LARGE P-GROUPS WITHOUT PROPER SUBGROUPS WITH THE SAME DERIVED LENGTH

ELEONORA CRESTANI and ANDREA LUCCHINI
Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy
e-mail: crestani@math.unipd.it,lucchini@math.unipd.it

(Received 29 April 2014; accepted 5 October 2014; first published online 23 July 2015)

Abstract

We construct a subgroup H_{d} of the iterated wreath product G_{d} of d copies of the cyclic group of order p with the property that the derived length and the smallest cardinality of a generating set of H_{d} are equal to d while no proper subgroup of H_{d} has derived length equal to d. It turns out that the two groups H_{d} and G_{d} are the extreme cases of a more general construction that produces a chain $H_{d}=K_{1}<\cdots<K_{p-1}=G_{d}$ of subgroups sharing a common recursive structure. For $i \in\{1, \ldots, p-1\}$, the subgroup K_{i} has nilpotency class $(i+1)^{d-1}$.

1991 Mathematics Subject Classification. 20D15

1. Introduction. Certain properties of a finite group can be detected from its 2generated subgroups. For example, a deep theorem of Thompson says that G is soluble if and only if every 2 -generated subgroup of G is soluble. Influenced by these results, one could be tempted to conjecture that there exists a positive integer c with the property that every finite soluble group contains a c-generated subgroup with the same derived length. This is false. Consider the iterated wreath product $G_{d}=C_{p} 2 \cdots z C_{p}$ of d copies of the cyclic group of order p. The derived length of G_{d} is equal to d and coincides with the smallest cardinality of a generating set. However, if $p=2$, then every proper subgroup of G_{d} has derived length smaller than d (see, for example, [2, Lemma 2]), so d elements are really needed to generate a subgroup with derived length equal to d. On the other hand, if $p \neq 2$, then G_{d} contains several proper subgroups with the same derived length and the following questions arise. Does a counterexample to the previous conjecture exist when $p \neq 2$? Does such counterexample appear among the subgroups of G_{d} ? The aim of this paper is to answer to the previous two questions.

Theorem 1. For any prime p, there exist d elements $x_{1}, \ldots, x_{d} \in G_{d}$ such that the subgroup $H_{d}=\left\langle x_{1}, \ldots, x_{d}\right\rangle$ of G_{d} generated by these elements has the following properties:
(1) the derived length of H_{d} is d;
(2) H_{d} cannot be generated by $d-1$ elements;
(3) no proper subgroup of H_{d} has derived length equal to d.

The interest on p-groups without proper subgroups with the same derived length has been related with the problem of bounding the order of a finite p-group in terms of its derived length (a long history starting from Burnside's papers, see [5] for more details). Mann [4] showed that if G is a finite p-group, then $G^{(d)} \neq 1$ implies $\log _{p}|G|>$ $2^{d}+2 d-2$. For primes at least 5 , groups of length d and order $p^{2^{d}-2}$ were constructed
in [1], improving previous examples of Hall of order $p^{2^{d}-1}$ for all odd primes (see [3, III.17.7]). These examples can be generated by two elements; our interest goes in a different direction: indeed, we want to produce examples of p-groups without proper subgroups of the same derived length but with large elementary abelian factors. As a consequence, the order of H_{d} is large with respect to the lower bound proved by Mann (a detailed investigation of the order of H_{d} is done in Section 4). However, H_{d} has other minimality properties. It is well known that if a nilpotent group has derived length d, then its nilpotency class is at least 2^{d-1}. The nilpotency class of H_{d} is precisely 2^{d-1}, the smallest possible value. It follows also that no proper factor group of H_{d} has the same derived length as H_{d}.

Our study of the properties of the group H_{d} is made possible by a particular choice of the notations: the group G_{d} acts on the p^{d}-dimensional vector space V_{d} over the field with p-elements and $G_{d+1}=V_{d} \rtimes G_{d}$. In section 2, we define a map $\gamma_{d}:\{0, \ldots, p-$ $1\}^{d} \rightarrow V_{d}$ with the property that the image $\Gamma_{d}=\gamma_{d}\left(\{0, \ldots, p-1\}^{d}\right)$ is a basis for V_{d} over F. We have $G_{d}=V_{d-1} \rtimes\left(V_{d-2} \rtimes \cdots \rtimes V_{0}\right)$ and $H_{d}=\left\langle x_{1}, \ldots, x_{d}\right\rangle$ with $x_{i}=$ $\gamma_{i-1}(1, \ldots, 1) \in V_{i-1}$. An easy formula (see in particular Lemma 3) allows to express, for any $\omega \in \Gamma_{d}$ and $i \in\{1, \ldots, d-1\}$, the commutator $\left[\omega, x_{i}\right]$ as a linear combination of the elements of Γ_{d}. In Section 5, we discuss a generalization of this construction. For $k \in\{1, \ldots, p-1\}$, we can consider the subgroup $X_{k, d}=\left\langle x_{k, 1}, \ldots, x_{k, d}\right\rangle$ of G_{d} with $x_{k, i}=\gamma_{i-1}(k, \ldots, k)$. If $p=2$, then $H_{d}=G_{d}$. Otherwise

$$
H_{d}=X_{1, d}<X_{2, d}<\cdots<X_{p-2, d}<X_{p-1, d}=G_{d} .
$$

This approach allows to study simultaneously the groups $X_{k, d}$ for the different values of k : for example the nilpotency class of these groups can be determined with a unified argument: we prove that the nilpotency class of $X_{k, d}$ coincides with $(k+1)^{d-1}$ (see Theorem 30).
2. Notations and preliminary results. We fix the following notations: p is a prime number, F is a field with p elements and $V_{n}=F^{p^{n}}$ is a vector space over F of dimension p^{n}. For each positive integer n, we define a function $\beta_{n}: V_{n-1} \times \mathbb{N} \rightarrow V_{n}$ as follows: if $v=\left(a_{1}, \ldots, a_{p^{n-1}}\right)$, then

$$
\begin{aligned}
\beta_{n}(v, m) & =\left(0^{m} v, 1^{m} v, \ldots,(p-1)^{m} v\right) \\
& =\left(0^{m} a_{1}, \ldots, 0^{m} a_{p^{n-1}}, \ldots,(p-1)^{m} a_{1}, \ldots,(p-1)^{m} a_{p^{n-1}}\right) .
\end{aligned}
$$

Notice that if a_{1}, a_{2} are positive integers and $a_{1} \equiv a_{2} \bmod p-1$, then $\beta_{n}\left(v, a_{1}\right)=$ $\beta_{n}\left(v, a_{2}\right)$. However, if t is a positive integer, then $\beta_{n}(v, 0)-\beta_{n}(v, t(p-1))=$ $(v, 0, \ldots, 0)$. Given $a \in \mathbb{N}$, we define \bar{a} as follows: if $a=0$, then $\bar{a}=0$; otherwise \bar{a} is the unique integer with $1 \leq \bar{a} \leq p-1$ and $\bar{a} \equiv a \bmod p-1$. With this notation, it turns out that $\beta_{n}(v, a)=\beta_{n}(v, \bar{a})$ for any $a \in \mathbb{N}$. Now, for every positive integer n, we define a function

$$
\gamma_{n}: \mathbb{N}^{n} \rightarrow V_{n}=F^{p^{n}}
$$

in the following way:

$$
\left\{\begin{array}{l}
\gamma_{1}(a)=\beta_{1}(1, a)=\left(0^{a}, 1^{a}, \ldots,(p-1)^{a}\right) \\
\gamma_{n}\left(a_{1}, \ldots, a_{n}\right)=\beta_{n}\left(\gamma_{n-1}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right) \text { if } n>1
\end{array}\right.
$$

Let $I_{p}=\{0, \ldots, p-1\} \subseteq \mathbb{N}$. Since $\gamma_{n}\left(a_{1}, \ldots, a_{n}\right)=\gamma_{n}\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)$, we have that $\gamma_{n}\left(\mathbb{N}^{n}\right)=\gamma_{n}\left(I_{p}^{n}\right)$. Notice that for any choice of $\left(a_{1}, \ldots, a_{n}\right)$ in $I_{p}^{n}, \gamma_{n}\left(a_{1}, \ldots, a_{n}\right)$ is a non zero vector (for example $\gamma_{1}(0)=(1, \ldots, 1)$). Moreover, a stronger result holds. Indeed, we have:

Lemma 2. The set $\Gamma_{n}=\left\{\gamma_{n}(u) \mid u \in I_{p}^{n}\right\}$ is a basis for the vector space V_{n} over F.
Proof. We use the fact that any $v \in \Gamma_{n}$ can be uniquely written in the form $v=$ $\beta_{n}(w, a)$ with $w \in \Gamma_{n-1}$ and $a \in I_{p}$. Now, for $w \in \Gamma_{n-1}$ and $a \in I_{p}$, let $\lambda_{w, a}$ be elements of F such that

$$
\sum_{w, a} \lambda_{w, a} \beta_{n}(w, a)=0
$$

For $1 \leq i \leq p$, we have a linear map $\rho_{i}: V_{n} \rightarrow V_{n-1}$ defined by $\rho_{i}\left(a_{1}, \ldots, a_{p^{n}}\right)=$ $\left(a_{1+(i-1) p^{n-1}}, \ldots, a_{p^{n-1}+(i-1) p^{n-1}}\right)$. In particular, since $\rho_{i}\left(\beta_{n}(w, a)\right)=(i-1)^{a} w$, we get that

$$
0=\rho_{i}\left(\sum_{w, a} \lambda_{w, a} \beta_{n}(w, a)\right)=\sum_{w, a} \lambda_{w, a}(i-1)^{a} w=\sum_{w}\left(\sum_{a} \lambda_{w, a}(i-1)^{a}\right) w .
$$

By induction, the vectors of Γ_{n-1} are linearly independent, so for each $w \in \Gamma_{n-1}$ and each $j \in\{0, \ldots, p-1\}$, we have that

$$
\sum_{a \in I_{p}} \lambda_{w, a} j^{a}=0
$$

This means that $\left(\lambda_{w, 0}, \ldots, \lambda_{w, p-1}\right)$ is a solution of the homogeneous linear system associated to the matrix

$$
A:=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 2^{2} & \cdots & 2^{p-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & p-1 & (p-1)^{2} \cdots & (p-1)^{p-1}
\end{array}\right) .
$$

Since A is an invertible matrix, we get that $\lambda_{w, a}=0$ for each $w \in \Gamma_{n-1}$ and $a \in I_{p}$.

We use the previous definition to construct a sequence of vectors $x_{n} \in V_{n-1}$:

$$
\left\{\begin{array}{l}
x_{1}=1 \\
x_{n+1}=\gamma_{n}(1, \ldots, 1)=\beta_{n}\left(x_{n}, 1\right) \text { if } n>0 .
\end{array}\right.
$$

Now we start to work in the iterated wreath product $G_{d}=C_{p}$ 乙 $C_{p} \imath \cdots 乙 C_{p}$, where C_{p} appears d-times. Clearly, $G_{1} \cong V_{0}$ while, if $d \geq 1$, then V_{d-1} can be identified with the base subgroup of the wreath product $G_{d}=C_{p} \prec G_{d-1}=V_{d-1} \rtimes G_{d-1}$. In particular, x_{1}, \ldots, x_{d} can be viewed as elements of G_{d}.

Our aim is to study the subgroup $H_{d}=\left\langle x_{1}, \ldots x_{d}\right\rangle$ of G_{d} generated by these elements. Notice that $V_{0}=H_{1}=G_{1} \cong C_{p}$ while, if $d \geq 2$, then $H_{d}=W_{d-1} \rtimes H_{d-1}$, where W_{d-1} is the H_{d-1}-submodule of V_{d-1} generated by x_{d}.

Lemma 3. Let $v=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in V_{d}$, with and $i \leq d$. Consider $k=(d-i)+1$. If t is a positive integer, then

$$
\left[v, t x_{i}\right]=\left\{\begin{array}{l}
0 \text { if } a_{k}=0 \\
\sum_{1 \leq c \leq \overline{a_{k}}}\binom{\overline{a_{k}}}{c}(-t)^{c} \gamma_{d}\left(a_{1}, \ldots, a_{k-1}, \overline{a_{k}}-c, a_{k+1}+c, \ldots, a_{d}+c\right) \text { otherwise } .
\end{array}\right.
$$

Proof. Since $\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)=\gamma_{d}\left(\bar{a}_{1}, \ldots, \bar{a}_{d}\right)$, we may assume $0 \leq a_{j} \leq p-1$ for all $j \in\{1, \ldots, d\}$. First, we prove this lemma for $i=1$. Notice that if $w_{1}, \ldots, w_{p} \in V_{d-1}$, then

$$
\left(w_{1}, \ldots, w_{p}\right)^{x_{1}}=\left(w_{p}, w_{1}, \ldots, w_{p-1}\right)
$$

In our particular case, since $v=\beta_{d}(w, a)$ for $w=\gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right)$, we get that

$$
\begin{aligned}
{\left[v, t x_{1}\right] } & =-\left(0^{a_{d}} w, 1^{a_{d}} w, \ldots,(p-1)^{a_{d}} w\right)+\left(0^{a_{d}} w, 1^{a_{d}} w, \ldots,(p-1)^{a_{d}} w\right)^{t x_{1}} \\
& =\left(\left((-t)^{a_{d}}-0^{a_{d}}\right) w, \ldots,\left((i-t)^{a_{d}}-i^{a_{d}}\right) w, \ldots,\left((p-1-t)^{a_{d}}-(p-1)^{a_{d}}\right) w\right)
\end{aligned}
$$

If $a_{d}=0$, then $\left[v, t x_{1}\right]=0$. Otherwise, since $(i-t)^{a_{d}}-i^{a_{d}}=\sum_{0 \leq b \leq a_{d}-1}\binom{a_{d}}{b}(-t)^{a_{d}-b} i^{b}$, we deduce

$$
\begin{aligned}
{\left[v, t x_{1}\right] } & =\sum_{0 \leq b \leq a_{d}-1}\binom{a_{d}}{b}(-t)^{a_{d}-b} \gamma_{d}\left(a_{1}, \ldots, a_{d-1}, b\right) \\
& =\sum_{1 \leq c \leq a_{d}}\binom{a_{d}}{c}(-t)^{c} \gamma_{d}\left(a_{1}, \ldots, a_{d-1}, a_{d}-c\right)
\end{aligned}
$$

Now assume $i>1$. Since $v=\beta_{d}\left(\gamma_{d}\left(a_{1}, \ldots, a_{d-1}\right), a_{d}\right)$ and $t x_{i}=t \beta\left(x_{i-1}, 1\right)$, we have

$$
\left[v, t x_{i}\right]=\left(w_{1}, \ldots, w_{p}\right)
$$

with

$$
w_{j}=\left[(j-1)^{a_{d}} \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right),(t \cdot(j-1)) x_{i-1}\right] \in V_{d-1} .
$$

By induction

$$
\begin{aligned}
w_{j} & =(j-1)^{a_{d}} \sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t(j-1))^{c} \gamma_{d-1}\left(a_{1}, \ldots, a_{k-1}, a_{k}-c, a_{k+1}+c, \ldots, a_{d-1}+c\right) \\
& =\sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t)^{c}(j-1)^{a_{d}+c} \gamma_{d-1}\left(a_{1}, \ldots, a_{k-1}, a_{k}-c, a_{k+1}+c, \ldots, a_{d-1}+c\right) .
\end{aligned}
$$

This implies

$$
\begin{aligned}
{\left[v, t x_{i}\right] } & \left.=\sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t)^{c} \beta_{d}\left(\gamma_{d-1}\left(a_{1}, \ldots, a_{k-1}, a_{k}-c, a_{k+1}+c, \ldots, a_{d-1}+c\right), a_{d}+c\right)\right) \\
& =\sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t)^{c} \gamma_{d}\left(a_{1}, \ldots, a_{k-1}, a_{k}-c, a_{k+1}+c, \ldots, a_{d-1}+c, a_{d}+c\right)
\end{aligned}
$$

This concludes our proof.

We define a directed graph Ω_{d} whose nodes are the elements of Γ_{d} and in which there exists an edge with initial vertex $\omega_{1}=\gamma\left(a_{1}, \ldots, a_{d}\right)$ and terminal vertex $\omega_{2}=\gamma\left(b_{1}, \ldots, b_{d}\right)$ if and only if there exists $k \in\{1, \ldots, d\}$ such that $a_{k} \neq 0$ and $\gamma\left(b_{1}, \ldots, b_{d}\right)=\gamma\left(a_{1}, \ldots, a_{k-1}, a_{k}-1, a_{k+1}+1, \ldots, a_{d}+1\right)$. Let $\omega=$ $\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in \Omega_{d}$: we define the height of ω as follows:

$$
\operatorname{ht}\left(\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)\right)=2^{d-1} \overline{a_{1}}+2^{d-2} \overline{a_{2}}+\cdots+2 \overline{a_{d-1}}+\overline{a_{d}}
$$

Lemma 4. If $\left(\omega_{1}, \omega_{2}\right)$ is an edge in Ω_{d}, then $\operatorname{ht}\left(\omega_{2}\right)<\operatorname{ht}\left(\omega_{1}\right)$.
Proof. We may assume $\omega_{1}=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)$ with $0 \leq a_{i} \leq p-1$ for each $i \in$ $\{1, \ldots, d\}$ and that $\omega_{2}=\gamma\left(a_{1}, \ldots, a_{k-1}, a_{k}-1, a_{k+1}+1, \ldots, a_{d}+1\right)$ for some $k \in$ $\{1, \ldots, d\}$ with $a_{k} \neq 0$. Since

$$
\begin{aligned}
\operatorname{ht}\left(\omega_{1}\right) & =2^{d-1} a_{1}+\cdots+a_{d} \quad \text { and } \\
\operatorname{ht}\left(\omega_{2}\right) & =2^{d-1} a_{1}+\cdots+2^{d-k+1} a_{k-1}+2^{d-k}\left(a_{k}-1\right)+2^{d-k-1} \overline{\left(a_{k+1}+1\right)}+\cdots+\overline{\left(a_{d}+1\right)} \\
& \leq 2^{d-1} a_{1}+\cdots+2^{d-k+1} a_{k-1}+2^{d-k}\left(a_{k}-1\right)+2^{d-k-1}\left(a_{k+1}+1\right)+\cdots+\left(a_{d}+1\right)
\end{aligned}
$$

we have

$$
\operatorname{ht}\left(\omega_{1}\right)-\operatorname{ht}\left(\omega_{2}\right) \geq 2^{d-k}-\sum_{0 \leq j \leq d-k-1} 2^{j}=1
$$

hence $\operatorname{ht}\left(\omega_{2}\right)<\operatorname{ht}\left(\omega_{1}\right)$.
Given $\omega \in \Omega_{d}$, we denote by $\Delta_{d}(\omega)$ the set of the descendants of $\omega \in \Omega_{d}$, i.e. the set of the $\omega^{*} \in \Omega_{d}$ for which there exists a path in Ω_{d} starting from ω and ending in ω^{*}.

Proposition 5. If $\omega \in \Omega_{d}$, then $\Delta_{d}(\omega)$ is a basis for the H_{d}-submodule $U(\omega)$ of V_{d} generated by ω.

Proof. By Lemma 3, $U(\omega)$ is contained in the subspace of V_{d} spanned by $\Delta_{d}(\omega)$. To prove the converse it suffices to show that if Ω_{n} contains the edge (ω, ω^{*}), then $\omega^{*} \in U(\omega)$. Let $\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)$. We assume $0 \leq a_{i} \leq p-1$ for each $i \in\{1, \ldots, d\}$. By definition, there exists a $k \in\{1, \ldots, d\}$ such that $a_{k} \neq 0$ and

$$
\omega^{*}=\gamma\left(a_{1}, \ldots, a_{k-1}, a_{k}-1, a_{k+1}+1, \ldots, a_{d}+1\right)
$$

For $0 \leq c \leq a_{k}$, let $\omega_{c}=\gamma_{d}\left(a_{1}, \ldots, a_{k-1}, a_{k}-c, a_{k+1}+c, \ldots, a_{d}+c\right)$. In particular, $\omega=$ ω_{0} and $\omega^{*}=\omega_{1}$. By Lemma 3, for $0 \leq c \leq a_{k}$ there exist $\mu_{c, c+1}, \ldots, \mu_{c, k} \in F$ such that

$$
\left[\omega_{c}, x_{i}\right]=\sum_{c+1 \leq j \leq a_{k}} \mu_{c, j} \omega_{j}
$$

Moreover, $\mu_{c, j} \neq 0$ for each $j \in\left\{c+1, \ldots, a_{k}\right\}$. Indeed, since $0 \leq a_{k}<p-1$,

$$
\mu_{c, j}=\binom{a_{k}-c}{j-c}(-1)^{j-c} \neq 0 \quad \bmod p .
$$

Now, for $r \in\left\{0, \ldots, a_{k}-1\right\}$ consider

$$
\rho_{r}=[\omega, \underbrace{x_{i} \ldots, x_{i}}_{r \text { times }}] .
$$

We claim that

$$
\rho_{r}=\sum_{r \leq c \leq a_{k}} \lambda_{r, c} \omega_{c}, \text { with } \lambda_{r, c} \in F \text { and } \lambda_{r, r} \neq 0 .
$$

If $r=1$, then $\rho_{1}=\left[\omega_{0}, x_{i}\right]$ and $\lambda_{1, c}=\mu_{0, c}$. Assume $r \neq 1$.

$$
\begin{aligned}
\rho_{r} & =\left[\rho_{r-1}, x_{i}\right]=\left[\sum_{r-1 \leq c \leq a_{k}} \lambda_{r-1, c} \omega_{c}, x_{i}\right]=\sum_{r-1 \leq c \leq a_{k}}\left[\lambda_{r-1, c} \omega_{c}, x_{i}\right] \\
& =\sum_{r-1 \leq c \leq a_{k}} \lambda_{r-1, c}\left(\sum_{c+1 \leq j \leq a_{k}} \mu_{c, j} \omega_{j}\right)=\sum_{r \leq c \leq a_{k}} \lambda_{r, c} \omega_{c}
\end{aligned}
$$

with

$$
\lambda_{r, j}=\sum_{r-1 \leq c \leq j-1} \lambda_{r-1, c} \mu_{c, j}
$$

In particular, $\lambda_{r, r}=\lambda_{r-1, r-1} \mu_{r-1, r-1} \neq 0$. Now we can conclude our proof, showing by induction on $a_{k}-c$ that $\omega_{c} \in U(\omega)$ for $1 \leq c \leq a_{k}$. If $a_{k}-c=0$, then $\rho_{a_{k}}=\lambda_{a_{k}, a_{k}} \omega_{a_{k}} \in$ U. Since $\rho_{a_{k}} \in U$ and $\lambda_{a_{k}, a_{k}} \neq 0$, we conclude $\omega_{a_{k}} \in U(\omega)$. Assume $\omega_{c+1}, \ldots, \omega_{a_{k}} \in$ $U(\omega)$. Since $\rho_{c, c}=\sum_{c \leq j \leq a_{k}} \lambda_{r, j} \omega_{j} \in U(\omega)$ and $\lambda_{c, c} \neq 0$, we deduce $\omega_{c} \in U(\omega)$.
3. Derived length and nilpotency class of H_{d}. We will denote with $\mathrm{dl}(G)$ the derived length of G, if G is a soluble group, and with $\operatorname{nc}(G)$ the nilpotency class of G, if G is a nilpotent group.

Proposition 6. $\mathrm{dl}\left(H_{d}\right)=d$.
Proof. The proof is by induction on d. If $d=1$, then H_{1} is cyclic of order p and $\mathrm{dl}\left(H_{1}\right)=1$. Assume $d \geq 2$. We have $H_{d}^{\prime} \leq G_{d}^{\prime} \leq\left(G_{d-1}\right)^{p}$, and so we can consider the projection $\pi_{1}: H_{d}^{\prime} \rightarrow G_{d-1}$. By Lemma 3,

$$
\begin{aligned}
{\left[x_{i}, x_{1}\right] } & =\left[\gamma_{i+1}(1, \ldots, 1), x_{1}\right]=-\gamma_{i+1}(1, \ldots, 1,0) \\
& =-\left(\gamma_{i}(1, \ldots, 1), \ldots, \gamma_{i}(1, \ldots, 1)\right)=-\left(x_{i-1}, \ldots, x_{i-1}\right) .
\end{aligned}
$$

Thus, $\pi_{1}\left(H_{d}^{\prime}\right) \geq\left\langle x_{1}, \ldots, x_{d-1}\right\rangle=H_{d-1}$ and by induction

$$
d-1=\mathrm{dl}\left(H_{d-1}\right) \leq \mathrm{dl}\left(\pi_{1}\left(H_{d}^{\prime}\right)\right) \leq \mathrm{dl}\left(H_{d}^{\prime}\right) \leq \mathrm{dl}\left(G_{d}^{\prime}\right)=d-1
$$

But then, $\mathrm{dl}\left(H_{d}^{\prime}\right)=d-1$ hence $\mathrm{dl}\left(H_{d}\right)=d$.
It is well known that G_{d} is isomorphic to a Sylow p-subgroup of $\operatorname{Sym}\left(p^{d}\right)$, hence H_{d} can be identified with a subgroup of $\operatorname{Sym}\left(p^{d}\right)$.

Corollary 7. H_{d} is a transitive subgroup of $\operatorname{Sym}\left(p^{d}\right)$.
Proof. Assume that $\Omega_{1}, \ldots, \Omega_{r}$ are the orbits of H_{d} on the set $\left\{1, \ldots, p^{d}\right\}$. For each $j \in\{1, \ldots, r\}$, we have $\left|\Omega_{j}\right|=p^{s_{j}}$ for some $s_{j} \in \mathbb{N}$. If X_{j} is the transitive constituent of H_{d} corresponding to the orbit Ω_{j}, then X_{j} is isomorphic to a subgroup of $G_{s_{j}}$, since $G_{s_{j}}$ is a Sylow p-subgroup of $\operatorname{Sym}\left(p^{s_{j}}\right)$; in particular, $\mathrm{dl}\left(X_{j}\right) \leq \mathrm{dl}\left(G_{s_{j}}\right)=s_{j}$. We deduce
that $d=\mathrm{dl}\left(H_{d}\right) \leq \max \left\{\mathrm{dl}\left(X_{j}\right) \mid 1 \leq j \leq r\right\} \leq \max \left\{s_{j} \mid 1 \leq j \leq r\right\}$. This is possible only if $r=1$.

Define z_{d} as follows:

$$
\begin{cases}z_{1}=x_{1} & \text { if } d=1 \\ z_{d}=\gamma_{d-1}(0, \ldots, 0) & \text { otherwise }\end{cases}
$$

It follows immediately from our definitions that $z_{d}=(1, \ldots, 1) \in V_{d-1}$. In particular, $\left\langle z_{d}\right\rangle \leq C_{V_{d-1}}\left(G_{d-1}\right) \leq C_{V_{d-1}}\left(H_{d-1}\right)$.

Lemma 8. $C_{V_{d-1}}\left(H_{d-1}\right)=\left\langle z_{d}\right\rangle$.
Proof. Let $v=\left(x_{1}, \ldots, x_{p^{d-1}}\right) \in C_{V_{d-1}}\left(H_{d-1}\right)$. Since H_{d-1} is a transitive subgroup of $\operatorname{Sym}\left(p^{d-1}\right)$ it must be $x_{i}=x_{1}$ for all $i \in\left\{1, \ldots, p^{d-1}\right\}$, hence $v \in\left\langle z_{d}\right\rangle$.

Lemma 9. Let d be a positive integer. If $a_{1} \neq 0$, then $\left[z_{d}, \gamma_{d}\left(a_{1}, \ldots, a_{d}\right)\right] \neq 0$.
Proof. We prove this statement by induction on d. If $d=1$, then $\left[z_{1}, \gamma_{1}\left(a_{1}\right)\right]=$ $\gamma_{1}\left(a_{1}-1\right) \neq 0$, by Lemma 3. Otherwise, since $z_{d}=\left(z_{d-1}, \ldots, z_{d-1}\right)$, we have

$$
\begin{aligned}
& {\left[z_{d},\right.} \\
& , \\
& \left.\quad \gamma_{d}\left(a_{1}, \ldots, a_{d}\right)\right]= \\
& \quad=\left[\left(z_{d-1}, \ldots, z_{d-1}\right),\left(0^{a_{d}} \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right), \ldots,(p-1)^{a_{d}} \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right)\right)\right] \\
& \quad=\left(\left[z_{d-1}, 0^{a_{d}} \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right)\right], \ldots,\left[z_{d-1},(p-1)^{a_{d}} \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right)\right]\right) \neq 0
\end{aligned}
$$

since $\left[z_{d-1}, \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right)\right] \neq 0$ by induction.
Corollary 10. $Z\left(H_{d}\right)=\left\langle z_{d}\right\rangle$ is cyclic of order p.
Proof. If $d=1$, then $Z\left(H_{1}\right)=\left\langle z_{1}\right\rangle=\left\langle x_{1}\right\rangle$ is cyclic of order p. Assume $d \geq 2$. We have $H_{d}=W_{d-1} \rtimes H_{d-1}$. By induction, $\left\langle z_{d-1}\right\rangle=Z\left(H_{d-1}\right)$; in particular, z_{d-1} is contained in every normal subgroup of H_{d-1} and it follows from Lemma 9 that the action of H_{d-1} on W_{d-1} is faithful. Hence, by Lemma 8, $Z\left(H_{d}\right) \leq C_{W_{d-1}}\left(H_{d-1}\right)=$ $\left\langle z_{d}\right\rangle$.

Let a group G act on another group A via automorphism and suppose that $1=$ $A_{0} \leq \cdots \leq A_{m}=A$ is a chain of G-invariant subgroups: we say that G stabilizes the chain $\left\{A_{i} \mid 0 \leq i \leq m\right\}$ if each right coset of A_{i-1} in A_{i} is G-invariant for all i with $0<i<m$. The first proof of following result was given by Kaluzhnin.

Proposition 11. Assume that G acts faithfully on A via automorphisms and that G stabilizes a chain $\left\{A_{i} \mid 0 \leq i \leq m\right\}$ of normal subgroups of A. Then A is nilpotent of class at most $m-1$.

Lemma 12. Let $\omega \in \Omega_{d}$ with $m=\operatorname{ht}(\omega)$. Define $U_{0}(\omega)=0$ and, for any $j \in$ $\{1, \ldots, m\}$, let $U_{j}(\omega)=\left\langle\omega^{*} \in \Delta_{d}(\omega) \mid \operatorname{ht}\left(\omega^{*}\right) \leq j-1\right\rangle$. Then, H_{d} stabilizes the chain $\left\{U_{j}(\omega) \mid 0 \leq i \leq m+1\right\}$.

Proof. It follows immediately from Lemma 3 and Lemma 4.
Lemma 13. H_{d} acts faithfully on the submodule U_{d} of W_{d} generated by $\gamma_{d}(1,0, \ldots, 0)$.

Proof. By Corollary $8,\left\langle z_{d}\right\rangle$ is contained in all the nontrivial normal subgroups of H_{d}. Now, Lemma 9 guarantees that $\left[z_{d}, \gamma_{d+1}(1,0, \ldots, 0)\right] \neq 0$, and this immediately implies that the action of H_{d} on U_{d} is faithfull.

Theorem 14. $\mathrm{nc}\left(H_{d}\right)=2^{d-1}$.
Proof. It is well known that $\mathrm{d}(G) \leq \log _{2}(\mathrm{nc}(G))+1$ for every nilpotent group. Therefore, from Proposition 6, we deduce that $\mathrm{nc}(G) \geq 2^{d-1}$. On the other hand, by Lemma 13, H_{d} acts faithfully on the H_{d}-submodule U_{d} of W_{d} generated by $\gamma_{d}(1,0, \ldots, 0)$ and, by Lemma 12, H_{d} stabilizes a chain of U_{d} of length at most $h t\left(\gamma_{d}(1,0, \ldots, 0)\right)+2=2^{d-1}+2$. Therefore, $\mathrm{nc}\left(H_{d}\right) \leq 2^{d-1}$ by Proposition 11 .

Recall that $x_{d+1}=\gamma_{d}(1, \ldots, 1)$ and that W_{d} is the H_{d}-submodule of V_{d} generated by x_{d+1}. Since W_{d} is a cyclic H_{d}-module, it contains a unique maximal H_{d}-submodule, say Y_{d}. Let $\Delta_{d}=\Delta_{d}\left(x_{d+1}\right)$ and $\Delta_{d}^{*}=\Delta_{d} \backslash\left\{x_{d+1}\right\}$. It follows from Proposition 5 that Δ_{d} is a basis for W_{d} and Δ_{d}^{*} is a basis for Y_{d}. Now let Z_{d} be the F-subspace of W_{d} spanned by the vectors $\beta_{d}(w, a)$ with $w \in \Delta_{d-1}^{*}$ and $a \in I_{p}$. Again, we can use Proposition 5 to deduce that Z_{d} is an H_{d}-submodule of W_{d}. More precisely:

Lemma 15. Let $\tilde{x}_{d+1}=\gamma_{d}(1, \ldots, 1,0)$. The set $\Delta_{d} \backslash\left\{x_{d+1}, \tilde{x}_{d+1}\right\}$ is a basis for Z_{d}. In particular, if $\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in Z_{d} \cap \Delta_{d}$, then $a_{i}=0$ for some $i \in\{1, \ldots, d-1\}$.

Proof. Let $\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in \Delta_{d}^{*}$. We have $\sum_{1 \leq j \leq d} 2^{d-j} \overline{a_{j}}<\operatorname{ht}\left(x_{d+1}\right)=2^{d}-$ 1 and this is possible only if $a_{i}=0$ for some $i \in\{1, \ldots, d\}$. If $a_{i}=0$ for some $i \in\{1, \ldots, d-1\}$, then $w=\gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right) \in \Delta_{d-1}^{*}$ and $\omega=\beta_{d}\left(w, a_{d}\right) \in Z_{d}$. Otherwise, $\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d-1}, 0\right)$ with $a_{i} \neq 0$ for $1 \leq i \leq d-1$: again, we deduce from $\operatorname{ht}(\omega)<2^{d}-1$ that $a_{1}=\cdots=a_{d-1}=1$, i.e. $\omega=\tilde{x}_{d+1}$.

Since Y_{n} is an H_{n}-submodule of W_{n} for any $n \in \mathbb{N}$, we have $\left[Y_{i}, x_{j}\right] \leq Y_{i}$ whenever $j \leq i$. On the other hand, if $j>i$ then $\left[Y_{i}, x_{j}\right] \leq\left[Y_{i}, W_{j-1}\right] \leq\left[H_{i}, W_{j-1}\right] \leq Y_{j-1}$. This implies that $F_{d}=Y_{d-1} Y_{d-2} \cdots Y_{1}$ is a normal subgroup of H_{d} and H_{d} / F_{d} is an elementary abelian p-group of order p^{d}. Since H_{d} can be generated by the d elements x_{1}, \ldots, x_{d} we deduce that $F_{d}=\operatorname{Frat}\left(H_{d}\right)=H_{d}^{\prime}$.

Lemma 16. $K_{d}=Z_{d-1} Z_{d-2} \cdots Z_{2}$ is a normal subgroup of H_{d}.
Proof. Since Z_{i} is an H_{i}-submodule of W_{i} for any $i \in \mathbb{N}$, and $H_{i+1}=W_{i} \rtimes H_{i}$, we have $\left[Z_{i}, x_{j+1}\right] \leq Z_{i}$ whenever $i \geq j$. So in order to prove our statement, it suffices to prove that if $2 \leq i<j$ then $\left[Z_{i}, x_{j+1}\right] \leq Z_{j}$. Recall that $\operatorname{ht}\left(x_{j+1}\right)=2^{j}-1$ and let

$$
Y_{j}^{*}=\left\langle\omega \in \Delta_{j} \mid \operatorname{ht}(\omega) \leq \operatorname{ht}\left(x_{j+1}\right)-2=2^{j}-3\right\rangle \leq Y_{j} .
$$

We have $Y_{j}=\left\langle Y_{j}^{*}, \tilde{x}_{j+1}, \eta_{1}, \ldots, \eta_{j}\right\rangle$ with

$$
\begin{aligned}
\eta_{1} & =\gamma_{j}(0,2,2, \ldots, 2), \\
\eta_{2} & =\gamma_{j}(1,0,2, \ldots, 2), \\
& \ldots \ldots \ldots \ldots \ldots, \\
\eta_{j-1} & =\gamma_{j}(1, \ldots, 1,0,2), \\
\eta_{j} & =\gamma_{j}(1, \ldots, 1,0)=\tilde{x}_{j+1} .
\end{aligned}
$$

Now let $h \in Z_{i}$. Since $h \in Z_{i} \leq H_{i+1}=\left\langle x_{1}, \ldots, x_{i+1}\right\rangle$, we have $h=x_{s_{1}} \ldots x_{s_{r}}$ with $r \in \mathbb{N}$ and $s_{1}, \ldots, s_{r} \in\{1, \ldots, i+1\}$. By Lemma 3, $\left[W_{j}, H_{j}, H_{j}\right]=\left[Y_{j}, H_{j}\right]=Y_{j}^{*}$ and

$$
\left[h, x_{j+1}\right] \equiv \sum_{1 \leq t \leq r}\left[x_{s_{t}}, x_{j+1}\right] \equiv \sum_{1 \leq t \leq r} \eta_{j+1-s_{t}} \bmod Y_{j}^{*}
$$

Let l be the numbers of $t \in\{1, \ldots, r\}$ with $x_{s_{t}}=x_{1}$. Since $\eta_{k} \in Z_{j}$ if $k \neq j$ and $U_{j} \leq Z_{j}$ we deduce that $\left[h, x_{j+1}\right] \equiv l \tilde{x}_{j+1} \bmod Z_{j}$. On the other hand, $h \in Z_{i} \leq W_{i} \cdots W_{2} \unlhd H_{i}$ and $h \equiv\left(x_{1}\right)^{l} \bmod W_{i} \cdots W_{2}$, so it must be $l \equiv 0 \bmod p$ and consequently $\left[h, x_{j+1}\right] \in$ Z_{j}.

We are interested in the structure of the factor group H_{d} / K_{d}. Let

$$
\xi_{1}=x_{1} K_{d}, \xi_{2}=x_{2} K_{d}, \tilde{\xi}_{2}=\tilde{x}_{2} K_{d}, \ldots, \xi_{d}=x_{d} K_{d}, \tilde{\xi}_{d}=\tilde{x}_{d} K_{d}
$$

Lemma 17. The group H_{d} / K_{d} has order $p^{2 d-1}$. In particular,
(1) $\left\langle\xi_{2}, \tilde{\xi}_{2}, \ldots, \xi_{d}, \tilde{\xi}_{d}\right\rangle$ is a normal subgroup of H_{d} / K_{d} and it is an elementary abelian p-group of order $p^{2(d-1)}$.
(2) $\left\langle\tilde{\xi}_{2}, \ldots, \tilde{\xi}_{d}\right\rangle$ is a central subgroup of H_{d} / K_{d}.
(3) $\left[\xi_{1}, \xi_{i}\right]=\tilde{\xi}_{i}$ for each $i \in\{2, \ldots, d\}$.

Theorem 18. If T is a proper subgroup of H_{d}, then $\mathrm{dl}(T) \leq d-1$.
Proof. We prove the theorem by induction on d. It is not restrictive to assume that T is a maximal subgroup of H_{d}. If $W_{d-1} \leq T$, then T / W_{d-1} is a proper subgroup of $H_{d} / W_{d-1} \cong H_{d-1}$ and by induction $T^{(d-2)} \leq W_{d-1}$. It follows that $T^{(d-1)}=1$, and so $\mathrm{dl}(T) \leq d-1$. Now assume $W_{d-1} \notin T$: we have $T W_{d-1}=H_{d-1}$ and $T \cap W_{d-1}=$ Y_{d-1}, since Y_{d-1} is the unique maximal H_{d-1}-submodule of W_{d-1}. In particular, there exist $w_{1}, \ldots, w_{d-1} \in W_{d-1}$ such that

$$
T=\left\langle w_{1} x_{1}, \ldots, w_{d-1} x_{d-1}, Y_{d-1}\right\rangle=\left\langle w_{1} x_{1}, \ldots, w_{d-1} x_{d-1}, \tilde{x}_{d}, Z_{d-1}\right\rangle
$$

Since $Y_{d-1} \leq T$ and $W_{d-1}=\left\langle Y_{d-1}, x_{d}\right\rangle$ we may assume $w_{i}=c_{i} x_{d}$ for some $c_{i} \in \mathbb{N}$. Therefore, we have $T=\left\langle\left(c_{1} x_{d}\right) x_{1}, \ldots,\left(c_{d-1} x_{d-1}\right) x_{1}, \tilde{x}_{d}, Z_{d-1}\right\rangle$ and, since $Z_{d-1} \leq K_{d}$, it follows

$$
T K_{d} / K_{d}=\left\langle\left(c_{1} \xi_{d}\right) \xi_{1}, \ldots,\left(c_{d-1} \xi_{d}\right) \xi_{d-1}, \tilde{\xi}_{d}\right\rangle
$$

By Lemma $17, T^{\prime} K_{d} / K_{d}$ is the smallest normal subgroup of $T K_{d} / K d$ containing the commutators $\left[\left(c_{1} \xi_{d}\right) \xi_{1},\left(c_{i} \xi_{d}\right) \xi_{i}\right]=c_{1} c_{i} \tilde{\xi}_{i}$ for $i \in\{2, \ldots, d-1\}$. This means that $T^{\prime} K_{d} / K_{d} \leq\left\langle\tilde{\xi}_{2}, \ldots, \tilde{\xi}_{d-1}\right\rangle$, i.e. $T^{\prime} \leq\left\langle\tilde{x}_{2}, \ldots, \tilde{x}_{d-1}\right\rangle K_{d} \leq F_{d} \leq\left(H_{d-1}\right)^{p}$. For $j \in$ $\{1, \ldots, p\}$, let $U_{j}=\left\langle\pi_{j}\left(\tilde{x}_{2}\right), \ldots, \pi_{j}\left(\tilde{x}_{d-1}\right)\right\rangle F_{d-1} \leq H_{d-1}$. Since $d\left(H_{d-1}\right)=d-1$ and $F_{d-1}=$ Frat H_{d-1}, it must be $U_{j} \neq H_{d-1}$. By induction, $\mathrm{dl}\left(U_{j}\right) \leq d-2$. Moreover, since $\pi_{j}\left(K_{d}\right) \leq F_{d-1}$, we deduce that $\pi_{j}\left(T^{\prime}\right) \leq U_{j}$. But then $T^{\prime} \leq U_{1} \times \ldots U_{p}$ which implies that $\mathrm{dl}\left(T^{\prime}\right) \leq \max _{j} \mathrm{dl}\left(U_{j}\right) \leq d-2$ and consequently that $\mathrm{dl}(T) \leq d-1$.

Proposition 19. If $1 \neq N \unlhd H_{d}$, then $\mathrm{dl}\left(H_{d} / N\right) \leq d-1$.
Proof. Since by Corollary $10, Z\left(H_{d}\right)$ is cyclic of order p, we have that $Z\left(H_{d}\right) \leq N$. In particular, $\operatorname{nc}\left(H_{d} / N\right) \leq \operatorname{nc}\left(H_{d} / Z\left(H_{d}\right)\right) \leq \operatorname{nc}\left(H_{d}\right)-1=2^{d-1}-1$ and so $\operatorname{dl}\left(H_{d} / N\right) \leq$ $\log _{2}\left(\operatorname{nc}\left(H_{d} / N\right)\right)-1 \leq \log _{2}\left(2^{d-1}-1\right)+1<d$.
4. Order of H_{d}. In this section, we want to say more about the order of the group H_{d}. If $d=1$, then H_{1} is cyclic of order p. If $d=2$, then W_{1} has a basis over F consisting of the two vectors $\gamma_{1}(1)$ and $\gamma_{1}(0)$ so $H_{2}=W_{1} \rtimes H_{1}$ is a nonabelian group of order p^{3}. However, the order of H_{3} depends on the choice of the prime p : indeed a basis of W_{2} can be obtained considering the set Δ_{2} of the descendants of $x_{3}=\gamma_{2}(1,1)$ in the graph Γ_{2}. If $p \neq 2$, then $\Delta_{2}=$ $\left\{\gamma_{2}(1,1), \gamma_{2}(1,0), \gamma_{2}(0,2), \gamma_{2}(0,1), \gamma_{2}(0,0)\right\}$: in this case, $\left|H_{2}\right|=\left|H_{1}\right|\left|W_{2}\right|=p^{3} p^{5}=p^{8}$. However, for $p=2$ we have $\Delta_{2}=\left\{\gamma_{2}(1,1), \gamma_{2}(1,0), \gamma_{2}(0,1), \gamma_{2}(0,0)\right\}$ and $\left|H_{2}\right|=2^{7}$.

The dimension of W_{n} over F is related to the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ which is uniquely determined by the following rules:

$$
f(n, a)= \begin{cases}1 & \text { if } n=0 \\ p^{n} & \text { if } a \geq p \text { and } n>0 \\ \sum_{0 \leq j \leq a} f(n-1, a+j) & \text { if } a<p \text { and } n>0\end{cases}
$$

It can be easily proved that $f(n, p-1)=p^{n}$ for any positive integer n.
Our aim is to prove that $\left|W_{d}\right|=p^{f(d, 1)}$. This requires a more detailed investigation of the properties of the graph Ω_{n}.

Lemma 20. Let $\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)$ with $a_{i} \in\{0, \ldots, p-1\}$ for every $i \in\{1, \ldots, d\}$. If $0 \leq b_{i} \leq a_{i}$ for every $i \in\{1, \ldots, d\}$, then $\gamma_{d}\left(b_{1}, \ldots, b_{d}\right) \in \Delta_{d}(\omega)$.

Proof. We prove by induction on $d-j$ that if $b_{i} \leq a_{i}$ for every $i \in\{j, \ldots, d\}$ then $\gamma_{d}\left(a_{1}, \ldots, a_{j-1}, b_{j}, \ldots, b_{d}\right) \in \Delta_{d}(\omega)$. This is certainly true if $d-j=0$, since Ω_{d} contains the edge $\left(\gamma_{d}\left(a_{1}, \ldots, a_{d-1}, y_{d}\right), \gamma_{d}\left(a_{1}, \ldots, a_{d-1}, y_{d}-1\right)\right)$ whenever $1 \leq y_{d} \leq a_{d}$. Now assume that we have proved our statement for a $j \neq 1$, assume that $a_{j-1} \neq 0$ and consider $\omega_{1}=\gamma_{d}\left(a_{1}, \ldots, a_{j-1}, a_{j}^{*}, \ldots, a_{d}^{*}\right)$ with $a_{k}^{*}=a_{k}-1$ if $a_{k}>0$ and $a_{k}^{*}=0$ otherwise. By induction $\omega_{1} \in \Delta_{d}(\omega)$. Moreover Ω_{d} contains the edge (ω_{1}, ω_{2}) for $\omega_{2}=\gamma_{d}\left(a_{1}, \ldots, a_{j-1}-1, a_{j}^{*}+1, \ldots, a_{d}^{*}+1\right)$. By induction,

$$
\gamma_{d}\left(a_{1}, \ldots, a_{j-1}-1, b_{j}, \ldots, b_{d}\right) \in \Delta_{d}\left(\omega_{1}\right) \subseteq \Delta_{d}(\omega)
$$

if $b_{i} \leq a_{i}^{*}+1$ for every $i \in\{j, \ldots, d\}$. Since $a_{i} \leq a_{i}^{*}+1$, we deduce

$$
\gamma_{d}\left(a_{1}, \ldots, a_{j-1}-1, b_{j}, \ldots, b_{d}\right) \in \Delta_{d}(\omega)
$$

if $b_{i} \leq a_{i}$ for every $i \in\{j, \ldots, d\}$. Repeating this argument, we can conclude $\gamma_{d}\left(a_{1}, \ldots, b_{j-1}, b_{j}, \ldots, b_{d}\right) \in \Delta_{d}(\omega)$ if $b_{i} \leq a_{i}$ for every $i \in\{j-1, \ldots, d\}$.

Lemma 21. If $\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right), a_{i-1} \neq 0$ and $a_{i}=p-1$, then

$$
\gamma_{d}\left(a_{1}, \ldots, a_{i-1}-1, b, a_{i+1}+1, \ldots, a_{d}+1\right) \in \Delta_{d}(\omega)
$$

for every $b \in\{0, \ldots, p-1\}$.
Proof. By Lemma 20, $\omega_{1}=\gamma_{d}\left(a_{1}, \ldots, a_{i-1}, p-2, a_{i+1}, \ldots, a_{d}\right) \in \Delta_{d}(\omega)$ and consequently $\quad \omega_{2}=\gamma_{d}\left(a_{1}, \ldots, a_{i-1}-1, p-1, a_{i+1}+1, \ldots, a_{d}+1\right) \in \Delta_{d}\left(\omega_{1}\right) \subseteq \Delta_{d}(\omega)$. Again by Lemma 20, $\gamma_{d}\left(a_{1}, \ldots, a_{i-1}-1, b, a_{i+1}+1, \ldots, a_{d}+1\right) \in \Delta_{d}\left(\omega_{2}\right) \subseteq \Delta_{d}(\omega)$ for every $b \in\{0, \ldots, p-1\}$.

We define a new graph $\tilde{\Omega}_{d}$ with the same vertices as Ω_{d} but with a different set of edges: let $\omega_{1}=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)$ and $\omega_{2}=\gamma_{d}\left(b_{1}, \ldots, b_{d}\right)$ with $0 \leq a_{i}, b_{j} \leq p-1:\left(\omega_{1}, \omega_{2}\right)$
is an edge in $\tilde{\Omega}_{d}$ if and only if there exists $k \in\{1, \ldots, d\}$ such that: $a_{k} \neq 0, b_{i}=a_{i}$ if $i<k, b_{k}=a_{k}-1, b_{i}=\min \left\{a_{i}+1, p-1\right\}$ if $i>k$. We denote by $\tilde{\Delta}_{d}(\omega)$ the set of the descendants of $\omega \in \Gamma_{d}$. It follows immediately from Lemma 21 that:

Lemma 22. For every $\omega \in \Gamma_{d}$, we have $\tilde{\Delta}_{d}(\omega)=\Delta_{d}(\omega)$.
Lemma 23. Let $\omega=\gamma_{d}(b, \ldots, b)$ with $0 \leq b \leq p-1$. Then, $\left|\tilde{\Delta}_{d}(\omega)\right|=f(d, b)$.
Proof. We prove the statement by induction on d. It follows immediately from the definition that $\tilde{\Delta}_{1}\left(\gamma_{1}(b)\right)=\left\{\gamma_{1}(b), \gamma_{1}(b-1), \ldots, \gamma_{1}(0)\right\}$ has cardinality $b+1=f(1, b)$.

Let $\left(\omega_{1}, \omega_{2}\right)$ be an edge in the graph $\tilde{\Omega}_{d}$. We say that $\left(\omega_{1}, \omega_{2}\right)$ is a k-edge if

$$
\begin{aligned}
& \omega_{1}=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \text { with } a_{1}, \ldots, a_{d} \in\{0, \ldots, p-1\}, a_{k} \neq 0 \text { and } \\
& \omega_{2}=\gamma_{d}\left(a_{1}, \ldots, a_{k-1}, a_{k}-1, \min \left\{a_{k+1}+1, p-1\right\}, \ldots, \min \left\{a_{d}+1, p-1\right\}\right) .
\end{aligned}
$$

Now let $\omega=\gamma_{d}(b, \ldots, b)$ with $b \in\{0, \ldots, p-1\}$ and let $\omega^{*} \in \tilde{\Delta}_{d}(\omega)$. The number of 1 -edges in a path connecting ω to ω^{*} is at most b. For $j \in\{0, \ldots, b\}$, let $\tilde{\Delta}_{d}(\omega, j)$ be the subset of $\tilde{\Delta}_{d}(\omega)$ consisting of the descendants of ω connected to ω by a path which contains exactly $j 1$-edges. Notice that if $\omega^{*}=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in \tilde{\Delta}_{d}(\omega, j)$, then $a_{1}=b-j$ and consequently $\tilde{\Delta}_{d}(\omega)$ is the disjoint union of the subsets $\tilde{\Delta}_{d}(\omega, j), 0 \leq j \leq b$, and $\left|\tilde{\Delta}_{d}(\omega)\right|=\sum_{0 \leq j \leq b}\left|\tilde{\Delta}_{d}(\omega, j)\right|$.

Clearly, $\omega^{*}=\gamma_{d}\left(a_{1}, \ldots, a_{p}\right) \in \tilde{\Delta}_{d}(\omega, 0)$ if and only if $\omega^{*}=\gamma_{d}\left(b, b_{1}, \ldots, b_{p-1}\right)$ with $\gamma_{d-1}\left(b_{1}, \ldots, b_{d-1}\right) \in \tilde{\Delta}_{d-1}\left(\gamma_{d-1}(b, \ldots, b)\right)$ so, by induction, $\left|\tilde{\Delta}_{d}\left(\omega_{0}\right)\right|=f(d-1, b)$.

Now suppose that there is a path

$$
\omega_{0}=\omega, \omega_{1}, \ldots, \omega_{k+1}=\omega^{*}
$$

where $\left(\omega_{j}, \omega_{j+1}\right)$ is an 1-edge if and only if $j=k$. We claim that if $k \neq 0$, then there exist $r<k$ and a path

$$
\tilde{\omega}_{0}=\omega, \tilde{\omega}_{1}, \ldots, \tilde{\omega}_{s+1}=\omega^{*}
$$

with $s \geq r$ and where $\left(\omega_{j}, \omega_{j+1}\right)$ is a 1-edge if and only if $j=r$. Let $\omega_{k-1}=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)$ with $a_{1}, \ldots, a_{d} \in\{0, \ldots, p-1\}$ and assume that $\left(\omega_{k-1}, \omega_{k}\right)$ is an i-edge. Hence,

$$
\begin{aligned}
\omega_{k}= & \gamma_{d}\left(a_{1}, \ldots, a_{i-1}, a_{i}-1, \min \left\{a_{i+1}+1, p-1\right\}, \ldots, \min \left\{a_{d}+1, p-1\right\}\right) \\
\omega_{k+1}= & \gamma_{d}\left(a_{1}-1, \min \left\{a_{2}+1, p-1\right\}, \ldots, \min \left\{a_{i-1}+1, p-1\right\},\right. \\
& \left.a_{i}, \min \left\{a_{i+1}+2, p-1\right\}, \ldots, \min \left\{a_{d}+2, p-1\right\}\right)
\end{aligned}
$$

Now, the graph $\tilde{\Delta}_{d}(\omega)$ contains also the 1-edge $\left(\omega_{k-1}, \omega_{k}^{*}\right)$ and the i-edge $\left(\omega_{k}^{*}, \omega_{k+1}^{*}\right)$ with

$$
\begin{aligned}
\omega_{k}^{*}= & \gamma_{d}\left(a_{1}-1, \min \left\{a_{2}+1, p-1\right\}, \ldots,\left\{a_{d}+2, p-1\right\}\right) \\
\omega_{k+1}^{*}= & \gamma_{d}\left(a_{1}-1, \min \left\{a_{2}+1, p-1\right\}, \ldots, \min \left\{a_{i-1}+1, p-1\right\}, \min \left\{a_{i}+1, p-1\right\}-1,\right. \\
& \left.\quad \min \left\{a_{i+1}+2, p-1\right\}, \ldots, \min \left\{a_{d}+2, p-1\right\}\right) .
\end{aligned}
$$

If $a_{i} \neq p-1$, then $\omega_{k+1}^{*}=\omega_{k+1}$ so $\omega_{0}, \ldots, \omega_{k-1}, \omega_{k}^{*}, \omega_{k+1}$ is the path we are looking for. On the other hand, if $a_{i}=p-1$ then $\min \left\{a_{i}+1, p-1\right\}-1=p-2$ so this case requires a different argument. We may label the path $\omega_{0}, \ldots, \omega_{k-1}$ with the sequence $\left(i_{1}, \ldots, i_{k-1}\right)$ meaning that $\left(\omega_{j-1}, \omega_{j}\right)$ is an i_{j}-edge for any $j \in\{1, \ldots, k-1\}$. Now we consider the sequence $\left(i_{1}^{*}, \ldots, j_{t}^{*}\right)$ obtained from $\left(i_{1}, \ldots, i_{k}\right)$ by removing the entries i_{j}
whenever $i_{j}>i$ and let $\omega_{0}, \omega_{1}^{*}, \ldots, \omega_{t}^{*}$ be the unique path starting from ω_{0} and labelled by the sequence $\left(i_{1}^{*}, \ldots, j_{t}^{*}\right)$. It is not difficult to see that

$$
\omega_{t}^{*}=\gamma_{d}\left(a_{1} \ldots, a_{i-1}, p-1, \ldots, p-1\right)
$$

Now we can continue the previous path adding the 1 -edge $\left(\omega_{t}^{*}, \omega_{t+1}^{*}\right)$ with

$$
\left.\omega_{t+1}^{*}=\left(a_{1}-1, \min \left\{a_{2}+1, p-1\right\}, \ldots, \min \left\{a_{i-1}+1, p-1\right\}, p-1, \ldots, p-1\right\}\right)
$$

By Lemma 20, there is a path $\omega_{t+1}^{*}, \ldots, \omega_{u}^{*}=\omega_{k+1}$, involving only j-edges with $j \geq i$. In particular, $\omega_{0}, \omega_{1}^{*}, \ldots, \omega_{u}^{*}$ is the path we are looking for.

This completes the proof of our claim. Iterated applications of this remark allow to conclude that if $\omega^{*} \in \tilde{\Delta}_{d}(\omega, 1)$ then

$$
\omega^{*} \in \tilde{\Delta}_{d}\left(\gamma_{d}(b-1, \min \{b+1, p-1\}, \ldots, \min \{b+1, p-1\})\right)
$$

In particular,

$$
\left|\tilde{\Delta}_{d}(\omega, 1)\right|=\mid \tilde{\Delta}_{d-1}\left(\gamma_{d-1}(\min \{b+1, p-1\}, \ldots, \min \{b+1, p-1\}) \mid .\right.
$$

If $b+1=p$, then $\left|\tilde{\Delta}_{d}(\omega, 1)\right|=\left|\tilde{\Delta}_{d-1}\left(\gamma_{d-1}(p-1, \ldots, p-1)\right)\right|=p^{d-1}=f(d-1, b-$ 1) by Lemma 20. If $b+1<p$, then $\left|\tilde{\Delta}_{d}(\omega, 1)\right|=\left|\tilde{\Delta}_{d-1}\left(\gamma_{d-1}(b-1, \ldots, b-1)\right)\right|=$ $f(d-1, b-1)$ by induction.

A similar argument allows us to conclude that for any $j \in\{0, \ldots, b\}$ we have

$$
\left|\tilde{\Delta}_{d}(\omega, j)\right|=\mid \tilde{\Delta}_{d-j}\left(\gamma_{d-j}(\min \{b+j, p-1\}, \ldots, \min \{b+j, p-1\})=f(d-j, b+j)\right.
$$

But then $\left|\tilde{\Delta}_{d}(\omega)\right|=\sum_{0 \leq j \leq b}\left|\tilde{\Delta}_{d}(\omega, j)\right|=\sum_{0 \leq j \leq b} f(d-j, b+1)=f(d, b)$.
Corollary 24. $\operatorname{dim}_{F} W_{d}=f(d, 1)$ and $\log _{p}\left|H_{d}\right|=\sum_{0 \leq i \leq d-1} f(i, 1)$.
Proof. By the previous Lemma, $\operatorname{dim}_{F} W_{d}=\left|\tilde{\Delta}_{d}\left(\gamma_{d}(1, \ldots, 1)\right)\right|=f(d, 1)$
Corollary 25. If $p=2$, then $H_{d}=G_{d}=C_{2} \imath \cdots \imath C_{2}$.
Proof. For any positive integer n, we have that $\operatorname{dim} W_{n}=f(n, 1)=f(n-1,1)+$ $f(n-1,2)=2^{n-1}+2^{n-1}=2^{n}=\operatorname{dim} V_{n}$, hence $W_{n}=V_{n}$ and $H_{d}=W_{d-1} \cdots W_{0}=$ $V_{d-1} \cdots V_{0}=G_{d}$.

On the other hand, if $p>2$ then $\left|H_{d}\right|$ is much smaller then $\left|G_{d}\right|$. Indeed, we have
PROPOSITION 26. $\log _{p}\left|H_{d}\right| \leq \frac{1}{p-1}\left(\frac{p^{d}-1}{p-1}+(p-2) d\right)=\frac{1}{p-1}\left(\log _{p}\left|G_{d}\right|+(p-2) d\right)$.
Proof. First, we prove by induction that $f(n, 1) \leq 1+\left(p^{n}-1\right) /(p-1)$ for each $n \in \mathbb{N}$. This is clearly true if $n=0$ since $f(0,1)=1$. On the other hand, if $n>0$ then

$$
\begin{equation*}
f(n, 1)=f(n-1,1)+f(n-1,2) \leq 1+\frac{p^{n-1}-1}{p-1}+p^{n-1}=1+\frac{p^{n}-1}{p-1} \tag{4.1}
\end{equation*}
$$

since $f(n-1,2)=\operatorname{dim}_{F}\left(\gamma_{n-1}(2, \ldots, 2)\right) \leq \operatorname{dim}_{F} V_{n-1}=p^{n-1}$. In particular,

$$
\begin{aligned}
\log _{p}\left|H_{d}\right| & =\log _{p}\left|W_{0} \cdots W_{d-1}\right|=\sum_{0 \leq i \leq p} \log _{p}\left|W_{i}\right| \\
& \leq \sum_{0 \leq i \leq d-1} 1+\frac{p^{i}-1}{p-1}=\frac{1}{p-1}\left(\frac{p^{d}-1}{p-1}+(p-2) d\right) .
\end{aligned}
$$

To conclude, it suffices to recall that $G_{d}=C_{p} 2 \cdots 2 C_{p}$ has order $\left(p^{d}-1\right) /(p-1)$.
If $p=3$, then it follows from Lemma 20 that $f(m, 2)=3^{m}$ for every positive integer m and (4.1) is indeed an equality: hence,

$$
\left|H_{d}\right|=\frac{1}{2}\left(\frac{3^{d}-1}{2}+d\right) \text { if } p=3
$$

However, if $p \neq 3$, then $\gamma_{m}\left(i, a_{2}, \ldots, a_{m}\right) \notin \Delta_{m}\left(\gamma_{m}(2, \ldots, 2)\right)$ whenever $i \geq 3$ and this implies $f(m, 2) \leq p^{m}-(p-3) p^{m-1}=3 p^{m-1}$. In particular, if $p \geq 5$ then the bound given in Proposition 26 can still be improved. The following table describes the behaviour of $\left|H_{d}\right|$ when $d \in\{3,4,5\}$ and $p \in\{3,5,7\}$.

	$p=3$	$p=5$	$p=7$
$\operatorname{dim}_{F} W_{2}$	5	5	5
$\operatorname{dim}_{F} W_{3}$	14	17	17
$\operatorname{dim}_{F} W_{4}$	41	73	83
$\log _{p}\left\|H_{3}\right\|$	8	8	8
$\log _{p}\left\|H_{4}\right\|$	22	25	25
$\log _{p}\left\|H_{5}\right\|$	63	98	108

5. A generalization. In this section, we introduce a more general construction. it turns out that the two groups H_{d} and G_{d} are particular examples of the groups that can be obtained with this method; in particular, such groups can be studied simultaneously and share some properties.

We fix an integer $k \in\{1, \ldots, p-1\}$ and we define recursively a sequence of vectors $x_{k, n} \in V_{n-1}$:

$$
\left\{\begin{array}{l}
x_{k, 1}=k \\
x_{k, n+1}=\gamma_{n}(k, \ldots, k)=\beta_{n}\left(x_{k, n}, k\right) \text { if } n>1
\end{array}\right.
$$

Let $X_{k, d}$ be the subgroup of G_{d} generated by $x_{k, 1}, \ldots, x_{k, d}$.
Lemma 27. If $k_{1} \leq k_{2}$, then $X_{k_{1}, d} \leq X_{k_{2}, d}$. Moreover, $X_{1, d}=H_{d}$ and $X_{p-1, d}=G_{d}$.
Proof. We make induction on d. Clearly, if $d=1$, then $X_{k, 1}=X_{1,1}=\left\langle x_{1}\right\rangle \cong C_{p}$. So we may assume $d \geq 2$. By induction, $H_{d-1} \leq X_{k_{1}, d-1} \leq X_{k_{2}, d-1}$. In particular, $X_{k_{2}, d}$ contains the $\left(H_{d-1}\right)$-submodule of V_{d-1} generated by $x_{k_{2}, d}=\gamma_{d-1}\left(k_{2}, \ldots, k_{2}\right)$. By Proposition 5 and Lemma 20, $x_{k_{1}, d}=\gamma_{d-1}\left(k_{1}, \ldots, k_{1}\right)$ belongs to this submodule. Hence, $X_{k_{1}, d}=\left\langle x_{k_{1}, d}, X_{k_{1}-1, d-1}\right\rangle \leq X_{k_{2}, d}$. In the particular case when $k_{2}=p-1$, the H_{d-1} submodule of V_{d-1} generated by $x_{p-1, d}=\gamma_{d-1}(p-1, \ldots, p-1)$ coincides with V_{d-1} and the previous argument allows to conclude that $X_{p-1, d}=G_{d}$.

We may generalize Lemma 3 to the general case.
Lemma 28. Let $v=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in V_{d}$, and $i \leq d$. Consider $k=(d-i)+1$. Then

$$
\left[v, t x_{r, i}\right]=\left\{\begin{array}{l}
0 \quad \text { if } a_{k}=0 \\
\sum_{1 \leq c \leq \overline{a_{k}}}\binom{a_{k}}{c}(-t r)^{c} \gamma_{d}\left(a_{1}, \ldots, \overline{a_{k}}-c, a_{k+1}+c r, \ldots, a_{d}+c r\right) \text { otherwise } .
\end{array}\right.
$$

Proof. We may assume $0 \leq a_{j} \leq p-1$ for all $j \in\{1, \ldots, p-1\}$. Suppose $i=1$. If $a_{d}=0$, then $\left[v, t x_{1}\right]=0$; otherwise, by Lemma 3,

$$
\left[v, t x_{r, 1}\right]=\left[v, t r x_{1}\right]=\sum_{1 \leq c \leq a_{d}}\binom{a_{d}}{c}(-t r)^{c} \gamma_{d}\left(a_{1}, \ldots, a_{d-1}, a_{d}-c\right)
$$

Now assume $i>1$. Since $v=\beta\left(\gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right), a_{d}\right)$ and $t x_{r, i}=t \beta\left(x_{r, i-1}, r\right)$ we have

$$
\left[v, t x_{r, i}\right]=\left(w_{1}, \ldots, w_{p}\right)
$$

with

$$
w_{j}=\left[(j-1)^{a_{d}} \gamma_{d-1}\left(a_{1}, \ldots, a_{d-1}\right),\left(t(j-1)^{r}\right) x_{r, i-1}\right] \in V_{d-1}
$$

By induction,

$$
\begin{aligned}
w_{j} & =(j-1)^{a_{d}} \sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}\left(-\operatorname{tr}(j-1)^{r}\right)^{c} \gamma_{d-1}\left(a_{1}, \ldots, a_{k}-c, a_{k+1}+c r, \ldots, a_{d-1}+c r\right) \\
& =\sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t r)^{c}(j-1)^{a_{d}+c r} \gamma_{d-1}\left(a_{1}, \ldots, a_{k}-c, a_{k+1}+c r, \ldots, a_{d-1}+c r\right) .
\end{aligned}
$$

This implies

$$
\begin{aligned}
{\left[v, t x_{r, i}\right] } & \left.=\sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t r)^{c} \beta_{d}\left(\gamma_{d-1}\left(a_{1}, \ldots, a_{k}-c, a_{k+1}+c r, \ldots, a_{d-1}+c r\right), a_{d}+c r\right)\right) \\
& =\sum_{1 \leq c \leq a_{k}}\binom{a_{k}}{c}(-t r)^{c} \gamma_{d}\left(a_{1}, \ldots, a_{k}-c, a_{k+1}+c r, \ldots, a_{d-1}+c r, a_{d}+c r\right)
\end{aligned}
$$

This concludes our proof.
We recall that $\Gamma_{d}=\left\{\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \mid 0 \leq a_{i} \leq p-1\right.$ for every $\left.\mathrm{i} \in\{1, \ldots, d\}\right\}$ is a basis of V_{d} over F. For each $k \in\{1, \ldots, p-1\}$, we define the k-height of $\omega=$ $\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)$ as follows:

$$
\operatorname{ht}_{k}\left(\gamma_{d}\left(a_{1}, \ldots, a_{d}\right)\right)=(k+1)^{d-1} a_{1}+(k+1)^{d-2} a_{2}+\cdots+(k+1) a_{d-1}+a_{d}
$$

For $v=\sum_{\omega \in \Gamma_{d}} \lambda_{\omega} \omega \neq 0 \in V_{d}$, we define $\operatorname{supp}(v)=\left\{\omega \mid \lambda_{\omega} \neq 0\right\}$ and $\operatorname{ht}_{k}(v)=$ $\max \left\{\operatorname{ht}_{k}(\omega) \mid \omega \in \operatorname{supp}(v)\right\}$. We set $\operatorname{ht}_{k}(v)=-1$ if $v=0$. For $n \in\left\{0, \ldots,(k+1)^{d}\right\}$, let $V_{k, d, n}=\left\{v \mid \operatorname{ht}_{k}(\omega) \leq n-1\right\}$. It follows immediately from Lemma 28 that, for each $n \in\left\{0, \ldots,(k+1)^{d}-1\right\},\left[G_{d}, V_{k, d, n+1}\right] \leq V_{k, d, n}$. A more precise result can be proved.

Lemma 29. Suppose $v \in V_{d}$. If $\operatorname{ht}_{k}(v)=r>0$, then there exists $\left(j_{1}, \ldots, j_{r}\right) \in$ $\{1, \ldots, d\}^{r}$ such that $\left[v, x_{k, j_{1}}, \ldots, x_{k, j_{r}}\right] \neq 0$.

Proof. We may work by induction on r so it suffices to prove that there exists $i \in\{1, \ldots, d\}$ such that $\operatorname{ht}_{k}\left(\left[v, x_{k, i}\right]\right)=r-1$. Since ht ${ }_{k}(v)=r$, there exist $i \in\{1, \ldots, d\}$ and $\bar{\omega}=\gamma\left(b_{1}, \ldots, b_{d}\right) \in \operatorname{supp}(v)$ with $\mathrm{ht}_{k}(\bar{\omega})=r, b_{i} \neq 0$ and $b_{j}=0$ if $j>i$. Let

$$
\Lambda=\left\{\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in \operatorname{supp}(v) \mid a_{i} \neq 0 \text { and } \mathrm{ht}_{k}(\omega)=r\right\}
$$

For $\omega=\gamma_{d}\left(a_{1}, \ldots, a_{d}\right) \in \Lambda$, define $\omega^{*}=\gamma_{d}\left(a_{1}, \ldots, a_{i}-1, a_{i+1}+k, \ldots, a_{d}+k\right)$. Notice that $\operatorname{ht}_{k}\left(\bar{\omega}^{*}\right)=r-1$, that $\operatorname{ht}_{k}\left(\omega^{*}\right) \leq r-1$ for every $\omega \in \Lambda$ and that $\omega_{1}^{*} \neq \omega_{2}^{*}$ if $\omega_{1} \neq \omega_{2}$. If follows from Lemma 28 that

$$
\left[v, x_{k, i}\right] \equiv \sum_{\omega \in \Lambda} \lambda_{\omega} \omega^{*} \quad \bmod V_{k, d, r-1}
$$

and consequently $\mathrm{ht}_{k}\left(\left[v, x_{k, i}\right]\right)=r-1$.
Theorem 30. $\operatorname{nc}\left(X_{k, d}\right)=(k+1)^{d-1}$.
Proof. Notice that

$$
\operatorname{ht}_{k}\left(x_{k, d}\right)=\operatorname{ht}_{k}\left(\gamma_{d-1}(k, \ldots, k)\right)=k\left(1+(k+1)+\cdots+(k+1)^{d-2}\right)=(k+1)^{d-1}-1
$$

Therefore, if follows from Lemma 29 that $\operatorname{nc}\left(X_{k, d}\right) \geq(k+1)^{d-1}$. On the other hand, by Lemma 13, $X_{k, d}$ acts faithfully on the submodule U_{d} of V_{d} generated by $\gamma_{d}(1,0, \ldots, 0)$. We have $\operatorname{ht}_{k}\left(\gamma_{d}(1,0, \ldots, 0)\right)=(k+1)^{d-1}$ so $U_{d} \leq V_{k, d,(k+1)^{d-1}+1}$. For $i \in\left\{0, \ldots,(k+1)^{d-1}+1\right\}$, let $U_{d, i}=V_{k, d, i} \cap U_{d}$. It follows from Lemma 28 that $X_{k, d}$ stabilizes the chain $0=U_{d, 0} \leq \cdots \leq U_{d,(k+1)^{d-1}+1}=U_{d}$. Therefore, $\operatorname{nc}\left(H_{d}\right) \leq$ $(k+1)^{d-1}$ by Proposition 11 .

REFERENCES

1. S. Evans-Riley, M. F. Newman and C. Schneider, On the soluble length of groups with prime-power order, Bull. Austral. Math. Soc. 59(2) (1999), 343-346.
2. S. P. Glasby, The shape of solvable groups with odd order, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, (Cambridge University Press, Cambridge, 2007), 432-437.
3. B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band, vol. 134, (Springer-Verlag, Berlin, 1967).
4. A. Mann, The derived length of p-groups, J. Algebra 224(2) (2000), 263-267.
5. C. Schneider, The derived series of a finite p-group, J. Algebra 307(1) (2007), 136-152.
