ON $\boldsymbol{B}(5, k)$ GROUPS

YUANLIN LI ${ }^{\boxtimes}$ and XIAOYING PAN

(Received 30 November 2010)

Abstract

A group G is said to be a $B(n, k)$ group if for any n-element subset A of $G,\left|A^{2}\right| \leq k$. In this paper, characterizations of $B(5,16)$ groups and $B(5,17)$ groups are given.

2010 Mathematics subject classification: primary 20D60; secondary 20E34.
Keywords and phrases: small squaring property, $B(n, k)$ groups.

1. Introduction

A group G is said to have the small squaring property on n-element subsets if for any n-element subset A of $G,\left|A^{2}\right|<n^{2}$, where $A^{2}=\{a b \mid a, b \in A\}$. Furthermore, G is called a B_{n}-group if $\left|A^{2}\right| \leq \frac{1}{2} n(n+1)$ for all n-element subsets A. Recently, Eddy and Parmenter generalized these notions to a new notion of $B(n, k)$ groups [3]. A group G is called a $B(n, k)$ group if $|A|=n$ implies $\left|A^{2}\right| \leq k$ with $k \leq n^{2}-1$. Therefore a B_{n}-group is a $B\left(n, \frac{1}{2} n(n+1)\right)$ group, and a group with small squaring property on n-element subsets is a $B\left(n, n^{2}-1\right)$ group.

Determining all $B(n, k)$ groups is an interesting problem. For any given k, G is obviously a $B(n, k)$ group when $|G| \leq k$, and such G is referred to as trivial. It is also easy to see that any abelian group G is a $B(n, k)$ group when $k \geq \frac{1}{2} n(n+1)$. So what we are interested in is to determine all nonabelian nontrivial $B(n, k)$ groups.

The $B(n, k)$ groups for $n=2$ and $n=3$ have been completely characterized in the literature $[1,3,4,9,10]$. For $n=4$, all $B(4,10)$ groups were characterized by Parmenter in [10], and $B(4, k)$ groups where $k=11,12$, and 13 were recently characterized by Li and Tan in [7, 8]. The only known result for $B(5, k)$ groups with $k \geq 15$ is the characterization of $B(5,15)$ groups given by Li and Tan in [6], and it was shown that G is a nonabelian nontrivial $B(5,15)$ group if and only if $G \cong Q_{8} \times C_{2}$. In this paper, we continue the investigation on $B(5, k)$ groups for $k=16$ and 17 . We provide the complete characterizations of $B(5,17)$ non-2-groups and 2-groups in Sections 2 and 3, respectively. In Section 4 we obtain a complete characterization

[^0]of $B(5,16)$ groups, and we also give a short proof for the characterization of $B(5,15)$ groups.

Throughout the paper, all nonabelian groups are assumed to be finite, and our notation for groups is standard and follows that in [11]. In particular, we denote the quaternion group of order eight and the dihedral group of order $2 n$ by Q_{8} and $D_{2 n}$, respectively:

$$
\begin{gathered}
Q_{8}=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, a^{b}=a^{-1}\right\rangle, \\
D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=1, a^{b}=a^{-1}\right\rangle .
\end{gathered}
$$

2. The characterization of $B(5,17)$ non-2-groups

In this section, we investigate $B(5,17)$ non-2-groups. We first work on a necessary condition for a non-2-group G to be a $B(5,17)$ group. Afterwards, we will give a complete characterization of $B(5,17)$ non-2-groups. Throughout the section, a group G is assumed to be a non-2-group.
2.1. A necessary condition for $\boldsymbol{B}(\mathbf{5}, \mathbf{1 7})$ non-2-groups. We first characterize a Sylow subgroup of odd order of a $B(5,17)$ group.
Lemma 2.1. Let P be a Sylow subgroup of odd order of a $B(5,17)$ group G. Then P is abelian.
Proof. Suppose on the contrary that P is not abelian. Then P has two maximal subgroups M and N containing $Z(P)$. Let $L=M \cap N$, and hence $Z(P) \subseteq L$. It was proved in [1] that there exist $a \in M-L$ and $b \in N-L$ such that $a b \neq b a$.

Let $A=\left\{a, b, a b, b^{2}, a b^{2}\right\}$. Then A^{2} contains a subset

$$
\begin{gathered}
B=\left\{a^{2}, a^{2} b, a b^{2}, a^{2} b^{2}, b a, b^{2}, b a b, b^{3}, b a b^{2}, a b a, a b a b, a b^{3}, a b a b^{2},\right. \\
\left.b^{2} a, b^{2} a b, b^{4}, b^{2} a b^{2}, a b^{2} a, a b^{2} a b, a b^{4}, a b^{2} a b^{2}\right\} .
\end{gathered}
$$

Since M and N are maximal subgroups of $P, M \triangleleft P$ and $N \triangleleft P$. Since $N, a N$ and $a^{2} N$ are disjoint, we may write B as a disjoint union of subsets, that is,

$$
B=(B \cap N) \cup(B \cap a N) \cup\left(B \cap a^{2} N\right)
$$

where

$$
\begin{aligned}
B \cap N & =\left\{b^{2}, b^{3}, b^{4}\right\}, \\
B \cap a N & =\left\{a b^{2}, a b^{3}, b^{2} a, b^{2} a b, b^{2} a b^{2}, a b^{4}, b a, b a b, b a b^{2}\right\} \quad \text { and } \\
B \cap a^{2} N & =\left\{a^{2}, a^{2} b, a^{2} b^{2}, a b a, a b a b, a b a b^{2}, a b^{2} a, a b^{2} a b, a b^{2} a b^{2}\right\} .
\end{aligned}
$$

To show that the 21 elements in B are distinct, we only need to verify that the elements in each subset above are distinct.

In $B \cap N$, since the order of b is odd, the three elements are distinct.
In $B \cap a N,\left\{a b^{2}, b^{2} a, b a b\right\} \subseteq b^{2} M,\left\{a b^{3}, b^{2} a b, b a b^{2}\right\} \subseteq b^{3} M$, and $\left\{b^{2} a b^{2}, a b^{4}, b a\right\} \subseteq$ $b M \cup b^{4} M$. Since the subsets $b^{2} M, b^{3} M, b M \cup b^{4} M$ are disjoint, we only need to show that the elements in each subset are distinct. Since the order of b is odd, $a b^{2} \neq b^{2} a$. It is not hard to show that those three elements in each subset are distinct and thus the nine elements in $B \cap a N$ are distinct.

In $B \cap a^{2} N,\left\{a^{2}, a b a b^{2}, a b^{2} a b\right\} \subseteq M \cup b^{3} M,\left\{a^{2} b, a b a, a b^{2} a b^{2}\right\} \subseteq b M \cup b^{4} M$, and $\left\{a^{2} b^{2}, a b a b, a b^{2} a\right\} \subseteq b^{2} M$. Similar to above, we can show that the nine elements in $B \cap a^{2} N$ are distinct.

Therefore $|B|=3+9+9=21$, and thus G is not a $B(5,17)$ group, giving a contradiction. So P is abelian.

Lemma 2.2. Let G be a $B(5,17)$ group of odd order. Then G is abelian.

Proof. Suppose on the contrary that there exists some finite nonabelian $B(5,17)$ group of odd order and let G be such a group with minimal order. It follows from Lemma 2.1 that G is not nilpotent. Since all proper subgroups of G are abelian, G is a minimal nonnilpotent group. It follows from [11, Theorem 9.1.9] that $|G|=p^{u} q^{v}$, where p and q are distinct primes. Moreover, G has a normal Sylow q-subgroup Q and a nonnormal cyclic Sylow p-subgroup P, say $P=\langle a\rangle$. Since P is not a normal subgroup of G, there exists $b \in Q$ such that $a^{b} \notin\langle a\rangle$; in particular, $a b \neq b a$. We next divide the proof into two cases according to whether $|P|>3$ or $|P|=3$.
Case 1: $|P|>3$. Let $A=\left\{b, a, b a^{2}, a^{2}, b a\right\}$. Note that A^{2} contains a subset

$$
\begin{gathered}
B=\left\{b^{2}, b a, b^{2} a^{2}, b a^{2}, a b, a^{2}, a b a^{2}, a^{3}, b a^{2} b, b a^{3}, b a^{2} b a^{2},\right. \\
\left.b a^{4}, b a^{2} b a, a^{2} b a^{2}, a^{4}, a^{2} b a, b a b, b a b a^{2}, b a b a\right\} .
\end{gathered}
$$

Recall that $Q \triangleleft G$. Then we get $B \cap Q=\left\{\underline{b^{2}}\right\}, B \cap a Q=\{\underline{b a}, \underline{a b}, \underline{b a b}\}, B \cap a^{2} Q=$ $\left\{b^{2} a^{2}, b a^{2}, \underline{a^{2}}, \underline{b a^{2} b}, \underline{b a b a}\right\}, B \cap a^{3} Q=\left\{a b a^{2}, \underline{a^{3}}, \underline{b a^{3}}, \underline{a^{2} b a}, \overline{b a^{2}} b \overline{b a}, b \overline{a b a^{2}}\right\}$, and $B \cap$ $a^{4} Q=\left\{\underline{b a^{2}} \overline{b a^{2}}, \underline{b a^{4}}, \underline{a^{2} b a^{2}}, \underline{a^{4}}\right\}$. Since subsets $B \cap Q, B \cap a Q, B \cap a^{2} Q, B \cap a^{3} Q$ and $B \cap a^{4} Q$ are disjoint, we just need to find distinct elements in each subset. Note that $a^{2} b \neq b a^{2}$. And by this condition, we also have $a \neq b a b$ and $a^{2} \neq b a^{2} b$ (*). (If $a=b a b$ (that is, $b^{a}=b^{-1}$), then $b^{a^{2}}=\left(b^{-1}\right)^{a}=b$, which is a contradiction. Similarly, if $a^{2}=b a^{2} b$ (that is, $b^{a^{2}}=b^{-1}$), then $b^{a^{4}}=\left(b^{-1}\right)^{a^{2}}=b$, which means that $b a=a b$, and this is a contradiction.) By (*), it is easy to know that the 17 underlined elements above are distinct. Since G is a $B(5,17)$ group, $b a^{2} b a$ in $B \cap a^{3} Q$ must be a redundant element. The only possibility is $b a^{2} b a=a b a^{2}$. A similar argument shows that $b a b a^{2}=a^{2} b a$. From these two equations, we get $b a^{2} b=a b a$ and $b a b a=a^{2} b$. Then $a b a=b a^{2} b=b^{2} a b a$, from which we get $b^{2}=1$, giving a contradiction.
Case 2: $|P|=3$. We first assume that $b a=a b^{2}$. Recall that $o(a)=3, b=a^{-3} b a^{3}=b^{8}$, and thus $o(b)=7$. Let $A=\left\{a, b^{2}, a b, a^{2} b^{3}, b^{3}\right\}$. Then

$$
\begin{aligned}
A^{2}= & \left\{a^{2}, a b^{2}, a^{2} b, b^{3}, a b^{3}, a b^{4}, b^{4}, a b^{5}, a^{2} b^{4}, b^{5}, a^{2} b^{2}, a^{2} b^{3},\right. \\
& \left.1, b^{6}, a^{2} b^{5}, a b, a^{2} b^{6}, a b^{6}, a\right\} .
\end{aligned}
$$

Since $A^{2} \cap Q, A^{2} \cap a Q$, and $A^{2} \cap a^{2} Q$ are disjoint, and the elements in each subset are distinct, we know that $\left|A^{2}\right|=19$, which is a contradiction. Thus, $b a \neq a b^{2}$. By replacing a with a^{2} in the above argument, we can show that $b a^{2} \neq a^{2} b^{2}$, that is, $a b \neq b^{2} a$. We can also show that $a^{-1} b a \neq b^{-2}$ (otherwise, we have $o(b)=9$ which
is not co-prime to $o(a)$, giving a contradiction). If $a^{-1} b a=b^{3}$, then $o(b)=13$. Let $A=\left\{a, b^{2}, a b, a^{2} b^{3}, b^{3}\right\}$. Then

$$
\begin{gathered}
A^{2}=\left\{b^{3}, b^{4}, b^{5}, b^{6}, b^{9}, b^{10}, b^{12}, a b^{2}, a b^{3}, a b^{4}, a b^{6}, a b^{7}, a b^{9}, a b^{10}\right. \\
\\
\left.a^{2}, a^{2} b, a^{2} b^{3}, a^{2} b^{4}, a^{2} b^{5}, a^{2} b^{6}, a^{2} b^{8}\right\}
\end{gathered}
$$

So $\left|A^{2}\right|=21$, giving a contradiction. Similarly, it is not hard to prove that $a^{-1} b a \neq b^{k}$, where $k=0, \pm 1, \pm 2, \pm 3, \pm 4(* *)$. Let $A=\left\{a, b, a b, a b^{2}, a b^{3}\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
& B=\left\{b^{2}, a b, b a, b a b, b a b^{2}, b a b^{3}, a b^{2}, a b^{3}, a b^{4}, a^{2}, a b a b, a^{2} b, a^{2} b^{2}, a^{2} b^{3},\right. \\
&\left.\quad a b a, a b a b^{2}, a b a b^{3}, a b^{2} a b\right\} .
\end{aligned}
$$

Using the condition (**), it is not hard to show that the elements in B are distinct, and thus $|B|=18$, which gives a contradiction.

In both cases above, we have found contradictions. Therefore any finite $B(5,17)$ group G of odd order is abelian.

Lemma 2.3. Let G be a nontrivial $B(5,17)$ non-2-group with a nontrivial Sylow 2subgroup P. Then G has a normal subgroup T of odd order such that $G=T P$.

Proof. Assume to the contrary that G is a $B(5,17)$ group which does not have a normal subgroup of odd order with 2-power index. Let H be a subgroup of G with minimal order such that it does not have a normal subgroup of odd order with 2-power index. Then every proper subgroup of H has a normal subgroup of odd order with 2-power index. It follows from [5, Ch. IV, Theorem 5.4] that a Sylow 2-subgroup P_{1} of H is normal in H and its exponent is at most 4. Moreover, $\left|H / P_{1}\right|=q^{v}$ for some odd prime q and a Sylow q-subgroup T of H is cyclic, say $T=\langle a\rangle$. Since T is not normal in H, there exists an element $b \in P_{1}$ such that $a^{b} \notin\langle a\rangle$, in particular, $a b \neq b a$.

We first assume that $|H| \leq 17$. By checking all the groups of order up to 17 which satisfy the above-mentioned properties, we know that $H \cong A_{4}$. Let $a \in T$ and $b \in P_{1}$ be the elements of H corresponding to the elements (123) and (12)(34) of A_{4}, respectively. Since $|G| \geq 18$, there exists another element $c \in G-H$. Since $a b \neq b a$, by replacing c with $a c, b c$, or $a b c$ if necessary, we can assume that $b c \neq c b, a c \neq c a$. Let $A=\left\{a, b, a b, a^{2} b, c\right\}$. Then A^{2} has a subset

$$
\begin{aligned}
B= & (B \cap H) \cup(B \cap(G-H)) \\
= & \left\{\underline{a^{2}}, \underline{a b}, \underline{a^{2} b}, \underline{b}, \underline{b a}, \underline{1}, \underline{b a b}, \underline{a b a}, \underline{a}, \underline{a b a b}, \underline{a b a^{2} b}, \underline{a^{2} b a b}\right\} \\
& \cup\left\{\underline{a c}, \underline{b c}, \underline{a b c}, \underline{a^{2} b c}, \underline{c b}, \underline{c a}, c a b\right\} .
\end{aligned}
$$

A straightforward computation shows that the 17 underlined elements in B are distinct. Next, we consider elements $c a$ and $c a b$. It is not hard to see that $c a$ is different from $a c, b c, c b$ and $c a b ; c a b$ is different from $b c, c a$ and $c b$. Since G is a $B(5,17)$ group, we may assume that $c a$ is a redundant element. If $c a=a b c$, we note that $c a b$ can only be equal to $a c$ or $a^{2} b c$. If $c a b=a c$, then $c a b=a b c b=a c$, which leads to $b c b=c$. Since b corresponds to (12)(34), that is, $o(b)=2$, we get $c b=b c$ from the above
equation, which is a contradiction. If $c a b=a^{2} b c$, then $a b c b=a^{2} b c$, which leads to $b c b=a b c$, that is, $c b c^{-1}=b^{-1} a b$. Since $o\left(c b c^{-1}\right)=2$, while $o\left(b^{-1} a b\right)=3$, this gives a contradiction. We have shown that both cases are impossible. Thus $c a \neq a b c$. If $c a=a^{2} b c$, we note that $c a b$ can only be equal to $a c$ or $a b c$. Similarly, we can show that both cases are impossible. Therefore we conclude that $\left|A^{2}\right| \geq 18$, and thus G is not a $B(5,17)$ group, giving a contradiction.

Next, assume that $|H| \geq 18$. Without loss of generality, we may assume that $H=G$. Let b be an element of maximal order in P such that $a b \neq b a$. As before, we also know that $a^{2} b \neq b a^{2}$. We divide the proof into two cases according to the order of a.
Case 1: $o(a)>3$. Let $A=\left\{a, b, a b, a^{-1} b, a^{2}\right\}$. Then

$$
\begin{aligned}
A^{2} \cap P & \supseteq\left\{\underline{b}, \underline{b^{2}}, \underline{a^{-1} b a}, \underline{a^{-1} b a b}, a b a^{-1} b\right\}, \\
A^{2} \cap a P & \supseteq\left\{\underline{a b}, \underline{b a}, \underline{b a b}, \underline{a b^{2}}\right\}, \\
A^{2} \cap a^{2} P & \supseteq\left\{\underline{a^{2}}, \underline{a^{2} b}, \underline{a b a}, \underline{b a^{2}}\right\}, \\
A^{2} \cap\left(a^{3} P \cup a^{-2} P\right) & \supseteq\left\{\underline{a^{-1} b a^{-1} b}, \underline{a^{3}}, \underline{a^{3} b}, a b a^{2}\right\}, \\
A^{2} \cap\left(a^{-1} P \cup a^{4} P\right) & \supseteq\left\{\underline{b a^{-1} b}, \underline{a^{4}}\right\} .
\end{aligned}
$$

Since $P \triangleleft G$ and subsets $P, a P, a^{2} P, a^{3} P \cup a^{-2} P$ and $a^{-1} P \cup a^{4} P$ are disjoint, it is not hard to show that the 17 underlined elements above are distinct. Next we show that there must be another distinct element in A^{2}. If $o(a)>5$, it is easy to see that $a b a^{2}$ is the 18 th distinct element. If $o(a)=5$, we consider $a b a^{-1} b$ in $A^{2} \cap P$. If $a b a^{-1} b$ is not a redundant element, it is the 18 th distinct element. We may assume $a b a^{-1} b$ is a redundant element. Note that the only possibility is $a b a^{-1} b=a^{-1} b a$. Then $a^{-1} b a^{-1} b=a^{-2} a b a^{-1} b=a^{-3} b a=a^{2} b a$, which is different from $a b a^{2}$. So $a b a^{2}$ is the 18 th distinct element under this circumstance. Therefore $\left|A^{2}\right| \geq 18$, and thus G is not a $B(5,17)$ group, giving a contradiction.
Case 2: $o(a)=3$. Suppose first that $o(b)=4$. Let $A=\left\{a, b, a b, a b^{-1}, a^{2}\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
B= & (B \cap P) \cup(B \cap a P) \cup\left(B \cap a^{2} P\right) \\
= & \left\{\underline{1}, \underline{b^{-1}}, \underline{b}, \underline{b^{2}}, \underline{a b a^{2}}, \underline{\left.a b^{-1} a^{2}\right\} \cup\left\{\underline{a b}, \underline{b a}, \underline{b a b}, \underline{b a b^{-1}}, \underline{a b^{2}}, \underline{a}\right\}} \begin{array}{rl}
& \cup\left\{\underline{a^{2}}, \underline{a^{2} b}, \underline{a^{2} b^{-1}}, b a^{2}, \underline{a b a}, \underline{a b a b}, \underline{a b a b^{-1}}, \underline{a b^{-1} a}, a b^{-1} a b, a b^{-1} a b^{-1}\right\} .
\end{array}\right.
\end{aligned}
$$

We first show that $a \neq b a b$, that is, $a^{-1} b a \neq b^{-1}$. Otherwise, $b^{a^{2}}=b$, and then $a b=b a$, giving a contradiction. Recall that $b a \neq a b^{2}$. Since $P, a P$ and $a^{2} P$ are disjoint, it is not hard to show that the 19 underlined elements in B are distinct. Thus $|B| \geq 19$, giving a contradiction.

Therefore $o(b)=2$, and then P is elementary abelian. Since $|G| \geq 18$ and $|T|=3$, $|P| \geq 8$. Then we can choose an element $c \in P$ such that $c \notin\left\langle b^{a}, b\right\rangle \cup\left\langle b^{a^{2}}, b\right\rangle=K$. Note that $b c \notin K$. Replacing c by $b c$ if necessary, we can assume that $a c \neq c a$. Let $A=\left\{a, b, a b, a c, b c a^{2}\right\}$. Then A^{2} contains a subset

$$
B=\left\{a^{2}, a b, a^{2} b, a^{2} c, b a, 1, b a b, b a c, a b a, a, a c b, a b a b, a b a c, a b a^{2}, b c, b, c\right\} .
$$

As before, we can show that $|B|=17$. We next show that at least one of $a b c a^{2}$ and $a c a^{2}$ in A^{2} is a new distinct element. Otherwise, if both are in B, we note that both must be in $\{b c, c, b\}$. If $a c a^{2} \notin\{b c, c, b\}$, then $a c a^{2}$ is the 18 th distinct element. So we assume that $a c a^{2} \in\{b, c, b c\}$. If $a c a^{2}=b$, then $c=a^{-1} b a$, which contradicts $c \notin K$. If $a c a^{2}=c$, then $a c=c a$, which is a contradiction. If $a c a^{2}=b c$, since $a b c a^{2} \notin\left\{a c a^{2}, 1\right\}$, $a b c a^{2}$ can only be equal to b or c. If $a b c a^{2}=c$, then $c=a b a^{-1} a c a^{2}=a b a^{-1} b c$, and we get $a b=b a$, which is a contradiction. If $a b c a^{2}=b$, then $c=b a^{-1} b a$, which contradicts $c \notin K$.

Therefore $\left|A^{2}\right| \geq 18$, and thus G is not a $B(5,17)$ group, giving a contradiction.
In what follows, we assume that G is a nontrivial nonabelian $B(5,17)$ non-2-group having a Sylow 2-subgroup P and the normal 2-complement T.

Lemma 2.4. T is abelian and not centralized by P.

Proof. It follows from Lemma 2.2 that T is abelian. Suppose that P centralizes T. Then $G=P \times T$ and since G is not abelian, P is not abelian. It is easy to see that P has two distinct maximal normal subgroups M and N containing $Z(P)$. Similar to the proof in Lemma 2.1, we have two elements $a \in M-N$ and $b \in N-M$ such that $a b \neq b a$. Let $A=\left\{a, b, b c, a b c, a b c^{2}\right\}$ where $c \in T-\{1\}$. If $a^{2} \neq b^{2}, A^{2}$ contains a subset

$$
\begin{aligned}
B= & (B \cap(N \times T)) \cup(B \cap a(N \times T)) \\
= & \left\{a^{2}, a^{2} b c, a^{2} b c^{2}, b^{2}, a b a c, a b a b c^{2}, a b a c^{2}, a b a b c^{4}\right\} \\
& \cup\left\{a b, a b c, b a, b a b c, b a b c^{2}, b a c, b a b c^{3}, a b^{2} c, a b^{2} c^{2}, a b^{2} c^{3}\right\} .
\end{aligned}
$$

Since subsets $N \times T$ and $a(N \times T)$ are disjoint, it is not hard to show that the 18 elements in B are distinct. If $a^{2}=b^{2}$, then

$$
\begin{aligned}
A^{2}= & \left(A^{2} \cap(N \times T)\right) \cup\left(A^{2} \cap a(N \times T)\right) \\
= & \left\{\underline{a^{2}}, \underline{a^{2} b c}, \underline{a^{2} b c^{2}}, \underline{b^{2} c}, \underline{b^{2} c^{2}}, \underline{a b a c}, a b a b c^{2}, a b a b c^{3}, \underline{a b a c^{2}}, a b a b c^{4}\right\} \\
& \cup\left\{\underline{a b}, \underline{a b c}, \underline{b a}, \underline{b a b c}, \underline{b a b c^{2}}, \underline{b a c}, \underline{b a b c^{3}}, \underline{a b^{2} c}, \underline{a b^{2} c^{2}}, \underline{a b^{2} c^{3}}\right\} .
\end{aligned}
$$

As before, it is easy to show the 17 underlined elements are distinct. Since G is a $B(5,17)$ group, we know that $a b a b c^{2}, a b a b c^{3}$ and $a b a b c^{4}$ must be redundant elements. Therefore we get $a=b a b, b=a b a$ and $o(c)=3$, so $o(a)=o(b)=4$. Let $A_{1}=\left\{a, a b, b c, a b c, b a c^{2}\right\}$. Then
$A_{1}^{2}=\left\{a^{2}, a^{2} b, b, a^{3}, 1, a, a b c, a^{2} b c, a^{2} c, a c, b a c, b c, a^{3} c, b c^{2}, a^{3} c^{2}, a^{2} c^{2}, a c^{2}, b^{3} c^{2}, c^{2}\right\}$.
It is easy to show that the 19 elements in A_{1}^{2} are distinct. Thus G is not a $B(5,17)$ group, giving a contradiction.

Lemma 2.5. P has a subgroup Q of index 2 which centralizes T and every element of $P-Q$ inverts T.

Proof. We first show that for each $b \in P$ either b centralizes T or b inverts T. Assume that $b \in P$ does not centralize T. So $a b \neq b a$ for some $a \in T$. First we show
that $b^{2} a=a b^{2}$. Assume to the contrary that $b^{2} a \neq a b^{2}$. Then $o(b) \geq 4$. Let $A=\{a, a b$, $\left.a b^{2}, a b^{3}, 1\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
& B=\left\{a^{2}, a b a b^{3}, a b^{2} a b^{2}, a b^{3} a b, 1, a^{2} b, a b a, a b^{2} a b^{3}, a b^{3} a b^{2},\right. \\
&\left.a^{2} b^{2}, a b a b, a b^{2} a, a b^{3} a b^{3}, a^{2} b^{3}, a b a b^{2}, a b^{2} a b, a b^{3} a, a b^{3}\right\} .
\end{aligned}
$$

Since $T \triangleleft G, a b \neq b a$ and $b^{2} a \neq a b^{2}$, as before, it is not difficult to show that the 18 elements in B are distinct, and thus G is not a $B(5,17)$ group, giving a contradiction. So $b^{2} a=a b^{2}$.

We now prove that $b^{-1} a b=a^{-1}$. Assume to the contrary that $b^{-1} a b \neq a^{-1}$. We first assume that $o(b) \geq 4$. Let $A=\left\{a, a b, a^{2} b, a b^{2}, b^{2}\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
& B=\left\{a^{2}, a b^{4}, b^{4}, a^{2} b, a^{3} b, a b a, a^{2} b a, a^{2} b^{2}, a b^{2}, a b a b, a b a^{2} b, a^{2} b a b,\right. \\
&\left.a^{2} b a^{2} b, a b a b^{2}, a^{2} b^{3}, a b^{3}, a^{3} b^{3}, a^{2} b a b^{2}\right\} .
\end{aligned}
$$

We first show that $b a \neq a^{2} b$. Otherwise $b a b^{-1}=a^{2}$. Since $b^{2} a=a b^{2}, a=b^{2} a b^{-2}=a^{4}$. Therefore $o(a)=3$, and then $b a b^{-1}=a^{-1}$, contradicting the assumption. Similarly, we have $a b \neq b a^{2}$ and $b^{-1} a b \neq a^{-2}$. In view of these facts, it is not hard to show that the 18 elements in B are distinct. Thus $\left|A^{2}\right| \geq 18$, and then G is not a $B(5,17)$ group, giving a contradiction. Next assume that $o(b)=2$. Let $A=\left\{a, a b, a^{2} b, b, a^{-1}\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
& B=\left\{1, a, a^{2}, b a b, a b a b, a^{2} b a b, b a^{2} b, a b a^{2} b, a^{2} b a^{2} b,\right. \\
&\left.a b, a^{2} b, a^{3} b, a b a^{-1}, a b a, a^{2} b a^{-1}, a^{2} b a, b a^{-1}, b a\right\}
\end{aligned}
$$

As in the proof of Lemma 2.2, we can show that $b^{-1} a b=b a b \neq a^{k}$, where $k=$ $0, \pm 1, \pm 2, \pm 3$, and thus the elements in B are distinct. So $\left|A^{2}\right| \geq 18$, which means that G is not a $B(5,17)$ group, giving a contradiction. Thus we have $b^{-1} a b=a^{-1}$.

Next we show that b inverts T. Note that we just showed that for each $y \in T$ either $y^{b}=y$ or $y^{b}=y^{-1}$. Suppose that there exists $x \in T-\{1\}$ such that $x^{b}=x$. Since $x a \in T$, we have either $(x a)^{b}=x a$ or $(x a)^{b}=(x a)^{-1}$. The former leads to $x a^{-1}=(x a)^{b}=x a$, and then $a^{2}=1$, giving a contradiction. The latter gives that $x a^{-1}=(x a)^{b}=(x a)^{-1}=$ $a^{-1} x^{-1}=x^{-1} a^{-1}$, and then $x^{2}=1$, again giving a contradiction. Therefore b inverts T.

Set $Q=\left\{g \in P \mid t^{g}=t\right.$ for all $\left.t \in T\right\}$. Clearly Q is a subgroup of P which centralizes T and every element b of $P-Q$ does not centralize T. So by what we just proved, b inverts T. It remains to show that $[P: Q]=2$. It follows from Lemma 2.4 that $P \neq Q$, so there exists $b \in P-Q$. Since for every element $b^{\prime} \in P-Q, b^{\prime}$ inverts T, we have $b^{\prime} b \in Q$. Thus $b^{\prime} \in Q b^{-1}$, proving $[P: Q]=2$.

In the following lemma, Q will denote a subgroup of P of the type determined in Lemma 2.5.
Lemma 2.6. P is abelian, and the exponent of Q is at most 2.
Proof. Suppose on the contrary that P is not abelian. Then there exist elements $a \in Q$ and $b \in P-Q$ such that $a b \neq b a$. Otherwise, if each element $b \in P-Q$ centralizes Q, then b centralizes $\langle b, Q\rangle$. Since $[P: Q]=2$ and $b \notin Q,\langle b, Q\rangle=P$, so $b \in Z(P)$.

Thus $P-Q \subseteq Z(P)$. Since $P=\langle P-Q\rangle \subseteq Z(P), P$ is abelian, giving a contradiction. If $a^{2} \neq 1$, let $A=\{b, b a, t, a, a t\}$ where $t \in T-\{1\}$. Then A^{2} contains a subset

$$
\begin{aligned}
B= & (B \cap(Q \times T)) \cup(B \cap b(Q \times T)) \\
= & \left\{\underline{b^{2}}, \underline{b^{2} a}, \underline{b a b}, b a b a, \underline{t}^{2}, \underline{t a}, \underline{t a t}, \underline{a^{2} t}, \underline{a^{2} t^{2}}\right\} \\
& \cup\left\{\underline{b}, \underline{b a}, \underline{b a t}, \underline{b a^{2}}, \underline{b a^{2} t}, \underline{t \underline{t}}, \underline{t b a}, \underline{a b}, \underline{a b a}, \underline{a t b}\right\} .
\end{aligned}
$$

It is easy to show the 18 underlined elements in B are distinct, giving a contradiction. Thus $a^{2}=1$. If $b^{2}=1$, since $a b \neq b a$, we have $(a b)^{2} \neq 1$. Replacing b by $a b$ if necessary, we may assume that $b^{2} \neq 1$. Let $A_{1}=\{b, b a, t, a, b t\}$. Then

$$
\begin{aligned}
A_{1}^{2}= & \left(A_{1}^{2} \cap(Q \times T)\right) \cup\left(A_{1}^{2} \cap b(Q \times T)\right) \\
= & \left\{\underline{b^{2}}, \underline{b^{2} a}, \underline{b a b}, b a b a, \underline{1}, \underline{b^{2} t}, \underline{b a b t}, a t, \underline{t^{2}}, \underline{b^{2} t^{-1}}, \underline{b^{2} a t^{-1}}\right\} \\
& \cup\left\{\underline{b a}, \underline{b a^{2}}, b, \underline{a b}, \underline{a b a}, \underline{b t}, \underline{b a t}, \underline{a b t}, \underline{b t^{-1}}, \underline{b a t^{-1}}, b t^{2}\right\} .
\end{aligned}
$$

It is not hard to show that the 18 underlined elements here are distinct, so that $\left|A_{1}^{2}\right| \geq 18$, giving a contradiction. Therefore P must be abelian.

Next we will show that the exponent of Q is at most 2 . Suppose on the contrary that Q contains an element a of order four. Let $b \in P-Q$ and $t \in T-\{1\}$. By replacing b with $b a$ if necessary, we can assume that $o(b) \geq 4$. Consider $A=\left\{t, a t^{-1}, t a b, b t, a^{2} b\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
B= & \left\{b, a b, a^{2} b, b^{2}, a^{2} b^{2}\right\} \cup\left\{a^{3} b t, a^{2} b^{2} t, a^{3} b^{2} t, a b t^{-2}, a^{2} b t^{-2}, a b^{2} t^{-2}\right\} \\
& \cup\left\{b t^{2}, a b t^{2}, a b^{2} t^{2}, a^{2} b t^{-1}, a^{3} b t^{-1}, a^{2} b^{2} t^{-1}, a^{3} b^{2} t^{-1}\right\} .
\end{aligned}
$$

It is not hard to show that the 18 elements in B are distinct. Therefore G is not a $B(5,17)$ group, giving a contradiction. So the exponent of Q is at most 2 .

Summarizing the results proved in the above lemmas, we obtain a necessary condition for $B(5,17)$ non-2-groups.

Theorem 2.7. Let G be a nontrivial nonabelian $B(5,17)$ non-2-group. Then $G=T P$ where T is a normal abelian subgroup of odd order and P is a nontrivial abelian Sylow 2-subgroup of G. Furthermore, the subgroup $Q=C_{P}(T)$ has index 2 in P, the exponent of Q is at most 2 , and each element of $P-Q$ inverts T.
2.2. A complete characterization of $\boldsymbol{B}(5,17)$ non-2-groups. In this subsection, we complete the characterization of $B(5,17)$ non-2-groups, and show that there is no nontrivial nonabelian $B(5,17)$ non-2-group.
Lemma 2.8. $D_{2 n}$ with $n \geq 9$ is not a $B(5,17)$ group.
Proof. We have $D_{2 n}=\left\langle a, x \mid a^{n}=x^{2}=1, a^{x}=a^{-1}\right\rangle$. Let $A_{1}=\left\{a, a^{6}, a b, a^{2} b, a^{5} b\right\}$ when $n=9$. Then

$$
A_{1}^{2}=\left\{a^{2}, a^{7}, a^{2} b, a^{3} b, a^{6} b, a^{3}, a^{7} b, a^{8} b, b, a^{4} b, 1, a^{8}, a^{5}, a b, a^{5} b, a, a^{6}, a^{4}\right\}
$$

Let $A_{2}=\left\{a, a^{2}, a^{4}, a^{5} x, a^{6} x\right\}$ when $n \geq 10$. Then

$$
A_{2}^{2}=\left\{a^{2}, a^{3}, a^{5}, a^{6} x, a^{7} x, a^{4}, a^{6}, a^{8} x, a^{8}, a^{9} x, a^{10} x, a^{4} x, a^{3} x, a x, 1, a^{-1}, a^{5} x, a^{2} x, a\right\}
$$

It is easy to see that the 18 elements in A_{1} are distinct, and the 19 elements in A_{2} are distinct. Therefore $\left|A_{1}^{2}\right|=18$ and $\left|A_{2}^{2}\right|=19$, and then $D_{2 n}$ is not a $B(5,17)$ group.
Theorem 2.9. There is no nontrivial nonabelian $B(5,17)$ non-2-group.
Proof. Let G be a nontrivial nonabelian $B(5,17)$ non-2-group. It follows from Theorem 2.7 that $G=T P$ where T is a nontrivial normal abelian subgroup of odd order and P is a nontrivial abelian 2-group. Moreover, P has a subgroup Q of index 2 such that Q centralizes T, and each element $x \in P-Q$ inverts both T and Q. Let n be the exponent of T. Since T is abelian, there exists an element $a \in T$ such that $o(a)=n$. We divide the proof into two cases according to whether $|P|=2$ or $|P| \geq 4$.

Case 1: $|P|=2$. Let $P=\langle x\rangle$. If $n \geq 9$, then $\langle a, x\rangle=D_{2 n}$. It follows from Lemma 2.8 that $D_{2 n}$ is not a $B(5,17)$ group, so neither is G, giving a contradiction.

Thus $n=3,5,7$. Since $|G| \geq 18$ and $|P|=2,|T| \geq 9$. Since T is an abelian group of exponent of $3,5,7$, it has a subgroup $H=\langle a\rangle \times\langle b\rangle=C_{n} \times C_{n}$. Recall that $a^{x}=a^{-1}$, $b^{x}=b^{-1}$ and $o(a)=o(b) \geq 3$. Let $A=\left\{a, a x, a b x, b^{2} x, 1\right\}$. Then

$$
\begin{gathered}
A^{2}=\left\{a^{2}, a, 1, b^{-1}, a b^{-2}, b, a b^{-1}, a^{-1} b^{2}, a^{-1} b, a^{2} x,\right. \\
\\
\left.a^{2} b x, a b^{2} x, x, a x, b x, a b x, a^{-1} b^{2} x, b^{2} x\right\} .
\end{gathered}
$$

Since subset T and $T x$ are disjoint, it is easy to check that the 18 elements in A^{2} are distinct, and thus G is not a $B(5,17)$ group, giving a contradiction.
Case 2: $|P| \geq 4$. We first assume that $n \geq 5$. Let $t=a y$ where $y \in Q-\{1\}$. Then $o(t)=2 n \geq 10$. Since the elementary abelian 2-group Q has index 2 in P, the exponent of P is at most 4. If there exists $x \in P-Q$ such that $o(x)=2$, then the subgroup $\langle t, x\rangle=D_{2 m}$ (with $2 m=4 n \geq 20$). Thus $\langle t, x\rangle$ is not a $B(5,17)$ group by Lemma 2.8, so neither is G, giving a contradiction.

Thus we must have $o(x)=4$ for all $x \in P-Q$. If $o(a) \geq 5$, let $A=$ $\left\{a, x, a^{4} x, a x^{2}, a x^{3}\right\}$. Then A^{2} contains a subset

$$
\begin{gathered}
B=\left\{a^{2}, a x, a^{2} x^{2}, a^{2} x^{3}, a^{-1} x, x^{2}, a^{-4} x^{2}, a^{-1} x^{3}, a^{-1},\right. \\
\left.a^{3} x, a^{4} x^{2}, a^{3} x^{3}, a^{3}, a x^{3}, a^{2} x, x^{3}, a, x\right\} .
\end{gathered}
$$

Since $P, a P \cup a^{-4} P, a^{2} P, a^{3} P$ and $a^{4} P \cup a^{-1} P$ are disjoint, it is easy to see that the 18 elements in B are distinct, which is a contradiction.

Next assume that $o(a)=3$. We first consider $|P|=4$. Then $|T| \geq 5$. Thus T has a subgroup $H=\langle a\rangle \times\langle b\rangle=C_{3} \times C_{3}$. Let $A=\left\{a, a x, a b x, b^{2} x, b\right\}$, where $x \in P-Q$. Then

$$
\begin{aligned}
& A^{2}=\left\{a^{2}, b^{2}, a b, b^{2} x^{2}, a b x^{2}, b x^{2}, x^{2}, a b^{2} x^{2}, a^{2} b^{2} x^{2}, a^{2} b x^{2}, a^{2} x,\right. \\
&\left.a^{2} b x, a b^{2} x, x, a x, b x, a b x, a^{2} b^{2} x\right\} .
\end{aligned}
$$

As before, it is easy to show that $\left|A^{2}\right|=18$, and so G is not a $B(5,17)$ group, giving a contradiction.

Thus $|P|>4$. Then $|Q| \geq 4$. So there exist $y, z \in Q-\{1\}$ such that $x^{2} \neq y$ and $x^{2} \neq z$. Let $A=\left\{a, x, a^{2} y, a z x, x z\right\}$. Then

$$
\begin{aligned}
A^{2}=\left\{a^{2}, y,\right. & x^{2}, a^{2} z x^{2}, a, a z x^{2}, a x^{2}, a^{2} x^{2}, a x, a^{2} z x, \\
& \left.a^{2} x, a y x, a^{2} y x, y z x, z x, a^{2} y z x, a x z, a x y z\right\}
\end{aligned}
$$

It is not hard to show $\left|A^{2}\right|=18$, and so G is not a $B(5,17)$ group, giving a contradiction.
In each case, we have found a contradiction. Thus, there is no nontrivial nonabelian $B(5,17)$ group.

3. The characterization of $\boldsymbol{B}(5,17) \mathbf{2}$-groups

We now investigate $B(5,17) 2$-groups, and will give a complete characterization of $B(5,17)$ groups at the end of this section. We first prove some preliminary results.

Lemma 3.1. Let G be a nonabelian $B(5,17)$ 2-group such that every proper subgroup of G is abelian. Then G is a trivial $B(5,17) 2$-group.
Proof. Assume that $|G| \geq 32$. Since G is a minimal nonabelian 2-group, it follows from [5, p. 309] that either

$$
G=G_{1}=\left\langle a, b \mid a^{2^{m}}=b^{2^{n}}=1, b^{-1} a b=a^{1+2^{m-1}}\right\rangle, \quad m \geq 2 \text { and }|G|=2^{m+n},
$$

or

$$
G=G_{2}=\left\langle a, b \mid a^{2^{m}}=b^{2^{n}}=1,[a, b]^{2}=1\right\rangle, \quad m \geq 2 \text { and }|G|=2^{m+n+1} .
$$

Suppose that $G=G_{1}=\left\{b^{i} a^{j} \mid 0 \leq i \leq 2^{n}-1,0 \leq j \leq 2^{m}-1\right\}$. Note that $Z(G)=$ $\left\langle a^{2}, b^{2}\right\rangle$. We divide the proof into three cases according to whether $m>3, m=3$ or $m=2$.
Case 1: $m>3$. Let $A=\left\{a, b, b a, b a^{2}, a^{5}\right\}$. Then A^{2} contains a subset

$$
\begin{aligned}
& B=\left\{b^{2}, b a, b^{2} a, a^{2}, b a^{2}, b a^{3}, b^{2} a^{3}, b^{2} a^{4}, b a^{5}, a^{6}, b a^{6}, b a^{7},\right. \\
& \left.\quad a^{10}, b a^{1+2^{m-1}}, b^{2} a^{1+2^{m-1}}, b a^{2+2^{m-1}}, b^{2} a^{2+2^{m-1}}, b a^{3+2^{m-1}}, b^{2} a^{3+2^{m-1}}\right\} .
\end{aligned}
$$

It is easy to show that the 19 elements in B are distinct. Therefore $\left|A^{2}\right| \geq 19$, giving a contradiction.
Case 2: $m=3$. Recall that $|G| \geq 32$. We know that $n \geq 2$. Let $A=\left\{a, b, b a, b a^{2}, b^{2}\right\}$. Then

$$
\begin{aligned}
A^{2}= & \left\{a^{2}, b a^{5}, b a^{6}, b a^{7}, b^{2} a, b a, b^{2}, b^{2} a^{2}, b^{3}, b a^{2}, b^{2} a^{5}, b^{2} a^{6},\right. \\
& \left.b^{2} a^{7}, b^{3} a, b a^{3}, b^{2} a^{3}, b^{2} a^{4}, b^{3} a^{2}, b^{4}\right\} .
\end{aligned}
$$

It is easy to show that the 19 elements in A^{2} are distinct, giving a contradiction.
Case 3: $m=2$. As before, we know that $n \geq 3$. Let $A=\left\{a, b, a b^{2}, a b^{3}, a b^{5}\right\}$. Then

$$
\begin{aligned}
& A^{2}=\left\{a^{2}, b a^{3}, b^{2} a^{2}, b^{3} a^{2}, b^{5} a^{2}, b a, b^{2}, b^{3} a, b^{4} a^{3}, b^{6} a^{3}, b^{3} a^{3},\right. \\
&\left.b^{4} a^{2}, b^{7} a^{2}, b^{3}, b^{4} a, b^{5}, b^{6}, b^{8}, b^{6} a, b^{7}, b^{10}\right\} .
\end{aligned}
$$

It is not hard to show that the first 20 elements in A^{2} are distinct, giving a contradiction.

Next consider $G=G_{2}$. Let $c=[a, b]$. Since $\left\langle a, b^{2}\right\rangle$ is a proper subgroup of G, it is abelian and thus $\left[a, b^{2}\right]=1$. Since $c c^{b}=[a, b][a, b]^{b}=\left[a, b^{2}\right]=1$ and $c^{2}=1$, we obtain $c=c^{b}$. Similarly, we have $c=c^{a}$. Thus $c \in Z(G)$. Since $b a=a b c$, each element of G can be written uniquely as $a^{i} b^{j} c^{k}$, where $0 \leq i \leq 2^{m}-1,0 \leq j \leq 2^{n}-1$ and $0 \leq k \leq 1$.

We divide the proof into two cases according to whether $m>2$ or $m=2$.
Case 1: $m>2$. Let $A=\left\{a, b, a b, a^{3} b, a^{4}\right\}$. Then

$$
\begin{aligned}
& A^{2}=\left\{a^{2}, a^{5}, a^{8}, a b, a^{2} b, a^{4} b, a^{5} b, a^{7} b, b^{2}, a b^{2}, a^{3} b^{2}, a b c, a^{2} b c, a b^{2} c,\right. \\
&\left.a^{4} b c, a^{2} b^{2} c, a^{3} b^{2} c, a^{4} b^{2} c, a^{6} b^{2} c\right\} .
\end{aligned}
$$

It is easy to see that the 19 elements in A^{2} are distinct. Thus $\left|A^{2}\right|=19$, giving a contradiction.
Case 2: $m=2$. Let $A=\left\{a, b, a b, a^{3} b, b^{3}\right\}$. Then

$$
\begin{aligned}
& A^{2}=\left\{a^{2}, b, a b, a^{2} b, b^{2}, a b^{2}, a^{3} b^{2}, a b^{3}, b^{4}, a b^{4}, a^{3} b^{4}, b c, a b c, a^{2} b c,\right. \\
&\left.b^{2} c, a b^{2} c, a^{2} b^{2} c, a^{3} b^{2} c, a b^{3} c, a b^{4} c, a^{3} b^{4} c\right\}
\end{aligned}
$$

It is easy to see that the 21 elements in A^{2} are distinct, giving a contradiction.
Thus G is a trivial nonabelian 2-group.
Lemma 3.2. If G is a group of order 32 with a maximal subgroup $M \cong Q_{8} \times C_{2}=$ $\left\langle a, b, c \mid a^{4}=c^{2}=1, a^{2}=b^{2}, a c=c a, b c=c b, a^{b}=a^{3}\right\rangle$, then G is not a $B(5,17)$ group.
Proof. Let $A=\{a, b, a b, a b c\} \subseteq M, B=\{a, b, a b, a b c, d\}=\{A, d\}$, where $d \in G-M$. By replacing d by $a d, b d$ or $a b d$ if necessary, we can assume that $d a \neq a d$ and $d b \neq b d$. Let $d A=\{d a, d b, d a b, d a b c\}$ and $A d=\{a d, b d, a b d, a b c d\}$. It is easy to show that $\left|A^{2}\right|=12$, and so $\left|B^{2}\right| \geq\left|A^{2} \cup A d\right|=16$.

Replacing a by a^{3} if necessary, we can always assume that $d b \notin A d$. If $d a \notin A d$ or $d a b \notin A d$, then $\left|B^{2}\right| \geq\left|A^{2} \cup A d \cup\{d a, d b, d a b\}\right| \geq 18$. So we may assume that both $d a \in A d$ and $d a b \in A d$. We divide the proof into the following three cases.
Case 1: $d a=a b c d$. Then $d a b \in A d-\{a b c d\}$, and therefore $d a b d^{-1} \in Q_{8}$. Since $a^{d^{-2}}=(a b)^{d^{-1}} c^{d^{-1}}$, we have $c^{d^{-1}} \in Q_{8}$. Therefore $c^{d^{-1}}=a^{2}$, implying that $c=a^{2}$ since $a^{2} \in Z(G)$, giving a contradiction.
Case 2: $d a=b d$. Since $d a b \in A d$, we have $d a b=a d, a b d$, or $a b c d$.
(2.1) If $d a b=a d$, we know that $d b=b^{-1} d a b=b^{-1} a d=a b d$. Therefore $a=b^{d}=$ $(a b)^{d^{2}}=a b$ or $a^{3} b$ since $d^{2} \in Q_{8} \times C_{2}$, giving a contradiction.
(2.2) If $d a b=a b d$, we assume that $d a b c \in A d$. Then $d a b c=a d$ or $a b c d$. If $d a b c=a d$, we have $a b d c=a d$, and so $d c d^{-1}=b^{3}$, giving a contradiction (because $o\left(d c d^{-1}\right)=2$, but $o\left(b^{3}\right)=4$). If $d a b c=a b c d$, we have $a b d c=a b c d$, and so $d c=c d$. Consider $A_{1}=\{a, b, a b, a c\}$. It is easy to show that

$$
\left|A_{1}^{2}\right|=\left|\left\{a^{2}, a b, a^{2} b, a^{2} c, a^{3} b, a, a^{3} b c, b, a b^{2}, b c, a b c, a^{2} b c\right\}\right|=12 .
$$

Note that

$$
A_{1} d=\{\underline{a d}, \underline{b d}, \underline{a b d}, \underline{a c d}\} \quad \text { and } d A_{1}=\{d a, d b, d a b, d a c\}=\left\{b d, \underline{a^{3} d}, a b d, \underline{b c d}\right\} .
$$

It is easy to show that the six underlined elements in $A_{1} d \cup d A_{1}$ are distinct. Let $B=\left\{A_{1}, d\right\}$. Then $\left|B^{2}\right| \geq\left|A_{1}^{2} \cup A_{1} d \cup d A_{1}\right| \geq 18$.
(2.3) If $d a b=a b c d$, we know that $d b=b^{-1} d a b=b^{-1} a b c d=a^{3} c d$. Therefore $a=b^{d}=$ $\left(a^{3} c\right)^{d^{2}}=a^{3} c$ or $a c$, giving a contradiction.

Case 3: $d a=a b d$. Since $d a b \in A d$, we have $d a b=a d, b d$, or $a b c d$.
(3.1) If $d a b=a d$, we assume that $d a b c \in A d$. Then $d a b c=b d$ or $a b c d$. If $d a b c=$ $b d$, we have $a d c=b d$, and then $d c d^{-1}=a^{3} b$, giving a contradiction (because $o\left(d c d^{-1}\right)=2$, but $o\left(a^{3} b\right)=4$). If $d a b c=a b c d$, we have $a d c=a b c d$, and then $d c d^{-1}=b c$. Note that $o\left(d c d^{-1}\right)=2$ and $o(b c)=4$, so the above gives a contradiction. Therefore $d a b c \notin A d$, and thus $\left|A^{2} \cup A d \cup d A\right| \geq 18$.
(3.2) If $d a b=b d$, we assume that $d a b c \in A d$. Then $d a b c=a d$ or $a b c d$. If $d a b c=a d$, we have $b d c=a d$, and then $d c d^{-1}=b^{3} a$. Note that $o\left(d c d^{-1}\right)=2$ and $o\left(b^{3} a\right)=4$, so the above gives a contradiction. If $d a b c=a b c d$, we have $b d c=a b c d$, and then $d c d^{-1}=b^{-1} a b c$, giving a contradiction (for $o\left(d c d^{-1}\right)=2$, but $o\left(b^{-1} a b c\right)=4$). Therefore $d a b c \notin A d$, and thus $\left|A^{2} \cup A d \cup d A\right| \geq 18$.
(3.3) If $d a b=a b c d$, we assume that $d a b c \in A d$. Then $d a b c=a d$ or $b d$. If $d a b c=a d$, we have $a b c d c=a d$, and then $d c d^{-1}=b^{3} c$, giving a contradiction. If $d a b c=$ $b d$, we have $a b c d c=b d$, and then $d c d^{-1}=a c$. Note that $o\left(d c d^{-1}\right)=2$ and $o(a c)=4$, so the above gives a contradiction. Therefore $d a b c \notin A d$, and thus $\left|A^{2} \cup A d \cup d A\right| \geq 18$.
In each of the above cases, we have shown that $\left|B^{2}\right| \geq 18$ for some subset B of five elements of G. Therefore G is not a $B(5,17)$ group.

Lemma 3.3. If G is a group of order 32 with a maximal subgroup $M \cong Q_{16}=\langle a, b|$ $\left.a^{8}=1, a^{4}=b^{2}, a^{b}=a^{-1}\right\rangle$, then G is not a $B(5,17)$ group.
Proof. Let $A=\left\{a, b, b a^{3}, b a^{7}\right\}$ and $B=\left\{a, b, b a^{3}, b a^{7}, c\right\}=\{A, c\}$, where $c \in G-M$. As before, we may assume that $a c \neq c a$. It is easy to see that

$$
\left|A^{2}\right|=\left|\left\{a^{2}, b a^{7}, b a^{2}, b a^{6}, b a, a^{4}, a^{7}, a^{3}, b a^{4}, a, 1, b, a^{5}\right\}\right|=13 .
$$

Note that $A c=\left\{a c, b c, b a^{3} c, b a^{7} c\right\}$ and $c A=\left\{c a, c b, c b a^{3}, c b a^{7}\right\}$. Since $o\left(c a c^{-1}\right)=8$ and $o(b)=o\left(b a^{3}\right)=o\left(b a^{7}\right)=4$, we conclude that $c a \notin A c$, so $\left|B^{2}\right| \geq\left|A^{2} \cup A c \cup c a\right|=$ $\left|A^{2}\right|+|A c|+|c a|=18$. Therefore G is not a $B(5,17)$ group.

Lemma 3.4. If G is a group of order 32 with a maximal subgroup $M \cong P=\langle a, b| a^{4}=$ $\left.b^{4}=1, a^{b}=a^{3}\right\rangle$, then G is not a $B(5,17)$ group.
Proof. Let $A=\left\{a, b, b a, b^{2} a\right\}$ and $B=\left\{a, b, b a, b^{2} a, c\right\}=\{A, c\}$, where $c \in G-M$. It is easy to see that

$$
\left|A^{2}\right|=\left|\left\{a^{2}, b a^{3}, b, b^{2} a^{2}, b a, b^{2}, b^{2} a, b^{3} a, b a^{2}, b^{2} a^{3}, b^{3} a^{2}, b^{3} a^{3}, b^{3}\right\}\right|=13 .
$$

Thus $\left|B^{2}\right| \geq\left|A^{2} \cup A c\right|=\left|A^{2}\right|+|A c|=17$. Note that $A c=\left\{a c, b c, b a c, b^{2} a c\right\}$ and $c A=$ $\left\{c a, c b, c b a, c b^{2} a\right\}$. We can always assume that $a c \neq c a$ and $b c \neq c b$. We may also assume $c a \in A c$ and $c b \in A c$, otherwise $\left|B^{2}\right| \geq 18$.
Case 1: $c a=b c$. Then:
(1.1) if $c b=a c$, then $c b a=a c a=a b c=b a^{3} c \notin A c$, which is an 18th distinct element in B^{2}, so $\left|B^{2}\right| \geq 18$;
(1.2) if $c b=b a c$, then $c b a=b a c a=b a b c=b^{2} a^{3} c \notin A c$, which is an 18th distinct element in B^{2}, so $\left|B^{2}\right| \geq 18$;
(1.3) if $c b=b^{2} a c$, then $c b a=b^{2} a c a=b^{3} a^{3} c \notin A c$, which is an 18th distinct element in B^{2}, so $\left|B^{2}\right| \geq 18$.
Case 2: $c a=b a c$. Then:
(2.1) if $c b=a c$, then $c b a=a c a=a b a c=b c$, and thus $c b^{2} a=a c b a=a b c=b a^{3} c \notin A c$, so $\left|B^{2}\right| \geq 18$;
(2.2) if $c b=b^{2} a c$, then $c b a=b^{2} a c a=b^{2} a b a c=b^{3} c \notin A c$, which is an 18 th distinct element in B^{2}, so $\left|B^{2}\right| \geq 18$.
Case 3: $c a=b^{2} a c$. Then:
(3.1) if $c b=a c$, then $c b a=a c a=a b^{2} a c=b^{2} a^{2} c \notin A c$, which is an 18th distinct element in B^{2}, so $\left|B^{2}\right| \geq 18$;
(3.2) if $c b=b a c$, then $c b a=b a c a=b a b^{2} a c=b^{3} a^{2} c \notin A c$, which is an 18 th distinct element in B^{2}, so $\left|B^{2}\right| \geq 18$.
In all cases, we have shown that $\left|B^{2}\right| \geq 18$. Thus G is not a $B(5,17)$ group.
Lemma 3.5. If G is a group of order 32 with a maximal subgroup $M \cong D=\langle a, b, c|$ $\left.a^{2}=b^{2}=c^{4}=1, a c=c a, b c=c b, a^{b}=c^{2} a\right\rangle$, then G is not a $B(5,17)$ group.

Proof. Let $A=\{a, b, a b, b c\}$ and $B=\{a, b, a b, b c, d\}=\{A, d\}$, where $d \in G-M$. It is easy to see that

$$
\left|A^{2}\right|=\left|\left\{1, a, b, c, a c, a c^{2}, a c^{3}, b a, b a c, b a c^{2}, b a c^{3}, b c^{2}, c^{2}\right\}\right|=13 .
$$

Thus $\left|B^{2}\right| \geq\left|A^{2} \cup A d\right|=\left|A^{2}\right|+|A d|=17$. Note that $A d=\{a d, b d, a b d, b c d\}$ and $d A=$ $\{d a, d b, d a b, d b c\}$. As before, we assume that $d a \neq a d$ and $d b \neq b d$. Next we assume that $d a, d b \in A d$. Since $o(a)=2$, but $o(a b)=o(b c)=4$, we must have $d a=b d$. Similarly, since $o(b)=2$, we have $d b=a d$. Then $d a b=b d b=b a d \notin A d$, which is an 18 th distinct element in B^{2}. Therefore $\left|B^{2}\right| \geq 18$, and G is not a $B(5,17)$ group.

Lemma 3.6. If G is a group of order 32 with a maximal subgroup $M \cong D_{8} \times C_{2}=$ $\left\langle a, b, c \mid a^{4}=b^{2}=c^{2}=1, a c=c a, b c=c b, a^{b}=a^{3}\right\rangle$, then G is not $a B(5,17)$ group.

Proof. Let $A=\left\{a, b, b a^{3}, b a^{3} c\right\}$ and $B=\left\{a, b, b a^{3}, b a^{3} c, d\right\}=\{A, d\}$, where $d \in G-$ M. We can always assume that $d a \neq a d$. It is easy to see that

$$
\left|A^{2}\right|=\left|\left\{a^{2}, b a^{3}, b a^{2}, b a^{2} c, b a, 1, a^{3}, a^{3} c, b, a, c, b c, a c\right\}\right|=13 .
$$

Note that $A d=\left\{a d, b d, b a^{3} d, b a^{3} c d\right\}$ and $d A=\left\{d a, d b, d b a^{3}, d b a^{3} c\right\}$. Since $o\left(d a d^{-1}\right)=4$ and $o(b)=o\left(b a^{3}\right)=o\left(b a^{3} c\right)=2$, we conclude that $d a \notin A d$. Thus $\left|B^{2}\right| \geq$ $\left|A^{2} \cup A d \cup d a\right|=\left|A^{2}\right|+|A d|+|d a|=18$. Therefore G is not a $B(5,17)$ group.

We are now ready to prove the main result of this section.

Theorem 3.7. There is no nontrivial nonabelian $B(5,17) 2$-group.

Proof. The proof is by the minimal counterexample method. Suppose on the contrary that there is a nontrivial nonabelian $B(5,17)$ 2-group G with minimal order. Then either every proper subgroup of G is abelian or $|G|=32$.

Suppose that $|G|=32$. We claim that every maximal subgroup M of G is a $B(4,13)$ group. Otherwise, there exists a subset $A=\{a, b, c, d\} \subseteq M$ such that $\left|A^{2}\right| \geq 14$. Let $S=$ $\{a, b, c, d, e\}$ where $e \in G-A$. Then $S^{2} \supseteq A^{2} \cup\{a e, b e, c e, d e\}$, and therefore $\left|S^{2}\right| \geq$ $\left|A^{2}\right|+4 \geq 18$, which implies that G is not a $B(5,17)$ group, giving a contradiction. Next we prove that every proper subgroup of G is abelian. Assume that there exists a nonabelian maximal subgroup M of G. Then M is a $B(4,13)$ group of order 16. By [7, Lemma 2.23], M must be one of the following groups: $Q_{8} \times C_{2}, Q_{16}, P, D$ or $D_{8} \times C_{2}$. However, by Lemmas 3.2, 3.3, 3.4, 3.5 and 3.6, we know that none of these cases is possible.

Therefore every proper subgroup of G is abelian. By Lemma 3.1, G is a trivial $B(5,17)$ group, giving a contradiction.

Combining Theorems 2.9 and 3.7, we obtain a complete characterization of $B(5,17)$ groups.

Theorem 3.8. A group G is a $B(5,17)$ group if and only if G is either abelian or a nonabelian trivial $B(5,17)$ group.

4. On $B(5,15)$ and $B(5,16)$ groups

Using the complete characterization of $B(5,17)$ groups given in the previous section, we can easily characterize $B(5,15)$ and $B(5,16)$ groups.

We first investigate $B(5,16)$ groups and assume that G is a nontrivial nonabelian $B(5,16)$ group. Then $|G| \geq 18$. Since $|G|$ is also a nontrivial nonabelian $B(5,17)$ group, by Theorem 3.8, no such group exists. We state this result as follows.

Theorem 4.1. A group G is a $B(5,16)$ group if and only if either G is abelian or G is a nonabelian trivial $B(5,16)$ group.

We next consider $B(5,15)$ groups and provide a short proof for the main result in [6] which gives a complete characterization of $B(5,15)$ groups.

Theorem 4.2. A group G is a nontrivial nonabelian $B(5,15)$ group if and only if $G \cong Q_{8} \times C_{2}$.

Proof. Let G be a nontrivial nonabelian $B(5,15)$ group. We first assume that G is not a 2-group. Then $|G| \geq 18$. Thus, G is a nontrivial nonabelian $B(5,17)$ group.

By Theorem 2.9, no such group exists. Next we assume that G is a 2 -group. Since G is a nonabelian $B(5,17)$ group, it follows from Theorem 3.8 that $|G|=16$. It was proved in [10] that $Q_{8} \times C_{2}$ is a $B(5,15)$ group of order 16. In addition to this group, there are eight non-abelian 2-groups of order 16. A direct calculation shows that for each such group G, there exists a subset S of five elements of G such that $\left|S^{2}\right|=16$, and thus G is not a $B(5,15)$ group (see [2] for the detailed calculation). Therefore $G \cong Q_{8} \times C_{2}$ is the only nontrivial nonabelian $B(5,15)$ group.

References

[1] Y. G. Berkovich, G. A. Freiman and C. E. Praeger, 'Small squaring and cubing properties for finite groups', Bull. Aust. Math. Soc. 44 (1991), 429-450.
[2] T. Eddy, 'Classifying groups with small squaring properties', Master's Thesis, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, 2006.
[3] T. Eddy and M. M. Parmenter, 'Groups with restricted squaring properties', Ars Combin., accepted.
[4] G. A. Freiman, 'On two- and three-element subsets of groups', Aequationes Math. 22 (1981), 140-152.
[5] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
[6] Y. Li and Y. Tan, 'On B5-groups', Ars Combin., accepted.
[7] Y. Li and Y. Tan, 'On $B(4,13)$ 2-groups', Comm. Algebra., accepted.
[8] Y. Li and Y. Tan, 'On B(4, k) groups', J. Algebra Appl. 9 (2010), 27-42.
[9] P. Longobardi and M. Maj, 'The classification of groups with the small squaring property on 3-sets', Bull. Aust. Math. Soc. 46 (1992), 263-269.
[10] M. M. Parmenter, 'On groups with redundacy in multiplication', Ars Combin. 63 (2002), 119-127.
[11] D. J. S. Robinson, A Course in the Theory of Groups (Springer, Berlin-Heidelberg-New York, 1982).

YUANLIN LI, Department of Mathematics, Brock University, St. Catharines,
Ontario, Canada L2S 3A1
e-mail: yli@ brocku.ca
XIAOYING PAN, Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
e-mail: kp09vn@brocku.ca

[^0]: This research was supported in part by a Discovery Grant from the National Sciences and Engineering Research Council of Canada.
 (C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

