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Abstract

Milne-Thomson has used the method of analytic continuation to solve
boundary value problems of the annulus in plane elastostatics. However,
his use of Cauchy integrals is incorrect, and it is shown in this note that the
solution is obtained in terms of Laurent Series expansions. The solution is
equivalent to that of Muskhelishvili, but is simpler to use in some applica-
tions.

A similar approach is used to solve the boundary value problem of the
infinite strip, the solution being given in terms of functions of a complex
variable expressed as Fourier integrals.

1. The Annulus

The double Laurent expansion solution of the plane elastostatic boundary
value problems of the annulus is given by Muskehlishvili [1]. More recently,
Milne-Thomson [2] has used an analytic continuation method to reformulate
the boundary value problem. However, while his method is interesting and
important, his way of obtaining a closed solution afterwards is incorrect.
It is shown here that the analytic continuation approach gives a series
solution, similar to, but somewhat simpler than that obtained by the
Muskhelishvili method. We shall confine ourselves to the first boundary
value problem of plane strain, as results for other boundary value problems
are entirely analogous.

Consider the annulus S in the region a < \z\ < b, where z = x -f- iy,
and assume that

%„ + ixrB = f(6), z = o = beie,
( = g{6), z = r = aete,

where the normal and tangential stresses rn, rr6 can be expressed in terms
of two functions of a complex variable, analytic in S, by

(2) TfT + ixr9 = W(z) + W(z) - zW'(2) - - w{z).
z
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Let S-, S+ be the annuli a2/b < \z\ < a, b < \z\ < b2\a, respectively;
S~ is the inverse of 5 with respect to the circle z = r, and S+ its inverse
with respect to z = a. Assume the analytic continuation of W{z) in S~ is

(3) W(z) = -W(a*lz) + - W'(a*lz) + ~ w(a2lz), z in S~,

so that W(z) is analytic in S~. Hence

(4) w(z) = % {W(a*lz) + W(z)-zW'(z)}, z in S,

and, from (2)

(5) Trr + .V^ = W{z)--_W{a*lz) + (l-a*lzz){W{z)-zW(z)}, zinS.
zz

Thus, when z = r

(6) W(r) - PF_(r) = g(0),

where W_(r) is the value of W(t) as z approaches r in S~.
Similarly, defining the analytic continuation of W(z) in 5+ by

(7) W(z) = — W(b2lz) + - W'(b'lz) + - w{b2jz), z in S+
z z

so that

(8) w(z) = -2 (W{b2lz) + W(z) -zW'(z)}, z in S,

whence

(9) W(a) - W+(<r) = /(0),

where W+(a) is the value of W(z) as 2 approaches a in S+.
The function w(z) has been defined in two different ways in equation (4)

and (8), so that, for compatibility,

(10) biW(b2lz)-a2W(a2lz)+{b2-a2){W{z)-zW'{z)} = 0.

Equations (6), (9) and (10) are those obtained by Milne-Thomson [2], and
are sufficient to determine W{z) and hence w(z). However, at this stage
Milne-Thomson expressed W{z) in terms of Cauchy integrals, using equations
(6) and (9). In the general case this is not valid, since the Plemej formulae,
as used by him, would only apply if the region S+ were extended to infinity,
and the region S~ to the origin. There is no reason to believe that W(z)
can be continued in a simple way outside the region a2jb ^ \z\ 5S b%\a, and
the Cauchy integral approach breaks down.
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The correct approach is to expand W(z) in a Laurent series in each of the
three regions by

W(z) = 2Atzn, z in S+,

in

= J.A~z\ z in S~
—oo

From (6) and (9), respectively, we find that

(12) An-A~ = gja\

and

(13) An - At = fjb*.

where gn, /„, are the Fourier coefficients given by

(14) / i f f{6)^dd C/„ = i - f f{6)e-^dd; gn = ~ C g(B)er">»de.
Zn J 0 ^7r J 0

Also, using (14) and equating to zero the coefficient of zn in equation (10)

(15) (bi-ai)(l-n)An + b^-^Atn~a^l-niA- = 0.

Using the relations (12) and (13) for A+, A~ in terms of An, we deduce that

(16) (b2-a2)(l-n)An + {b^1~^-a^1-")}A_n = 62-n/-n-«
2"ng-n-

A similar equation can be found by equating to zero the coefficient of
z~n in (10), and this can also be obtained by taking the complex conjugate
of (16) and replacing n by — n, when

(17) {&2<i+»>_a2u+»)^n+ (62_fl2)(i + w ) ^ _ n = bi+nfn-a
i+ngn.

Eliminating A_n from (16) and (17) we find, formally,

AW(z) = (&»-««)(l+n) (&«- / - . -a 2 "" ! - . )
1 ^ -(&2-2«-a2-2n)(&2+"/n-«2+ngn).
where

(19) J = (62 —a2)2(l-w
2) —{62<1-">-a2<1-"»}{&2(1+n»-«2(1+B'}.

The function 1̂ (2) can now be determined by substituting the expression
(18) for W(z) in either of the equations (4) or (8). Equation (18) holds for
all n other than n = 0, ± 1, when A = 0. Here we have to use the conditions
of static equilibrium on the annulus, obtained by assuming (i) zero resultant
force, and (ii) zero moment, which respectively imply
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(i) bf-i-ag-i = 0; and (ii) Im{&V«,-«2go} = 0.

Equation (16) is now satisfied identically in the case n = 1, and, for n = 0,

(20)

If W(z) = iC, where C is a real constant, then w(z) = 0, all the stresses are
zero, and the displacements are merely those of a rigid body. Hence Im (̂ 40)
is arbitrary. Also, the condition for single valued displacements is that
Jo" W(z)dz = 0, so that A_x vanishes. The coefficient Ax can now be obtained
by making n = 1 in (17), yielding

(21) (6*-««M1 = 6»/1-«»g1.

Equations (18), (20), (21) together with (4) give the solution to the problem,
and are equivalent to Muskhelishvili's results, the only advantage being
that it is not necessary to expand w(z) in a Laurent series, since it is given
in terms of W(z) by either (4) or (8). In practical cases the number of un-
knowns is halved, and we only need to compute the An.

If we assume g(0) = 0, we can adopt an even simpler procedure, since,
from (12), An = A~. We now only need to consider equations (3), (4), (5),
in which equation (3) gives the unique continuation of W(z) from S into S~,
W(z) being continuous across the circle z = r. Putting z = a in (5), and
using a = b2ja, we find that

(22) W(a) - £ W(a*lb*o) + ( l - £ ) (jF(&«/*) - ^ W'(b*l<r)} = f(<y/b).

Expanding W(z) in a Laurent series, the coefficients can be evaluated by
comparing coefficients of an in equation (22), with results similar to the
ones already derived, but with gn = 0. This latter approach has been used
by Davies [3] for certain doubly connected regions with reinforced bound-
aries, and also by Buchwald and Davies [4], for a simple numerical solution
of the case of a circular hole in an elliptic plate, and also for an anisotropic
annular plate.

2. The infinite strip

Boundary value problems of the infinite strip have been solved by
Filon [5] Hopkins [6], inter alia, using the Airy stress function and Fourier
integrals. At best, this approach is algebraically involved, and Tiffen [7, 8]
has used a complex variable approach, but his method is unduly comphcated.
The Milne-Thomson technique gives a very simple theory.

Let the strip occupy the region S, — 1 < y < 1, and the regions S+, S~
are 1 < y < 3, and — 3 < y < — 1, respectively. The stresses ryy, rxv
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are given in terms of complex potentials by, (cf. Milne-Thomson, loc.cit.

p. 87),

(23) TW-*TW = W(z) + W(z)+zW'(z)+w(z).

Assume that we are given that

=g(x), y=-l,

and we need to find W(z), w(z) which satisfy (24) on the boundaries.
Define the analytic continuation of W(z) in S+ by

(25) W{z) =-zW'(z-2i)-W{z-2i)-w(z-2i), z in S+,

so that

(26) w(z) = -W(z)-(z-2i)W'(z)-W(z-2i), z in S,

whence, from (23) and (26),

(27) W(x + i)- W+(x + i) = /(*).

where W+(x + i) is the limit of W(z) as z tends to x + i, in S+. Similarly,
define

(28) W(z) =zW'{z + 2i) — W(z + 2i)—w(z + 2i), z in S~,

whence

(29) w{z) = -W{z)-(z + 2i)W'(z)-W{z + 2i), z in S,

and, from (23) and (26)

(30) W(x-i) - W_{x -i) = g{x).

The condition that the definitions (26) and (29) are compatible is that

(31) W{z+ 2») -W(z- 2i) + UW (z) = 0.

Equations (27), (30) and (31) are sufficient to determine W(z) and can be
solved by the Fourier Integral method used by Titchmarsh [9] for differen-
tial-difference equations. Assume that W(z) can be expressed as the Fourier
integral

(32) W(z) = r 4»{t)er*'*dt, z in S,
J — oo

with <j>+(t), </>_(*) being the Fourier transforms of W(z) with z in S+ and S~,
respectively. Taking the transform of equations (27) and (30),
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(33) and

where 2nF(t) = i-oof(x)eixtdx; and 2nG(t) = l-cog{x)eixtdx. Also, taking
the transform of (31), we find, after some reduction,

(34) c«fc_(_*)_«-«$+(_*) + 4#(0 = 0.
Combining those equations,

(35) sinh2^(— t) + 2t<f>(t) = — B(— t),

where H{t) = %{e*F{t) — e-*G(t)}. Taking the complex conjugate of (35),
and replacing t by —t,

(36) 2t$(-t) + sinh 2#(tf) = H{t).

Eh'minating <j>(—t), we find that <f>(t) is given by

(37) (sinhi2t — 4t2)4,(t) = sinh 22.ff(<) + 2tH(— t).

Equations (37), (32) and either of (26) or (29) give the solution of the
problem.
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