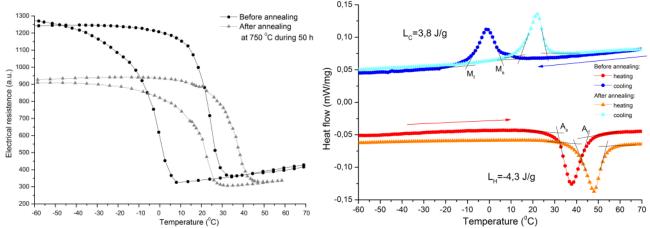
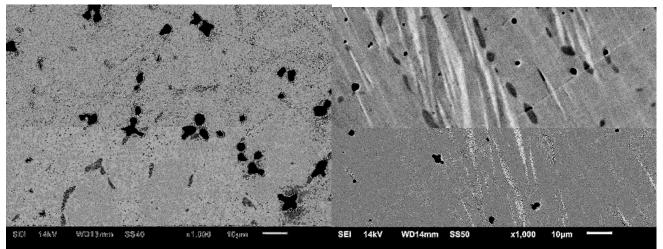
Influence of Additional Annealing on Properties of Ni-Mn-In-Co Heusler Alloy.

Alexander Kamantsev¹, Elvina Dilmieva¹, Alexey Mashirov¹, Victor Koledov¹, Vladimir Shavrov¹, Vladimir Khovaylo², Maria Lyange², Sergey Konoplyuk³, Vladimir Kokorin³, Rostislav Grechishkin⁴, Pnina Ari-Gur⁵.

- ¹ Kotelnikov Institute of Radio-engineering and Electronics of RAS, Moscow, Russia.
- ² National University of Science and Technology "MISIS", Moscow, Russia.
- ³ Institute of Magnetism of NASU and MESU, Kyiv, Ukraine.
- ⁴ Tver State University, Tver, Russia.
- ^{5.} Western Michigan University, Kalamazoo, MI, USA.


A promising class of solid materials for magnetic cooling at room temperatures is that in which a first order metamagnetostructural phase transition (PT) is induced by the magnetic field [1]. In this case, so-called inverse magnetocaloric effect (MCE) originates from a structural PT from the paramagnetic or antiferromagnetic martensite phase to the ferromagnetic austenite phase on the application of a magnetic field. Recently, much interest is attracted to Ni-Mn-In-Co alloys due to large magnetic-field-induced strains [2] and giant inverse MCE [3,4]. We created the new series of Ni-Mn-In-Co alloys with 43 at. % of Ni and 7 at. % of Co. The samples from this series were prepared by arc melting under an argon atmosphere with subsequent homogenizing annealing during 48 hours at 900 °C. Metamagnetic alloy Ni₄₃Mn_{37.8}In_{12.2}Co₇ was chosen for further research. We investigated the properties of this alloy by electrical resistance measurements (ERM), differential scanning calorimetry (DSC) and energy-dispersive X-ray spectroscopy (EDX). After that, samples of this alloy were exposed to additional annealing during 50 hours at 750 °C and all measuring procedures were repeated.

It was determined, that electrical resistance of annealed samples is less on 30% than before annealing in martensite and austenite state too (see Fig. 1). In addition we observe a narrowing of hysteresis curve almost on 40% (from $\Delta T_{hyst} = 40^{0}$ downto 25^{0}) and a shift of curve on 15^{0} to higher temperatures.


The martensitic transformation temperatures and the latent heat during the PT were determined by DSC at heating and cooling rates of 10 K/min. As seen from Fig. 1, DSC scans of the sample demonstrate exothermic and endothermic peaks which are associated with the martensitic PT occurring in the sample. The characteristic transition temperatures M_s , M_f and A_s , A_f corresponding to start and finish temperature of direct and reverse martensitic transformation, respectively, before and after additional annealing. The transition temperatures were determined as a crossing point between the extrapolation lines of the peaks and the base line. For our alloy transformation's temperatures before annealing were found: martensite start $M_s = 6$ °C, martensite finish $M_f = -10$ °C and austenite start $A_s = 32$ °C, austenite finish $A_f = 45$ °C. Transformation's temperatures after annealing: M_s M_s = 26 °C, M_f = 14 °C and M_s = 39 °C, M_f = 54 °C. The Curie temperature of austenite state does not depend on heat treatment: M_s = 150 °C. Calculated from the DSC data the latent heat upon direct (cooling) and reverse (heating) PT are M_s = 4.3 J/g and M_s = 4.3 J/g in both cases (differences M_s = 10% - in limits of error).

The EDX analysis of samples before and after annealing was conducted; SEM micro-photos of investigated fields are presented on Fig. 2. The black areas are flaws. The white areas (martensite plates) have the following average composition in at. %: Ni_{42.4}Mn_{37.2}In_{13.9}Co_{6.5}. The grey area (main body) has the similar composition. The significant difference in composition observed in dark-grey areas (the second phase): Ni_{37.4}Mn_{40.0}In_{1.0}Co_{21.6}. These areas have little 1% of In and a lot 21.6% of Co. One can see that annealing increases grain size and helps to reveal additional information about inner structure.

- [1] T. Krenke, E. Duman, M. Acet, et al., Nature Materials 4, (2005), p. 450.
- [2] R. Kainuma, Y. Imano, W. Ito, et al., Nature 439, (2006), p. 957.
- [3] J. Liu, T. Gottschall, K.P. Skokov, et al., Nature Materials 11, (2012), p. 620.
- [4] A. Kamantsev, V. Koledov, E. Dilmieva, et al., EPJ Web of Conferences 75, (2014), p. 04008.
- [5] The authors acknowledge funding from the Russian Sciences Foundation, Grant № 14-22-00279.

Figure 1. ERM and DSC investigations of metamagnetic Ni₄₃Mn_{37.8}In_{12.2}Co₇ alloy before and after additional annealing during 50 hours at 750 0 C.

Figure 2. SEM micro-photos of region of EDX analyses of metamagnetic Ni₄₃Mn_{37.8}In_{12.2}Co₇ alloy before and after additional annealing during 50 hours at 750 $^{\circ}$ C.