-1} + p^{n-1} = 1 + \frac{p^n-1}{p-1}$$
(4.1)

since $f(n-1, 2) = \dim_F(\gamma_{n-1}(2, ..., 2)) \le \dim_F V_{n-1} = p^{n-1}$. In particular,

$$\log_p |H_d| = \log_p |W_0 \cdots W_{d-1}| = \sum_{0 \le i \le p} \log_p |W_i|$$
$$\leq \sum_{0 \le i \le d-1} 1 + \frac{p^i - 1}{p - 1} = \frac{1}{p - 1} \left(\frac{p^d - 1}{p - 1} + (p - 2)d \right)$$

To conclude, it suffices to recall that $G_d = C_p \wr \cdots \wr C_p$ has order $(p^d - 1)/(p - 1)$. \Box

If p = 3, then it follows from Lemma 20 that $f(m, 2) = 3^m$ for every positive integer m and (4.1) is indeed an equality: hence,

$$|H_d| = \frac{1}{2} \left(\frac{3^d - 1}{2} + d \right)$$
 if $p = 3$.

However, if $p \neq 3$, then $\gamma_m(i, a_2, ..., a_m) \notin \Delta_m(\gamma_m(2, ..., 2))$ whenever $i \geq 3$ and this implies $f(m, 2) \leq p^m - (p - 3)p^{m-1} = 3p^{m-1}$. In particular, if $p \geq 5$ then the bound given in Proposition 26 can still be improved. The following table describes the behaviour of $|H_d|$ when $d \in \{3, 4, 5\}$ and $p \in \{3, 5, 7\}$.

	<i>p</i> = 3	<i>p</i> = 5	p = 7
$\dim_F W_2$	5	5	5
$\dim_F W_3$	14	17	17
$\dim_F W_4$	41	73	83
$\log_p H_3 $	8	8	8
$\log_p H_4 $	22	25	25
$\log_p H_5 $	63	98	108

5. A generalization. In this section, we introduce a more general construction. it turns out that the two groups H_d and G_d are particular examples of the groups that can be obtained with this method; in particular, such groups can be studied simultaneously and share some properties.

We fix an integer $k \in \{1, ..., p-1\}$ and we define recursively a sequence of vectors $x_{k,n} \in V_{n-1}$:

$$\begin{cases} x_{k,1} = k \\ x_{k,n+1} = \gamma_n(k, \dots, k) = \beta_n(x_{k,n}, k) \text{ if } n > 1. \end{cases}$$

Let $X_{k,d}$ be the subgroup of G_d generated by $x_{k,1}, \ldots, x_{k,d}$.

LEMMA 27. If $k_1 \le k_2$, then $X_{k_1,d} \le X_{k_2,d}$. Moreover, $X_{1,d} = H_d$ and $X_{p-1,d} = G_d$.

Proof. We make induction on *d*. Clearly, if d = 1, then $X_{k,1} = X_{1,1} = \langle x_1 \rangle \cong C_p$. So we may assume $d \ge 2$. By induction, $H_{d-1} \le X_{k_1,d-1} \le X_{k_2,d-1}$. In particular, $X_{k_2,d}$ contains the (H_{d-1}) -submodule of V_{d-1} generated by $x_{k_2,d} = \gamma_{d-1}(k_2, \ldots, k_2)$. By Proposition 5 and Lemma 20, $x_{k_1,d} = \gamma_{d-1}(k_1, \ldots, k_1)$ belongs to this submodule. Hence, $X_{k_1,d} = \langle x_{k_1,d}, X_{k_1-1,d-1} \rangle \le X_{k_2,d}$. In the particular case when $k_2 = p - 1$, the H_{d-1} submodule of V_{d-1} generated by $x_{p-1,d} = \gamma_{d-1}(p-1, \ldots, p-1)$ coincides with V_{d-1} and the previous argument allows to conclude that $X_{p-1,d} = G_d$. ELEONORA CRESTANI AND ANDREA LUCCHINI

We may generalize Lemma 3 to the general case.

LEMMA 28. Let
$$v = \gamma_d(a_1, \dots, a_d) \in V_d$$
, and $i \le d$. Consider $k = (d - i) + 1$. Then

$$\begin{cases} 0 & \text{if } a_k = 0 \end{cases}$$

$$[v, tx_{r,i}] = \begin{cases} 0 & i \ j \ a_k = 0 \\ \sum_{1 \le c \le \overline{a_k}} {a_k \choose c} (-tr)^c \gamma_d(a_1, \dots, \overline{a_k} - c, a_{k+1} + cr, \dots, a_d + cr) \ otherwise. \end{cases}$$

Proof. We may assume $0 \le a_j \le p - 1$ for all $j \in \{1, ..., p - 1\}$. Suppose i = 1. If $a_d = 0$, then $[v, tx_1] = 0$; otherwise, by Lemma 3,

$$[v, tx_{r,1}] = [v, trx_1] = \sum_{1 \le c \le a_d} {a_d \choose c} (-tr)^c \gamma_d(a_1, \dots, a_{d-1}, a_d - c).$$

Now assume i > 1. Since $v = \beta(\gamma_{d-1}(a_1, \ldots, a_{d-1}), a_d)$ and $tx_{r,i} = t\beta(x_{r,i-1}, r)$ we have

$$[v, tx_{r,i}] = (w_1, \ldots, w_p)$$

with

$$w_j = [(j-1)^{a_d} \gamma_{d-1}(a_1, \dots, a_{d-1}), (t(j-1)^r) x_{r,i-1}] \in V_{d-1}.$$

By induction,

$$w_{j} = (j-1)^{a_{d}} \sum_{1 \le c \le a_{k}} \binom{a_{k}}{c} (-tr(j-1)^{r})^{c} \gamma_{d-1}(a_{1}, \dots, a_{k}-c, a_{k+1}+cr, \dots, a_{d-1}+cr)$$
$$= \sum_{1 \le c \le a_{k}} \binom{a_{k}}{c} (-tr)^{c} (j-1)^{a_{d}+cr} \gamma_{d-1}(a_{1}, \dots, a_{k}-c, a_{k+1}+cr, \dots, a_{d-1}+cr).$$

This implies

$$\begin{bmatrix} v, tx_{r,i} \end{bmatrix} = \sum_{1 \le c \le a_k} \binom{a_k}{c} (-tr)^c \beta_d(\gamma_{d-1}(a_1, \dots, a_k - c, a_{k+1} + cr, \dots, a_{d-1} + cr), a_d + cr))$$
$$= \sum_{1 \le c \le a_k} \binom{a_k}{c} (-tr)^c \gamma_d(a_1, \dots, a_k - c, a_{k+1} + cr, \dots, a_{d-1} + cr, a_d + cr).$$

This concludes our proof.

We recall that $\Gamma_d = \{\gamma_d(a_1, \ldots, a_d) | 0 \le a_i \le p - 1 \text{ for every } i \in \{1, \ldots, d\}\}$ is a basis of V_d over F. For each $k \in \{1, \ldots, p - 1\}$, we define the k-height of $\omega = \gamma_d(a_1, \ldots, a_d)$ as follows:

$$ht_k(\gamma_d(a_1,\ldots,a_d)) = (k+1)^{d-1}a_1 + (k+1)^{d-2}a_2 + \cdots + (k+1)a_{d-1} + a_d.$$

For $v = \sum_{\omega \in \Gamma_d} \lambda_\omega \omega \neq 0 \in V_d$, we define $\operatorname{supp}(v) = \{\omega \mid \lambda_\omega \neq 0\}$ and $\operatorname{ht}_k(v) = \max\{\operatorname{ht}_k(\omega) \mid \omega \in \operatorname{supp}(v)\}$. We set $\operatorname{ht}_k(v) = -1$ if v = 0. For $n \in \{0, \ldots, (k+1)^d\}$, let $V_{k,d,n} = \{v \mid \operatorname{ht}_k(\omega) \leq n-1\}$. It follows immediately from Lemma 28 that, for each $n \in \{0, \ldots, (k+1)^d - 1\}, [G_d, V_{k,d,n+1}] \leq V_{k,d,n}$. A more precise result can be proved.

LEMMA 29. Suppose $v \in V_d$. If $ht_k(v) = r > 0$, then there exists $(j_1, \ldots, j_r) \in \{1, \ldots, d\}^r$ such that $[v, x_{k,j_1}, \ldots, x_{k,j_r}] \neq 0$.

$$\square$$

Proof. We may work by induction on *r* so it suffices to prove that there exists $i \in \{1, ..., d\}$ such that $ht_k([v, x_{k,i}]) = r - 1$. Since $ht_k(v) = r$, there exist $i \in \{1, ..., d\}$ and $\overline{\omega} = \gamma(b_1, ..., b_d) \in supp(v)$ with $ht_k(\overline{\omega}) = r$, $b_i \neq 0$ and $b_i = 0$ if j > i. Let

$$\Lambda = \{ \omega = \gamma_d(a_1, \dots, a_d) \in \operatorname{supp}(v) \mid a_i \neq 0 \text{ and } \operatorname{ht}_k(\omega) = r \}.$$

For $\omega = \gamma_d(a_1, \dots, a_d) \in \Lambda$, define $\omega^* = \gamma_d(a_1, \dots, a_i - 1, a_{i+1} + k, \dots, a_d + k)$. Notice that $ht_k(\overline{\omega}^*) = r - 1$, that $ht_k(\omega^*) \le r - 1$ for every $\omega \in \Lambda$ and that $\omega_1^* \ne \omega_2^*$ if $\omega_1 \ne \omega_2$. If follows from Lemma 28 that

$$[v, x_{k,i}] \equiv \sum_{\omega \in \Lambda} \lambda_{\omega} \omega^* \mod V_{k,d,r-1}$$

and consequently $ht_k([v, x_{k,i}]) = r - 1$.

THEOREM 30. $nc(X_{k,d}) = (k+1)^{d-1}$.

Proof. Notice that

$$ht_k(x_{k,d}) = ht_k(\gamma_{d-1}(k,\ldots,k)) = k(1+(k+1)+\cdots+(k+1)^{d-2}) = (k+1)^{d-1}-1.$$

Therefore, if follows from Lemma 29 that $nc(X_{k,d}) \ge (k+1)^{d-1}$. On the other hand, by Lemma 13, $X_{k,d}$ acts faithfully on the submodule U_d of V_d generated by $\gamma_d(1, 0, \ldots, 0)$. We have $ht_k(\gamma_d(1, 0, \ldots, 0)) = (k+1)^{d-1}$ so $U_d \le V_{k,d,(k+1)^{d-1}+1}$. For $i \in \{0, \ldots, (k+1)^{d-1} + 1\}$, let $U_{d,i} = V_{k,d,i} \cap U_d$. It follows from Lemma 28 that $X_{k,d}$ stabilizes the chain $0 = U_{d,0} \le \cdots \le U_{d,(k+1)^{d-1}+1} = U_d$. Therefore, $nc(H_d) \le (k+1)^{d-1}$ by Proposition 11.

REFERENCES

1. S. Evans-Riley, M. F. Newman and C. Schneider, On the soluble length of groups with prime-power order, *Bull. Austral. Math. Soc.* **59**(2) (1999), 343–346.

2. S. P. Glasby, *The shape of solvable groups with odd order*, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, (Cambridge University Press, Cambridge, 2007), 432–437.

3. B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band, vol. 134, (Springer-Verlag, Berlin, 1967).

4. A. Mann, The derived length of *p*-groups, J. Algebra 224(2) (2000), 263–267.

5. C. Schneider, The derived series of a finite p-group, J. Algebra 307(1) (2007), 136–152.