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Abstract. We construct a subgroup Hd of the iterated wreath product Gd of d
copies of the cyclic group of order p with the property that the derived length and
the smallest cardinality of a generating set of Hd are equal to d while no proper
subgroup of Hd has derived length equal to d. It turns out that the two groups Hd

and Gd are the extreme cases of a more general construction that produces a chain
Hd = K1 < · · · < Kp−1 = Gd of subgroups sharing a common recursive structure. For
i ∈ {1, . . . , p − 1}, the subgroup Ki has nilpotency class (i + 1)d−1.

1991 Mathematics Subject Classification. 20D15

1. Introduction. Certain properties of a finite group can be detected from its 2-
generated subgroups. For example, a deep theorem of Thompson says that G is soluble
if and only if every 2-generated subgroup of G is soluble. Influenced by these results, one
could be tempted to conjecture that there exists a positive integer c with the property
that every finite soluble group contains a c-generated subgroup with the same derived
length. This is false. Consider the iterated wreath product Gd = Cp � · · · � Cp of d copies
of the cyclic group of order p. The derived length of Gd is equal to d and coincides
with the smallest cardinality of a generating set. However, if p = 2, then every proper
subgroup of Gd has derived length smaller than d (see, for example, [2, Lemma 2]),
so d elements are really needed to generate a subgroup with derived length equal to
d. On the other hand, if p �= 2, then Gd contains several proper subgroups with the
same derived length and the following questions arise. Does a counterexample to
the previous conjecture exist when p �= 2? Does such counterexample appear among
the subgroups of Gd? The aim of this paper is to answer to the previous two questions.

THEOREM 1. For any prime p, there exist d elements x1, . . . , xd ∈ Gd such that
the subgroup Hd = 〈x1, . . . , xd〉 of Gd generated by these elements has the following
properties:

(1) the derived length of Hd is d;
(2) Hd cannot be generated by d − 1 elements;
(3) no proper subgroup of Hd has derived length equal to d.

The interest on p-groups without proper subgroups with the same derived length
has been related with the problem of bounding the order of a finite p-group in terms
of its derived length (a long history starting from Burnside’s papers, see [5] for more
details). Mann [4] showed that if G is a finite p-group, then G(d) �= 1 implies logp |G| >

2d + 2d − 2. For primes at least 5, groups of length d and order p2d−2 were constructed
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in [1], improving previous examples of Hall of order p2d−1 for all odd primes (see [3,
III.17.7]). These examples can be generated by two elements; our interest goes in a
different direction: indeed, we want to produce examples of p-groups without proper
subgroups of the same derived length but with large elementary abelian factors. As a
consequence, the order of Hd is large with respect to the lower bound proved by Mann
(a detailed investigation of the order of Hd is done in Section 4). However, Hd has other
minimality properties. It is well known that if a nilpotent group has derived length d,
then its nilpotency class is at least 2d−1. The nilpotency class of Hd is precisely 2d−1,

the smallest possible value. It follows also that no proper factor group of Hd has the
same derived length as Hd .

Our study of the properties of the group Hd is made possible by a particular choice
of the notations: the group Gd acts on the pd-dimensional vector space Vd over the field
with p-elements and Gd+1 = Vd � Gd . In section 2, we define a map γd : {0, . . . , p −
1}d → Vd with the property that the image �d = γd({0, . . . , p − 1}d) is a basis for
Vd over F. We have Gd = Vd−1 � (Vd−2 � · · · � V0) and Hd = 〈x1, . . . , xd〉 with xi =
γi−1(1, . . . , 1) ∈ Vi−1. An easy formula (see in particular Lemma 3) allows to express,
for any ω ∈ �d and i ∈ {1, . . . , d − 1}, the commutator [ω, xi] as a linear combination
of the elements of �d . In Section 5, we discuss a generalization of this construction.
For k ∈ {1, . . . , p − 1}, we can consider the subgroup Xk,d = 〈xk,1, . . . , xk,d〉 of Gd with
xk,i = γi−1(k, . . . , k). If p = 2, then Hd = Gd . Otherwise

Hd = X1,d < X2,d < · · · < Xp−2,d < Xp−1,d = Gd .

This approach allows to study simultaneously the groups Xk,d for the different values
of k: for example the nilpotency class of these groups can be determined with a unified
argument: we prove that the nilpotency class of Xk,d coincides with (k + 1)d−1 (see
Theorem 30).

2. Notations and preliminary results. We fix the following notations: p is a prime
number, F is a field with p elements and Vn = Fpn

is a vector space over F of dimension
pn. For each positive integer n, we define a function βn : Vn−1 × � → Vn as follows: if
v = (a1, . . . , apn−1 ), then

βn(v, m) = (0mv, 1mv, . . . , (p − 1)m
v)

= (0ma1, . . . , 0mapn−1 , . . . , (p − 1)ma1, . . . , (p − 1)mapn−1 ).

Notice that if a1, a2 are positive integers and a1 ≡ a2 mod p − 1, then βn(v, a1) =
βn(v, a2). However, if t is a positive integer, then βn(v, 0) − βn(v, t(p − 1)) =
(v, 0, . . . , 0). Given a ∈ �, we define a as follows: if a = 0, then a = 0; otherwise a
is the unique integer with 1 ≤ a ≤ p − 1 and a ≡ a mod p − 1. With this notation, it
turns out that βn(v, a) = βn(v, a) for any a ∈ �. Now, for every positive integer n, we
define a function

γn : �n → Vn = Fpn

in the following way:{
γ1(a) = β1(1, a) = (0a, 1a, . . . , (p − 1)a)

γn(a1, . . . , an) = βn(γn−1(a1, . . . , an−1), an) if n > 1.
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Let Ip = {0, . . . , p − 1} ⊆ �. Since γn(a1, . . . , an) = γn(a1, . . . , an), we have that
γn(�n) = γn(In

p ). Notice that for any choice of (a1, . . . , an) in In
p , γn(a1, . . . , an) is a

non zero vector (for example γ1(0) = (1, . . . , 1)). Moreover, a stronger result holds.
Indeed, we have:

LEMMA 2. The set �n = {γn(u) |u ∈ In
p } is a basis for the vector space Vn over F.

Proof. We use the fact that any v ∈ �n can be uniquely written in the form v =
βn(w, a) with w ∈ �n−1 and a ∈ Ip. Now, for w ∈ �n−1 and a ∈ Ip, let λw,a be elements
of F such that ∑

w,a

λw,aβn(w, a) = 0.

For 1 ≤ i ≤ p, we have a linear map ρi : Vn → Vn−1 defined by ρi(a1, . . . , apn ) =
(a1+(i−1)pn−1 , . . . , apn−1+(i−1)pn−1 ). In particular, since ρi(βn(w, a)) = (i − 1)aw, we get that

0 = ρi

(∑
w,a

λw,aβn(w, a)

)
=

∑
w,a

λw,a(i − 1)aw =
∑
w

(∑
a

λw,a(i − 1)a

)
w.

By induction, the vectors of �n−1 are linearly independent, so for each w ∈ �n−1 and
each j ∈ {0, . . . , p − 1}, we have that∑

a∈Ip

λw,aja = 0.

This means that (λw,0, . . . , λw,p−1) is a solution of the homogeneous linear system
associated to the matrix

A :=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2p−1

...
...

... · · · ...
1 p − 1 (p − 1)2 · · · (p − 1)p−1

⎞
⎟⎟⎟⎟⎟⎠ .

Since A is an invertible matrix, we get that λw,a = 0 for each w ∈ �n−1 and
a ∈ Ip. �

We use the previous definition to construct a sequence of vectors xn ∈ Vn−1 :{
x1 = 1

xn+1 = γn(1, . . . , 1) = βn(xn, 1) if n > 0.

Now we start to work in the iterated wreath product Gd = Cp � Cp � · · · � Cp, where
Cp appears d-times. Clearly, G1

∼= V0 while, if d ≥ 1, then Vd−1 can be identified with
the base subgroup of the wreath product Gd = Cp � Gd−1 = Vd−1 � Gd−1. In particular,
x1, . . . , xd can be viewed as elements of Gd .

Our aim is to study the subgroup Hd = 〈x1, . . . xd〉 of Gd generated by these
elements. Notice that V0 = H1 = G1

∼= Cp while, if d ≥ 2, then Hd = Wd−1 � Hd−1,

where Wd−1 is the Hd−1-submodule of Vd−1 generated by xd .
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LEMMA 3. Let v = γd(a1, . . . , ad) ∈ Vd, with and i ≤ d. Consider k = (d − i) + 1.

If t is a positive integer, then

[v, txi]=
{

0 if ak = 0∑
1≤c≤ak

(ak
c

)
(−t)cγd(a1, . . . , ak−1, ak−c, ak+1+c, . . . , ad +c) otherwise.

Proof. Since γd(a1, . . . , ad) = γd(a1, . . . , ad), we may assume 0 ≤ aj ≤ p − 1 for all
j ∈ {1, . . . , d}. First, we prove this lemma for i = 1. Notice that if w1, . . . , wp ∈ Vd−1,

then

(w1, . . . , wp)x1 = (wp, w1, . . . , wp−1).

In our particular case, since v = βd(w, a) for w = γd−1(a1, . . . , ad−1), we get that

[v, tx1] = − (0ad w, 1ad w, . . . , (p − 1)ad w) + (0ad w, 1ad w, . . . , (p − 1)ad w)tx1

=(((−t)ad − 0ad )w, . . . , ((i − t)ad − iad )w, . . . , ((p − 1 − t)ad − (p − 1)ad )w).

If ad = 0, then [v, tx1] = 0. Otherwise, since (i − t)ad − iad = ∑
0≤b≤ad−1( ad

b )(−t)ad−bib,

we deduce

[v, tx1] =
∑

0≤b≤ad−1

(
ad

b

)
(−t)ad−bγd(a1, . . . , ad−1, b)

=
∑

1≤c≤ad

(
ad

c

)
(−t)cγd(a1, . . . , ad−1, ad − c).

Now assume i > 1. Since v = βd(γd(a1, . . . , ad−1), ad) and txi = tβ(xi−1, 1), we have

[v, txi] = (w1, . . . , wp)

with

wj = [(j − 1)ad γd−1(a1, . . . , ad−1), (t · (j − 1))xi−1] ∈ Vd−1.

By induction

wj =(j−1)ad
∑

1≤c≤ak

(
ak

c

)
(−t(j−1))cγd−1(a1, . . . , ak−1, ak − c, ak+1+c, . . . , ad−1+c)

=
∑

1≤c≤ak

(
ak

c

)
(−t)c(j − 1)ad+c

γd−1(a1, . . . , ak−1, ak−c, ak+1 + c, . . . , ad−1 + c).

This implies

[v, txi] =
∑

1≤c≤ak

(
ak

c

)
(−t)cβd(γd−1(a1, . . . , ak−1, ak−c, ak+1+c, . . . , ad−1+c), ad + c))

=
∑

1≤c≤ak

(
ak

c

)
(−t)cγd(a1, . . . , ak−1, ak − c, ak+1 + c, . . . , ad−1 + c, ad + c).

This concludes our proof. �
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We define a directed graph �d whose nodes are the elements of �d and
in which there exists an edge with initial vertex ω1 = γ (a1, . . . , ad) and terminal
vertex ω2 = γ (b1, . . . , bd) if and only if there exists k ∈ {1, . . . , d} such that
ak �= 0 and γ (b1, . . . , bd) = γ (a1, . . . , ak−1, ak − 1, ak+1 + 1, . . . , ad + 1). Let ω =
γd(a1, . . . , ad) ∈ �d : we define the height of ω as follows:

ht(γd(a1, . . . , ad)) = 2d−1a1 + 2d−2a2 + · · · + 2ad−1 + ad .

LEMMA 4. If (ω1, ω2) is an edge in �d, then ht(ω2) < ht(ω1).

Proof. We may assume ω1 = γd(a1, . . . , ad) with 0 ≤ ai ≤ p − 1 for each i ∈
{1, . . . , d} and that ω2 = γ (a1, . . . , ak−1, ak − 1, ak+1 + 1, . . . , ad + 1) for some k ∈
{1, . . . , d} with ak �= 0. Since

ht(ω1) = 2d−1a1 + · · · + ad and

ht(ω2) = 2d−1a1 + · · · + 2d−k+1ak−1 + 2d−k(ak−1) + 2d−k−1(ak+1+1) + · · · + (ad +1)

≤ 2d−1a1 + · · · + 2d−k+1ak−1 + 2d−k(ak−1) + 2d−k−1(ak+1+1) + · · · + (ad +1)

we have

ht(ω1) − ht(ω2) ≥ 2d−k −
∑

0≤j≤d−k−1

2j = 1

hence ht(ω2) < ht(ω1). �
Given ω ∈ �d , we denote by 	d(ω) the set of the descendants of ω ∈ �d, i.e. the

set of the ω∗ ∈ �d for which there exists a path in �d starting from ω and ending in ω∗.

PROPOSITION 5. If ω ∈ �d, then 	d(ω) is a basis for the Hd-submodule U(ω) of Vd

generated by ω.

Proof. By Lemma 3, U(ω) is contained in the subspace of Vd spanned by 	d(ω).
To prove the converse it suffices to show that if �n contains the edge (ω,ω∗), then
ω∗ ∈ U(ω). Let ω = γd(a1, . . . , ad). We assume 0 ≤ ai ≤ p − 1 for each i ∈ {1, . . . , d}.
By definition, there exists a k ∈ {1, . . . , d} such that ak �= 0 and

ω∗ = γ (a1, . . . , ak−1, ak − 1, ak+1 + 1, . . . , ad + 1).

For 0 ≤ c ≤ ak, let ωc = γd(a1, . . . , ak−1, ak−c, ak+1+c, . . . , ad +c). In particular, ω =
ω0 and ω∗ = ω1. By Lemma 3, for 0 ≤ c ≤ ak there exist μc,c+1, . . . , μc,k ∈ F such that

[ωc, xi] =
∑

c+1≤j≤ak

μc,jωj.

Moreover, μc,j �= 0 for each j ∈ {c + 1, . . . , ak}. Indeed, since 0 ≤ ak < p − 1,

μc,j =
(

ak − c
j − c

)
(−1)j−c �= 0 mod p.

Now, for r ∈ {0, . . . , ak − 1} consider

ρr = [ω, xi . . . , xi︸ ︷︷ ︸
r times

].
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We claim that

ρr =
∑

r≤c≤ak

λr,cωc, with λr,c ∈ F and λr,r �= 0.

If r = 1, then ρ1 = [ω0, xi] and λ1,c = μ0,c. Assume r �= 1.

ρr = [ρr−1, xi] =
⎡
⎣ ∑

r−1≤c≤ak

λr−1,cωc, xi

⎤
⎦ =

∑
r−1≤c≤ak

[
λr−1,cωc, xi

]

=
∑

r−1≤c≤ak

λr−1,c

⎛
⎝ ∑

c+1≤j≤ak

μc,jωj

⎞
⎠ =

∑
r≤c≤ak

λr,cωc

with

λr,j =
∑

r−1≤c≤j−1

λr−1,cμc,j.

In particular, λr,r = λr−1,r−1μr−1,r−1 �= 0. Now we can conclude our proof, showing by
induction on ak − c that ωc ∈ U(ω) for 1 ≤ c ≤ ak. If ak − c = 0, then ρak = λak,akωak ∈
U. Since ρak ∈ U and λak,ak �= 0, we conclude ωak ∈ U(ω). Assume ωc+1, . . . , ωak ∈
U(ω). Since ρc,c = ∑

c≤j≤ak
λr,jωj ∈ U(ω) and λc,c �= 0, we deduce ωc ∈ U(ω). �

3. Derived length and nilpotency class of Hd . We will denote with dl(G) the derived
length of G, if G is a soluble group, and with nc(G) the nilpotency class of G, if G is a
nilpotent group.

PROPOSITION 6. dl(Hd) = d.

Proof. The proof is by induction on d. If d = 1, then H1 is cyclic of order p and
dl(H1) = 1. Assume d ≥ 2. We have H ′

d ≤ G′
d ≤ (Gd−1)p, and so we can consider the

projection π1 : H ′
d → Gd−1. By Lemma 3,

[xi, x1] = [γi+1(1, . . . , 1), x1] = −γi+1(1, . . . , 1, 0)

= −(γi(1, . . . , 1), . . . , γi(1, . . . , 1)) = −(xi−1, . . . , xi−1).

Thus, π1(H ′
d) ≥ 〈x1, . . . , xd−1〉 = Hd−1 and by induction

d − 1 = dl(Hd−1) ≤ dl(π1(H ′
d)) ≤ dl(H ′

d) ≤ dl(G′
d) = d − 1.

But then, dl(H ′
d) = d − 1 hence dl(Hd) = d. �

It is well known that Gd is isomorphic to a Sylow p-subgroup of Sym(pd), hence
Hd can be identified with a subgroup of Sym(pd).

COROLLARY 7. Hd is a transitive subgroup of Sym(pd).

Proof. Assume that �1, . . . , �r are the orbits of Hd on the set {1, . . . , pd}. For each
j ∈ {1, . . . , r}, we have |�j| = psj for some sj ∈ �. If Xj is the transitive constituent of
Hd corresponding to the orbit �j, then Xj is isomorphic to a subgroup of Gsj , since
Gsj is a Sylow p-subgroup of Sym(psj ); in particular, dl(Xj) ≤ dl(Gsj ) = sj. We deduce
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that d = dl(Hd) ≤ max{dl(Xj) | 1 ≤ j ≤ r} ≤ max{sj | 1 ≤ j ≤ r}. This is possible only
if r = 1. �

Define zd as follows: {
z1 = x1 if d = 1,

zd = γd−1(0, . . . , 0) otherwise.

It follows immediately from our definitions that zd = (1, . . . , 1) ∈ Vd−1. In particular,
〈zd〉 ≤ CVd−1 (Gd−1) ≤ CVd−1 (Hd−1).

LEMMA 8. CVd−1 (Hd−1) = 〈zd〉.
Proof. Let v = (x1, . . . , xpd−1 ) ∈ CVd−1 (Hd−1). Since Hd−1 is a transitive subgroup

of Sym(pd−1) it must be xi = x1 for all i ∈ {1, . . . , pd−1}, hence v ∈ 〈zd〉. �

LEMMA 9. Let d be a positive integer. If a1 �= 0, then [zd, γd(a1, . . . , ad)] �= 0.

Proof. We prove this statement by induction on d. If d = 1, then [z1, γ1(a1)] =
γ1(a1 − 1) �= 0, by Lemma 3. Otherwise, since zd = (zd−1, . . . , zd−1), we have

[zd, γd(a1, . . . , ad)] =
= [(zd−1, . . . , zd−1), (0ad γd−1(a1, . . . , ad−1), . . . , (p − 1)ad γd−1(a1, . . . , ad−1))]

= ([zd−1, 0ad γd−1(a1, . . . , ad−1)], . . . , [zd−1, (p − 1)ad γd−1(a1, . . . , ad−1)]) �= 0

since [zd−1, γd−1(a1, . . . , ad−1)] �= 0 by induction. �

COROLLARY 10. Z(Hd) = 〈zd〉 is cyclic of order p.

Proof. If d = 1, then Z(H1) = 〈z1〉 = 〈x1〉 is cyclic of order p. Assume d ≥ 2.

We have Hd = Wd−1 � Hd−1. By induction, 〈zd−1〉 = Z(Hd−1); in particular, zd−1 is
contained in every normal subgroup of Hd−1 and it follows from Lemma 9 that the
action of Hd−1 on Wd−1 is faithful. Hence, by Lemma 8, Z(Hd) ≤ CWd−1 (Hd−1) =
〈zd〉. �

Let a group G act on another group A via automorphism and suppose that 1 =
A0 ≤ · · · ≤ Am = A is a chain of G-invariant subgroups: we say that G stabilizes the
chain {Ai | 0 ≤ i ≤ m} if each right coset of Ai−1 in Ai is G-invariant for all i with
0 < i < m. The first proof of following result was given by Kaluzhnin.

PROPOSITION 11. Assume that G acts faithfully on A via automorphisms and that G
stabilizes a chain {Ai | 0 ≤ i ≤ m} of normal subgroups of A. Then A is nilpotent of class
at most m − 1.

LEMMA 12. Let ω ∈ �d with m = ht(ω). Define U0(ω) = 0 and, for any j ∈
{1, . . . , m}, let Uj(ω) = 〈ω∗ ∈ 	d(ω) | ht(ω∗) ≤ j − 1〉. Then, Hd stabilizes the chain
{Uj(ω) | 0 ≤ i ≤ m + 1}.

Proof. It follows immediately from Lemma 3 and Lemma 4. �

LEMMA 13. Hd acts faithfully on the submodule Ud of Wd generated by
γd(1, 0, . . . , 0).
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Proof. By Corollary 8, 〈zd〉 is contained in all the nontrivial normal subgroups of
Hd . Now, Lemma 9 guarantees that [zd, γd+1(1, 0, . . . , 0)] �= 0, and this immediately
implies that the action of Hd on Ud is faithfull. �

THEOREM 14. nc(Hd) = 2d−1.

Proof. It is well known that dl(G) ≤ log2(nc(G)) + 1 for every nilpotent group.
Therefore, from Proposition 6, we deduce that nc(G) ≥ 2d−1. On the other hand,
by Lemma 13, Hd acts faithfully on the Hd-submodule Ud of Wd generated by
γd(1, 0, . . . , 0) and, by Lemma 12, Hd stabilizes a chain of Ud of length at most
ht(γd(1, 0, . . . , 0)) + 2 = 2d−1 + 2. Therefore, nc(Hd) ≤ 2d−1 by Proposition 11. �

Recall that xd+1 = γd(1, . . . , 1) and that Wd is the Hd-submodule of Vd generated
by xd+1. Since Wd is a cyclic Hd-module, it contains a unique maximal Hd-submodule,
say Yd . Let 	d = 	d(xd+1) and 	∗

d = 	d \ {xd+1}. It follows from Proposition 5 that
	d is a basis for Wd and 	∗

d is a basis for Yd . Now let Zd be the F-subspace of
Wd spanned by the vectors βd(w, a) with w ∈ 	∗

d−1 and a ∈ Ip. Again, we can use
Proposition 5 to deduce that Zd is an Hd-submodule of Wd . More precisely:

LEMMA 15. Let x̃d+1 = γd(1, . . . , 1, 0). The set 	d \ {xd+1, x̃d+1} is a basis for Zd.
In particular, if γd(a1, . . . , ad) ∈ Zd ∩ 	d, then ai = 0 for some i ∈ {1, . . . , d − 1}.

Proof. Let ω = γd(a1, . . . , ad) ∈ 	∗
d . We have

∑
1≤j≤d 2d−jaj < ht(xd+1) = 2d −

1 and this is possible only if ai = 0 for some i ∈ {1, . . . , d}. If ai = 0 for
some i ∈ {1, . . . , d − 1}, then w = γd−1(a1, . . . , ad−1) ∈ 	∗

d−1 and ω = βd(w, ad) ∈ Zd .

Otherwise, ω = γd(a1, . . . , ad−1, 0) with ai �= 0 for 1 ≤ i ≤ d − 1 : again, we deduce
from ht(ω) < 2d − 1 that a1 = · · · = ad−1 = 1, i.e. ω = x̃d+1. �

Since Yn is an Hn-submodule of Wn for any n ∈ �, we have [Yi, xj] ≤ Yi whenever
j ≤ i. On the other hand, if j > i then [Yi, xj] ≤ [Yi, Wj−1] ≤ [Hi, Wj−1] ≤ Yj−1. This
implies that Fd = Yd−1Yd−2 · · · Y1 is a normal subgroup of Hd and Hd/Fd is an
elementary abelian p-group of order pd . Since Hd can be generated by the d elements
x1, . . . , xd we deduce that Fd = Frat(Hd) = H ′

d .

LEMMA 16. Kd = Zd−1Zd−2 · · · Z2 is a normal subgroup of Hd .

Proof. Since Zi is an Hi-submodule of Wi for any i ∈ �, and Hi+1 = Wi � Hi, we
have [Zi, xj+1] ≤ Zi whenever i ≥ j. So in order to prove our statement, it suffices to
prove that if 2 ≤ i < j then [Zi, xj+1] ≤ Zj. Recall that ht(xj+1) = 2j − 1 and let

Y∗
j = 〈ω ∈ 	j | ht(ω) ≤ ht(xj+1) − 2 = 2j − 3〉 ≤ Yj.

We have Yj = 〈Y∗
j , x̃j+1, η1, . . . , ηj〉 with

η1 = γj(0, 2, 2, . . . , 2),

η2 = γj(1, 0, 2, . . . , 2),

. . . . . . . . . . . . . . . . . .

ηj−1 = γj(1, . . . , 1, 0, 2),

ηj = γj(1, . . . , 1, 0) = x̃j+1.
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Now let h ∈ Zi. Since h ∈ Zi ≤ Hi+1 = 〈x1, . . . , xi+1〉, we have h = xs1 . . . xsr with r ∈ �

and s1, . . . , sr ∈ {1, . . . , i + 1}. By Lemma 3, [Wj, Hj, Hj] = [Yj, Hj] = Y∗
j and

[h, xj+1] ≡
∑

1≤t≤r

[xst , xj+1] ≡
∑

1≤t≤r

ηj+1−st mod Y∗
j .

Let l be the numbers of t ∈ {1, . . . , r} with xst = x1. Since ηk ∈ Zj if k �= j and Uj ≤ Zj

we deduce that [h, xj+1] ≡ lx̃j+1 mod Zj. On the other hand, h ∈ Zi ≤ Wi · · · W2 � Hi

and h ≡ (x1)l mod Wi · · · W2, so it must be l ≡ 0 mod p and consequently [h, xj+1] ∈
Zj. �

We are interested in the structure of the factor group Hd/Kd . Let

ξ1 = x1Kd, ξ2 = x2Kd, ξ̃2 = x̃2Kd, . . . , ξd = xdKd, ξ̃d = x̃dKd .

LEMMA 17. The group Hd/Kd has order p2d−1. In particular,

(1) 〈ξ2, ξ̃2, . . . , ξd, ξ̃d〉 is a normal subgroup of Hd/Kd and it is an elementary abelian
p-group of order p2(d−1).

(2) 〈ξ̃2, . . . , ξ̃d〉 is a central subgroup of Hd/Kd .

(3) [ξ1, ξi] = ξ̃i for each i ∈ {2, . . . , d}.
THEOREM 18. If T is a proper subgroup of Hd, then dl(T) ≤ d − 1.

Proof. We prove the theorem by induction on d. It is not restrictive to assume
that T is a maximal subgroup of Hd . If Wd−1 ≤ T, then T/Wd−1 is a proper subgroup
of Hd/Wd−1

∼= Hd−1 and by induction T (d−2) ≤ Wd−1. It follows that T (d−1) = 1, and
so dl(T) ≤ d − 1. Now assume Wd−1 �≤ T : we have TWd−1 = Hd−1 and T ∩ Wd−1 =
Yd−1, since Yd−1 is the unique maximal Hd−1-submodule of Wd−1. In particular, there
exist w1, . . . , wd−1 ∈ Wd−1 such that

T = 〈w1x1, . . . , wd−1xd−1, Yd−1〉 = 〈w1x1, . . . , wd−1xd−1, x̃d, Zd−1〉.

Since Yd−1 ≤ T and Wd−1 = 〈Yd−1, xd〉 we may assume wi = cixd for some ci ∈ �.

Therefore, we have T = 〈(c1xd)x1, . . . , (cd−1xd−1)x1, x̃d, Zd−1〉 and, since Zd−1 ≤ Kd ,
it follows

TKd/Kd = 〈(c1ξd)ξ1, . . . , (cd−1ξd)ξd−1, ξ̃d〉.

By Lemma 17, T ′Kd/Kd is the smallest normal subgroup of TKd/Kd containing
the commutators [(c1ξd)ξ1, (ciξd)ξi] = c1ciξ̃i for i ∈ {2, . . . , d − 1}. This means
that T ′Kd/Kd ≤ 〈ξ̃2, . . . , ξ̃d−1〉, i.e. T ′ ≤ 〈x̃2, . . . , x̃d−1〉Kd ≤ Fd ≤ (Hd−1)p. For j ∈
{1, . . . , p}, let Uj = 〈πj(x̃2), . . . , πj(x̃d−1)〉Fd−1 ≤ Hd−1. Since d(Hd−1) = d − 1 and
Fd−1 = Frat Hd−1, it must be Uj �= Hd−1. By induction, dl(Uj) ≤ d − 2. Moreover,
since πj(Kd) ≤ Fd−1, we deduce that πj(T ′) ≤ Uj. But then T ′ ≤ U1 × . . . Up which
implies that dl(T ′) ≤ maxj dl(Uj) ≤ d − 2 and consequently that dl(T) ≤ d − 1. �

PROPOSITION 19. If 1 �= N � Hd, then dl(Hd/N) ≤ d − 1.

Proof. Since by Corollary 10, Z(Hd) is cyclic of order p, we have that Z(Hd) ≤ N. In
particular, nc(Hd/N) ≤ nc(Hd/Z(Hd)) ≤ nc(Hd) − 1 = 2d−1 − 1 and so dl(Hd/N) ≤
log2(nc(Hd/N)) − 1 ≤ log2(2d−1 − 1) + 1 < d. �
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4. Order of Hd . In this section, we want to say more about the order of
the group Hd . If d = 1, then H1 is cyclic of order p. If d = 2, then W1 has
a basis over F consisting of the two vectors γ1(1) and γ1(0) so H2 = W1 � H1

is a nonabelian group of order p3. However, the order of H3 depends on the
choice of the prime p: indeed a basis of W2 can be obtained considering the
set 	2 of the descendants of x3 = γ2(1, 1) in the graph �2. If p �= 2, then 	2 =
{γ2(1, 1), γ2(1, 0), γ2(0, 2), γ2(0, 1), γ2(0, 0)}: in this case, |H2| = |H1||W2| = p3p5 = p8.

However, for p = 2 we have 	2 = {γ2(1, 1), γ2(1, 0), γ2(0, 1), γ2(0, 0)} and |H2| = 27.

The dimension of Wn over F is related to the function f : � × � → � which is
uniquely determined by the following rules:

f (n, a) =

⎧⎪⎨
⎪⎩

1 if n = 0

pn if a ≥ p and n > 0∑
0≤j≤a f (n − 1, a + j) if a < p and n > 0.

It can be easily proved that f (n, p − 1) = pn for any positive integer n.

Our aim is to prove that |Wd | = pf (d,1). This requires a more detailed investigation
of the properties of the graph �n.

LEMMA 20. Let ω = γd(a1, . . . , ad) with ai ∈ {0, . . . , p − 1} for every i ∈ {1, . . . , d}.
If 0 ≤ bi ≤ ai for every i ∈ {1, . . . , d}, then γd(b1, . . . , bd) ∈ 	d(ω).

Proof. We prove by induction on d − j that if bi ≤ ai for every i ∈ {j, . . . , d}
then γd(a1, . . . , aj−1, bj, . . . , bd) ∈ 	d(ω). This is certainly true if d − j = 0, since �d

contains the edge (γd(a1, . . . , ad−1, yd), γd(a1, . . . , ad−1, yd − 1)) whenever 1 ≤ yd ≤ ad .

Now assume that we have proved our statement for a j �= 1, assume that aj−1 �= 0
and consider ω1 = γd(a1, . . . , aj−1, a∗

j , . . . , a∗
d) with a∗

k = ak − 1 if ak > 0 and a∗
k = 0

otherwise. By induction ω1 ∈ 	d(ω). Moreover �d contains the edge (ω1, ω2) for
ω2 = γd(a1, . . . , aj−1 − 1, a∗

j + 1, . . . , a∗
d + 1). By induction,

γd(a1, . . . , aj−1 − 1, bj, . . . , bd) ∈ 	d(ω1) ⊆ 	d(ω)

if bi ≤ a∗
i + 1 for every i ∈ {j, . . . , d}. Since ai ≤ a∗

i + 1, we deduce

γd(a1, . . . , aj−1 − 1, bj, . . . , bd) ∈ 	d(ω)

if bi ≤ ai for every i ∈ {j, . . . , d}. Repeating this argument, we can conclude
γd(a1, . . . , bj−1, bj, . . . , bd) ∈ 	d(ω) if bi ≤ ai for every i ∈ {j − 1, . . . , d}. �

LEMMA 21. If ω = γd(a1, . . . , ad), ai−1 �= 0 and ai = p − 1, then

γd(a1, . . . , ai−1 − 1, b, ai+1 + 1, . . . , ad + 1) ∈ 	d(ω)

for every b ∈ {0, . . . , p − 1}.
Proof. By Lemma 20, ω1 = γd(a1, . . . , ai−1, p − 2, ai+1, . . . , ad) ∈ 	d(ω) and con-

sequently ω2 = γd(a1, . . . , ai−1 − 1, p − 1, ai+1 + 1, . . . , ad + 1) ∈ 	d(ω1) ⊆ 	d(ω).
Again by Lemma 20, γd(a1, . . . , ai−1 − 1, b, ai+1 + 1, . . . , ad + 1) ∈ 	d(ω2) ⊆ 	d(ω)
for every b ∈ {0, . . . , p − 1}. �

We define a new graph �̃d with the same vertices as �d but with a different set of
edges: let ω1 = γd(a1, . . . , ad) and ω2 = γd(b1, . . . , bd) with 0 ≤ ai, bj ≤ p − 1 : (ω1, ω2)
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is an edge in �̃d if and only if there exists k ∈ {1, . . . , d} such that: ak �= 0, bi = ai if
i < k, bk = ak − 1, bi = min{ai + 1, p − 1} if i > k. We denote by 	̃d(ω) the set of the
descendants of ω ∈ �d . It follows immediately from Lemma 21 that:

LEMMA 22. For every ω ∈ �d , we have 	̃d(ω) = 	d(ω).

LEMMA 23. Let ω = γd(b, . . . , b) with 0 ≤ b ≤ p − 1. Then, |	̃d(ω)| = f (d, b).

Proof. We prove the statement by induction on d. It follows immediately from the
definition that 	̃1(γ1(b)) = {γ1(b), γ1(b − 1), . . . , γ1(0)} has cardinality b + 1 = f (1, b).

Let (ω1, ω2) be an edge in the graph �̃d . We say that (ω1, ω2) is a k-edge if

ω1 = γd(a1, . . . , ad) with a1, . . . , ad ∈ {0, . . . , p − 1}, ak �= 0 and

ω2 = γd(a1, . . . , ak−1, ak − 1, min{ak+1 + 1, p − 1}, . . . , min{ad + 1, p − 1}).

Now let ω = γd(b, . . . , b) with b ∈ {0, . . . , p − 1} and let ω∗ ∈ 	̃d(ω). The number of
1-edges in a path connecting ω to ω∗ is at most b. For j ∈ {0, . . . , b}, let 	̃d(ω, j) be the
subset of 	̃d(ω) consisting of the descendants of ω connected to ω by a path which
contains exactly j 1-edges. Notice that if ω∗ = γd(a1, . . . , ad) ∈ 	̃d(ω, j), then a1 = b − j
and consequently 	̃d(ω) is the disjoint union of the subsets 	̃d(ω, j), 0 ≤ j ≤ b, and
|	̃d(ω)| = ∑

0≤j≤b |	̃d(ω, j)|.
Clearly, ω∗ = γd(a1, . . . , ap) ∈ 	̃d(ω, 0) if and only if ω∗ = γd(b, b1, . . . , bp−1) with

γd−1(b1, . . . , bd−1) ∈ 	̃d−1(γd−1(b, . . . , b)) so, by induction, |	̃d(ω0)| = f (d − 1, b).
Now suppose that there is a path

ω0 = ω,ω1, . . . , ωk+1 = ω∗

where (ωj, ωj+1) is an 1-edge if and only if j = k. We claim that if k �= 0, then there
exist r < k and a path

ω̃0 = ω, ω̃1, . . . , ω̃s+1 = ω∗

with s ≥ r and where (ωj, ωj+1) is a 1-edge if and only if j = r. Let ωk−1 = γd(a1, . . . , ad)
with a1, . . . , ad ∈ {0, . . . , p − 1} and assume that (ωk−1, ωk) is an i-edge. Hence,

ωk = γd(a1, . . . , ai−1, ai − 1, min{ai+1 + 1, p − 1}, . . . , min{ad + 1, p − 1})
ωk+1 = γd(a1 − 1, min{a2 + 1, p − 1}, . . . , min{ai−1 + 1, p − 1},

ai, min{ai+1 + 2, p − 1}, . . . , min{ad + 2, p − 1}).

Now, the graph 	̃d(ω) contains also the 1-edge (ωk−1, ω
∗
k) and the i-edge (ω∗

k, ω
∗
k+1)

with

ω∗
k = γd(a1−1, min{a2 + 1, p−1}, . . . , {ad + 2, p−1})

ω∗
k+1 = γd(a1−1, min{a2 + 1, p−1}, . . . , min{ai−1+1, p−1}, min{ai+1, p−1} − 1,

min{ai+1 + 2, p−1}, . . . , min{ad + 2, p−1}).
If ai �= p − 1, then ω∗

k+1 = ωk+1 so ω0, . . . , ωk−1, ω
∗
k, ωk+1 is the path we are looking

for. On the other hand, if ai = p − 1 then min{ai + 1, p − 1} − 1 = p − 2 so this case
requires a different argument. We may label the path ω0, . . . , ωk−1 with the sequence
(i1, . . . , ik−1) meaning that (ωj−1, ωj) is an ij-edge for any j ∈ {1, . . . , k − 1}. Now we
consider the sequence (i∗1, . . . , j∗t ) obtained from (i1, . . . , ik) by removing the entries ij
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whenever ij > i and let ω0, ω
∗
1, . . . , ω

∗
t be the unique path starting from ω0 and labelled

by the sequence (i∗1, . . . , j∗t ). It is not difficult to see that

ω∗
t = γd(a1 . . . , ai−1, p − 1, . . . , p − 1).

Now we can continue the previous path adding the 1-edge (ω∗
t , ω

∗
t+1) with

ω∗
t+1 = (a1 − 1, min{a2 + 1, p − 1}, . . . , min{ai−1 + 1, p − 1}, p − 1, . . . , p − 1}).

By Lemma 20, there is a path ω∗
t+1, . . . , ω

∗
u = ωk+1, involving only j-edges with j ≥ i.

In particular, ω0, ω
∗
1, . . . , ω

∗
u is the path we are looking for.

This completes the proof of our claim. Iterated applications of this remark allow
to conclude that if ω∗ ∈ 	̃d(ω, 1) then

ω∗ ∈ 	̃d(γd(b − 1, min{b + 1, p − 1}, . . . , min{b + 1, p − 1})).

In particular,

|	̃d(ω, 1)| = |	̃d−1(γd−1(min{b + 1, p − 1}, . . . , min{b + 1, p − 1})|.

If b + 1 = p, then |	̃d(ω, 1)| = |	̃d−1(γd−1(p − 1, . . . , p − 1))| = pd−1 = f (d − 1, b −
1) by Lemma 20. If b + 1 < p, then |	̃d(ω, 1)| = |	̃d−1(γd−1(b − 1, . . . , b − 1))| =
f (d − 1, b − 1) by induction.

A similar argument allows us to conclude that for any j ∈ {0, . . . , b} we have

|	̃d(ω, j)| = |	̃d−j(γd−j(min{b + j, p − 1}, . . . , min{b + j, p − 1}) = f (d − j, b + j).

But then |	̃d(ω)| = ∑
0≤j≤b |	̃d(ω, j)| = ∑

0≤j≤b f (d − j, b + 1) = f (d, b). �

COROLLARY 24. dimF Wd = f (d, 1) and logp |Hd | = ∑
0≤i≤d−1 f (i, 1).

Proof. By the previous Lemma, dimF Wd = |	̃d(γd(1, . . . , 1))| = f (d, 1) �

COROLLARY 25. If p = 2, then Hd = Gd = C2 � · · · � C2.

Proof. For any positive integer n, we have that dim Wn = f (n, 1) = f (n − 1, 1) +
f (n − 1, 2) = 2n−1 + 2n−1 = 2n = dim Vn, hence Wn = Vn and Hd = Wd−1 · · · W0 =
Vd−1 · · · V0 = Gd . �

On the other hand, if p > 2 then |Hd | is much smaller then |Gd |. Indeed, we have

PROPOSITION 26. logp |Hd | ≤ 1
p−1

( pd−1
p−1 + (p − 2)d

) = 1
p−1 (logp |Gd | + (p − 2)d).

Proof. First, we prove by induction that f (n, 1) ≤ 1 + (pn − 1)/(p − 1) for each
n ∈ �. This is clearly true if n = 0 since f (0, 1) = 1. On the other hand, if n > 0 then

f (n, 1) = f (n − 1, 1) + f (n − 1, 2) ≤ 1 + pn−1 − 1
p − 1

+ pn−1 = 1 + pn − 1
p − 1

(4.1)
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since f (n − 1, 2) = dimF (γn−1(2, . . . , 2)) ≤ dimF Vn−1 = pn−1. In particular,

logp |Hd | = logp |W0 · · · Wd−1| =
∑

0≤i≤p

logp |Wi|

≤
∑

0≤i≤d−1

1 + pi − 1
p − 1

= 1
p − 1

(
pd − 1
p − 1

+ (p − 2)d
)

.

To conclude, it suffices to recall that Gd = Cp � · · · � Cp has order (pd − 1)/(p − 1). �
If p = 3, then it follows from Lemma 20 that f (m, 2) = 3m for every positive integer

m and (4.1) is indeed an equality: hence,

|Hd | = 1
2

(
3d − 1

2
+ d

)
if p = 3.

However, if p �= 3, then γm(i, a2, . . . , am) /∈ 	m(γm(2, . . . , 2)) whenever i ≥ 3 and this
implies f (m, 2) ≤ pm − (p − 3)pm−1 = 3pm−1. In particular, if p ≥ 5 then the bound
given in Proposition 26 can still be improved. The following table describes the
behaviour of |Hd | when d ∈ {3, 4, 5} and p ∈ {3, 5, 7}.

p = 3 p = 5 p = 7
dimF W2 5 5 5
dimF W3 14 17 17
dimF W4 41 73 83
logp |H3| 8 8 8
logp |H4| 22 25 25
logp |H5| 63 98 108

5. A generalization. In this section, we introduce a more general construction. it
turns out that the two groups Hd and Gd are particular examples of the groups that can
be obtained with this method; in particular, such groups can be studied simultaneously
and share some properties.

We fix an integer k ∈ {1, . . . , p − 1} and we define recursively a sequence of vectors
xk,n ∈ Vn−1 : {

xk,1 = k
xk,n+1 = γn(k, . . . , k) = βn(xk,n, k) if n > 1.

Let Xk,d be the subgroup of Gd generated by xk,1, . . . , xk,d .

LEMMA 27. If k1 ≤ k2, then Xk1,d ≤ Xk2,d . Moreover, X1,d = Hd and Xp−1,d = Gd .

Proof. We make induction on d. Clearly, if d = 1, then Xk,1 = X1,1 = 〈x1〉 ∼= Cp.

So we may assume d ≥ 2. By induction, Hd−1 ≤ Xk1,d−1 ≤ Xk2,d−1. In particular, Xk2,d

contains the (Hd−1)-submodule of Vd−1 generated by xk2,d = γd−1(k2, . . . , k2). By
Proposition 5 and Lemma 20, xk1,d = γd−1(k1, . . . , k1) belongs to this submodule.
Hence, Xk1,d = 〈xk1,d, Xk1−1,d−1〉 ≤ Xk2,d . In the particular case when k2 = p − 1, the
Hd−1 submodule of Vd−1 generated by xp−1,d = γd−1(p − 1, . . . , p − 1) coincides with
Vd−1 and the previous argument allows to conclude that Xp−1,d = Gd . �
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We may generalize Lemma 3 to the general case.

LEMMA 28. Let v = γd(a1, . . . , ad) ∈ Vd, and i ≤ d. Consider k = (d − i) + 1. Then

[v, txr,i]=
{

0 if ak = 0∑
1≤c≤ak

(ak
c

)
(−tr)cγd(a1, . . . , ak−c, ak+1+cr, . . . , ad +cr) otherwise.

Proof. We may assume 0 ≤ aj ≤ p − 1 for all j ∈ {1, . . . , p − 1}. Suppose i = 1. If
ad = 0, then [v, tx1] = 0; otherwise, by Lemma 3,

[v, txr,1] = [v, trx1] =
∑

1≤c≤ad

(
ad

c

)
(−tr)cγd(a1, . . . , ad−1, ad − c).

Now assume i > 1. Since v = β(γd−1(a1, . . . , ad−1), ad) and txr,i = tβ(xr,i−1, r) we have

[v, txr,i] = (w1, . . . , wp)

with

wj = [(j − 1)ad γd−1(a1, . . . , ad−1), (t(j − 1)r)xr,i−1] ∈ Vd−1.

By induction,

wj =(j−1)ad
∑

1≤c≤ak

(
ak

c

)
(−tr(j−1)r)cγd−1(a1, . . . , ak − c, ak+1+cr, . . . , ad−1+cr)

=
∑

1≤c≤ak

(
ak

c

)
(−tr)c(j − 1)ad+cr

γd−1(a1, . . . , ak−c, ak+1 + cr, . . . , ad−1 + cr).

This implies

[v, txr,i] =
∑

1≤c≤ak

(
ak

c

)
(−tr)cβd(γd−1(a1, . . . , ak−c, ak+1+cr, . . . , ad−1+cr), ad + cr))

=
∑

1≤c≤ak

(
ak

c

)
(−tr)cγd(a1, . . . , ak − c, ak+1 + cr, . . . , ad−1 + cr, ad + cr).

This concludes our proof. �
We recall that �d = {γd(a1, . . . , ad)|0 ≤ ai ≤ p − 1 for every i ∈ {1, . . . , d}} is a

basis of Vd over F. For each k ∈ {1, . . . , p − 1}, we define the k-height of ω =
γd(a1, . . . , ad) as follows:

htk(γd(a1, . . . , ad)) = (k + 1)d−1a1 + (k + 1)d−2a2 + · · · + (k + 1)ad−1 + ad .

For v = ∑
ω∈�d

λωω �= 0 ∈ Vd , we define supp(v) = {ω | λω �= 0} and htk(v) =
max{htk(ω) | ω ∈ supp(v)}. We set htk(v) = −1 if v = 0. For n ∈ {0, . . . , (k + 1)d}, let
Vk,d,n = {v | htk(ω) ≤ n − 1}. It follows immediately from Lemma 28 that, for each
n ∈ {0, . . . , (k + 1)d − 1}, [Gd, Vk,d,n+1] ≤ Vk,d,n. A more precise result can be proved.

LEMMA 29. Suppose v ∈ Vd . If htk(v) = r > 0, then there exists (j1, . . . , jr) ∈
{1, . . . , d}r such that [v, xk,j1 , . . . , xk,jr ] �= 0.
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Proof. We may work by induction on r so it suffices to prove that there exists
i ∈ {1, . . . , d} such that htk([v, xk,i]) = r − 1. Since htk(v) = r, there exist i ∈ {1, . . . , d}
and ω = γ (b1, . . . , bd) ∈ supp(v) with htk(ω) = r, bi �= 0 and bj = 0 if j > i. Let

 = {ω = γd(a1, . . . , ad) ∈ supp(v) | ai �= 0 and htk(ω) = r}.
For ω = γd(a1, . . . , ad) ∈ , define ω∗ = γd(a1, . . . , ai − 1, ai+1 + k, . . . , ad + k).

Notice that htk(ω∗) = r − 1, that htk(ω∗) ≤ r − 1 for every ω ∈  and that ω∗
1 �= ω∗

2 if
ω1 �= ω2. If follows from Lemma 28 that

[v, xk,i] ≡
∑
ω∈

λωω∗ mod Vk,d,r−1

and consequently htk([v, xk,i]) = r − 1. �
THEOREM 30. nc(Xk,d) = (k + 1)d−1.

Proof. Notice that

htk(xk,d) = htk(γd−1(k, . . . , k)) = k(1 + (k + 1) + · · · + (k + 1)d−2) = (k + 1)d−1 − 1.

Therefore, if follows from Lemma 29 that nc(Xk,d) ≥ (k + 1)d−1. On the other
hand, by Lemma 13, Xk,d acts faithfully on the submodule Ud of Vd generated
by γd(1, 0, . . . , 0). We have htk(γd(1, 0, . . . , 0)) = (k + 1)d−1 so Ud ≤ Vk,d,(k+1)d−1+1.

For i ∈ {0, . . . , (k + 1)d−1 + 1}, let Ud,i = Vk,d,i ∩ Ud . It follows from Lemma 28 that
Xk,d stabilizes the chain 0 = Ud,0 ≤ · · · ≤ Ud,(k+1)d−1+1 = Ud . Therefore, nc(Hd) ≤
(k + 1)d−1 by Proposition 11. �
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