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industrial technology advances

Deep learning: from speech recognition to
language and multimodal processing
li deng

While artificial neural networks have been in existence for over half a century, it was not until year 2010 that they had made
a significant impact on speech recognition with a deep form of such networks. This invited paper, based on my keynote talk
given at Interspeech conference in Singapore in September 2014, will first reflect on the historical path to this transformative
success, after providing brief reviews of earlier studies on (shallow) neural networks and on (deep) generative models relevant to
the introduction of deep neural networks (DNN) to speech recognition several years ago. The role of well-timed academic-
industrial collaboration is highlighted, so are the advances of big data, big compute, and the seamless integration between
the application-domain knowledge of speech and general principles of deep learning. Then, an overview is given on sweep-
ing achievements of deep learning in speech recognition since its initial success. Such achievements, summarized into six major
areas in this article, have resulted in across-the-board, industry-wide deployment of deep learning in speech recognition systems.
Next, more challenging applications of deep learning, natural language and multimodal processing, are selectively reviewed and
analyzed. Examples include machine translation, knowledgebase completion, information retrieval, and automatic image cap-
tioning, where fresh ideas from deep learning, continuous-space embedding in particular, are shown to be revolutionizing these
application areas albeit with less rapid pace than for speech and image recognition. Finally, a number of key issues in deep
learning are discussed, and future directions are analyzed for perceptual tasks such as speech, image, and video, as well as for
cognitive tasks involving natural language.
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I . I NTRODUCT ION

The main theme of this paper is to reflect on the recent
history of how deep learning has profoundly revolution-
ized the field of automatic speech recognition (ASR) and
to elaborate on what kind of lessons we can learn to not
only further advance ASR technology but also to impact the
related, arguably more important, applications in language
and multimodal processing. Language processing concerns
“downstream” analysis and distillation of information from
theASR systems’ outputs. Semantic analysis of language and
multimodal processing involving speech, text, and image,
both experiencing rapid advances based on deep learning
over the past few years, holds the potential to solve some
difficult and remaining ASR problems and present new
challenges for the deep learning technology.

Amessage to be conveyed in this paper is the importance
of broadening deep learning from deep neural networks
(DNNs) to include deep generative models as well. In fact,
a brief historical review conducted in Section II will touch
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on how the development of deep (and dynamic) generative
models of speech played a role in the inroads of DNNs into
modern ASR. Since 2011, the DNN has taken over the dom-
inating (shallow) generative model of speech, the Gaussian
Mixture Model (GMM), as the output distribution in the
HiddenMarkovModel (HMM). This purely discriminative
DNN has been well-known to the ASR community, which
can be considered as a shallow network unfolding in space.
When the unfolding occurs in time, we have the recurrent
neural network (RNN). On the other hand, deep generative
models have distinct advantages over discriminative DNNs,
including the strengths of model interpretability, of embed-
ding domain knowledge and causal relationships, and of
modeling uncertainty. Deep generative and discriminative
models represent two apparently opposing approaches yet
with highly complementary strengths and weaknesses. The
further success of deep learning is likely to lie in how to
seamlessly integrate the two approaches in a practically
effective and theoretically appealing fashion, and to achieve
the best of both worlds.

The remainder of this paper is organized as follows. In
Section II, somebrief history is provided onhowdeep learn-
ing made inroad into speech recognition, and a number of
enabling factors are discussed. Outstanding achievements
of deep learning both in academic world and in industry to
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date are reviewed in Section III, categorized into six major
areaswhere speech recognition technology has been revolu-
tionized within just past several years. Section IV is devoted
to more challenging applications of deep learning to nat-
ural language and multimodal processing, where active
work is ongoing with current progress reviewed. Finally, in
Section V, remaining challenges for deep speech recogni-
tion are examined, together with much greater challenges
for natural-language-related applications of deep learning
and with directions for the future development.

I I . SOME BR IEF H ISTORY OF
“DEEP ” SPEECH RECOGN IT ION

Artificial neural networks have been around for over half
a century and their applications to speech processing have
been almost as long. Representative early work in using
shallow (and small) neural networks for speech includes
the studies reported in [1–6]. However, these neural nets
did not show superior performance over the GMM-HMM
technology based on generative models of speech trained
discriminatively [7, 8]. A number of key difficulties had
been methodologically analyzed, including vanishing gra-
dient and weak temporal correlation structure in the neural
predictive models [9, 10]. These difficulties were inves-
tigated in addition to the lack of big training data and
big computing power in those early days in 1990s. Most
speech recognition researchers who understood such bar-
riers hence subsequently moved away from neural nets to
pursue (deep) generativemodeling approaches forASR [10–
13]. Since mid-1990s, many prominent neural network and
machine learning researchers also published their books
and research papers on generative modeling [14–19]. This
was so in some cases even if the generative models’ archi-
tectures were based on neural network parameterization
[14, 15]. It was not until several years ago with the resur-
gence of neural networks (with the “deep” form) and with
the start of deep learning that all the difficulties encountered
in 1990s have been overcome, especially for large vocabu-
lary ASR applications [20–28]. The path towards exploiting
large amounts of labeled speech data and powerful GPU-
based computing for serious new implementations of neural
networks involved extremely valuable academic-industry
collaboration during 2009–2010. The importance of mak-
ingmodels deepwas initiallymotivated by the limitations of
both probabilistic generative modeling and discriminative
neural net modeling.

A) A selected review of deep generative
models of speech prior to 2009
There has been a long history in speech recognition
research where human speech production mechanisms are
exploited to construct dynamic and deep structure in prob-
abilistic generative models; see [29] and several presen-
tations at the 2009 NIPS Workshop on Deep Learning
for Speech Recognition and Related Applications. More

specifically, the early work described in [30–33] general-
ized and extended the conventional shallow and condi-
tionally independent GMM-HMM structure by imposing
dynamic constraints, in the form of polynomial trajectory,
on the HMM parameters. A variant of this approach has
been developed later using different learning techniques
for time-varying HMM parameters and with the applica-
tions extended to speech recognition robustness [34, 35].
Similar trajectory HMMs also form the basis for paramet-
ric speech synthesis [36, 37]. Subsequent work added new
hidden layers into the dynamic model, thus being deep,
to explicitly account for the target-directed, articulatory-
like properties in human speech generation [11–13, 38–
45]. More efficient implementation of this deep archi-
tecture with hidden dynamics was achieved with non-
recursive or finite impulse response filters in more recent
studies [46].

Reflecting on these earlier primitive versions of deep and
dynamic generative models of speech, we note that neu-
ral networks, being used as “universal” non-linear function
approximators, have been incorporated in various compo-
nents of the generative models. For example, the models
described in [38, 47, 48] made use of neural networks to
approximate the highly non-linear mapping from articu-
latory configurations to acoustic features. Further, a ver-
sion of the hidden dynamic model described in [12] has
the full model parameterized as a dynamic neural net-
work, and backpropagation algorithm was used to train
this deep and dynamic generative model. The key differ-
ence between this backpropagation and that used in train-
ing the DNN lies in how the error objective function is
defined, while the optimization methods based on gra-
dient descent are the same. In the DNN case, the error
objective is defined as the label mismatch. In the deep
generative model, the error objective is defined as the mis-
match at the observable acoustic feature level via analysis-
by-synthesis, and the error “back” propagation is towards
the top label layer instead of back towards the observa-
tions as in the standard backprop. The assumption is that if
the speech features generated by this deep model matches
well with the observed speech data, then top-layer labels
responsible for the speech production mechanismmuch be
correct.

The above deep-structured, dynamic generative models
of speech can be shown as special cases of the more general
dynamic network model and even more general dynamic
graphical models [49]. The graphical models [19] can com-
prise many hidden layers to characterize the complex rela-
tionship among the variables including those in speech
generation. Such deep generative graphical models are a
powerful tool in many applications due to their capabilities
of embedding domain knowledge and of explicitly model-
ing uncertainty in real-world applications. However, they
often suffer from inappropriate approximations in infer-
ence, learning, prediction, and topology design, all arising
from intractability in these tasks in practical applications.

Indeed, in the history of developing deep generative
models of speech, the above difficulties have been found to
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seriously hinder the progress in improving ASR accuracy
[50, 51]; see a review and analysis in [52]. In these early stud-
ies, variational Bayes for learning the intractable deep gen-
erative model was adopted, with the idea that during infer-
ence (i.e. the E step of learning), full or partial factorization
of posterior probabilities was assumed while in the M-step
rigorous estimation should compensate for the approxi-
mation errors introduced by the factorization. It turned
out that the inference results for the continuous-valued
mid-hidden vectors were surprisingly good but those for
the continuous-valued top-hidden layer (i.e. the linguis-
tic symbols such as phones or words) were disappointing.
Moreover, computation complexity for the inference step
was extremely high. Only after many additional assump-
tions were made without sacrificing essential properties
of deep and dynamic nature of the generative model (i.e.
target-directedness in the phonetic space, smoothness in
hidden dynamic variables, adequate representation of pho-
netic target undershooting, rigorous non-linear relation-
ship between the hidden and observation vectors, etc.), did
the model become well performed in inference in both
continuous- and discrete-valued latent spaces [46, 53]. In
fact, when the hidden layer of the model took the vocal
tract resonance vector as its physical variables, the inference
algorithm on such continuous-valued vectors produced the
best formant tracker then [54, 55]. The resulting estimates
actually formed the basis for a standard database of the
“ground truth” of formant frequencies to evaluate formant
tracking algorithms [56].

B) From deep generative models to deep
neural nets
The deep and dynamic generative models of speech, all
with probabilistic formulations of the various types dis-
cussed above, were closely examined in 2009 during the
collaboration between Microsoft Research and University
of Toronto researchers. In parallel with the development of
these probabilistic speech models characterized by the dis-
tribution parameters in the graphical modeling framework,
a different type of deep generative models characterized by
neural network parameters in terms of connection matri-
ces was developed mainly for image pixels as the obser-
vation data. These were called Deep Belief Networks or
DBN [15].

The DBNs have an intriguing property: The rigorous
inference step is much easier than that for the hidden
dynamic model. Therefore, there is no need for approxi-
mate variational Bayes as required for the latter. This highly
desirable property of DBNs comes with the simplicity of
not modeling dynamics, and thus not directly suitable for
speech modeling.

How to reconcile the pros and cons of these two different
types of deep generative models? In order to speed up the
investigation in the academic-industrial collaborative work
during 2009, our collaborators introduced three “quick-
fixes”. First, to remove the complexity of rigorously mod-
eling speech dynamics, one can for the time being remove

such dynamics but one can compensate for this model-
ing inaccuracy by using a long time window to approxi-
mate the effects of true dynamics. Note this first quick-fix
used during 2009–2010 has since been made rigorous by
adding recurrence to the DNN [57–59]. And the dynamics
of speech at the symbolic level can then be approximately
captured by the standard HMM.

The second quick-fix was to reverse the direction of
information flow in the deep models – from top-down as
in the deep generative model to bottom-up as in the DNN,
in order to make inference fast and accurate (given the
models). However, it was known by 2009 that with many
hidden layers, neural networks were very difficult to train.
In order to bypass this problem, the third quick-fix was
devised: using a DBN to initialize or pre-train the DNN
based on the original proposal of [15]. Note this third quick-
fix had been automatically resolved after the earlier DNN
was subject to large-data training conducted in industry
soon after DNNs showed promising results in small tasks
[20, 22, 23, 60]. Careful analyses conducted during 2010
at Microsoft showed that with greater amounts of train-
ing data, enabled by GPU-based fast computing, and with
more sensible weight initialization without generative pre-
training using DBNs [24], the gradient vanishing problem
encountered in 1990s no longer plagued the training of
DNNs. The same results have also been reported by many
other ASR groups subsequently (e.g. [61–63]).

Adopting the above three quick-fixes shaped the deep
generative models, rather indirectly, into the DNN-based
ASR framework. The initial experimental results using pre-
trained DNNs with DBNs showed rather similar phone
recognition accuracy to the deep generativemodel of speech
on the standard TIMIT task. The TIMIT data set has been
commonly used to evaluate ASR models. Its small size
allows many different configurations to be tried quickly
and effectively. More importantly, the TIMIT task concerns
phone-sequence recognition, which, unlike word-sequence
recognition, permits very weak “language models” and thus
the weaknesses in the acoustic modeling aspect of ASR
can be more easily analyzed. Such an analysis on TIMIT
was conducted at Microsoft Research during 2010 that
contrasted the phone recognition accuracy between deep
generative models of speech [64] and deep discrimina-
tive models including pre-trained DNNs and deep condi-
tional random fields [65–68]. There were a number of very
interesting findings. For instance, while the overall phone
recognition accuracy is slightly higher for the DNN sys-
tem, it createdmany test errors associatedwith short vocalic
phone segments. The errors were traced back to the use of
long windows (11–25 frames) for the DNN, creating lots of
“noise” for these short phones. Further, the acoustic prop-
erties of these vocalic phones are subject to phonetic reduc-
tion, not captured by the DNN. However, such phonetic
reduction arising from articulatory dynamics is explicitly
and adequately modeled by the deep generative model with
hidden dynamics, accounting for much lower errors in the
short vocalic phones than theDNN as well as the GMMsys-
tems that do not capture articulatory dynamics. For most
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other classes of phone-like segments in TIMIT, the DNN is
doing substantially better than the deep generative model.
This type of contrastive error analyses shed insights into dis-
tinctive strengths of the two types of deep models. With the
highly regular computation and the ease of decoding associ-
ated with the DNN-based system, the strengths of the DNN
identified by the error analysis stimulated early industrial
investment onto deep learning for ASR from small to large
scales, eventually leading to its pervasive and dominant
deployment today.

The second “quick-fix” above is the only one that has not
been resolved as in today’s state of the art ASR systems. This
direction of future research will be discussed later in this
article.

C) Summary
Artificial neural networks have been around for over half
a century and their applications to ASR have been almost
as long, yet it was not until year 2010 that their real impact
had beenmade by a deep form of such networks, built upon
part of earlier work on (shallow) neural nets and (deep)
generative models developed by both speech and machine
learning communities. A well-timed academic-industrial
collaboration between Microsoft and University of Toronto
played a central role in introducing DNN technology into
the ASR industry. As reviewed above, by 2009 the ASR
industry had been searching for new solutions when “prin-
cipled” deep generative approaches could not deliver what
industry needed, both in terms of recognition accuracy and
decoding efficiency. In the meantime, academic researchers
already developed powerful deep learning tools such as
DBNs looking for practical applications [15]. Further, with
the advent of general-purpose GPU computing and with
Nvidia’s CUDA library released in 2008, DBN and DNN
computation became fast enough to apply to large speech
data. And luckily, by 2009 the ASR community, with the
government support since 1980s, had been keenly aware
of the importance of large amounts of labeled data, popu-
larized by the axiom “no data is like more data,” and had
collected more labeled data for training ASR systems than
any other discipline. All these enabling factors came in at
a perfect time when academic and industrial researchers
seized the opportunity and collaborated with each other
effectively in the industry setting, leading to the birth of the
new era of “deep” speech recognition.

I I I . ACH IEVEMENTS OF DEEP
LEARN ING IN SPEECH
RECOGN IT ION

The early experiments discussed in the preceding section on
phone recognition and error analysis, as well as on speech
feature extraction which demonstrated the effectiveness of
using raw spectrogram features [69] had pointed to strong
promise and practical value of deep learning. This early
progress excited researchers to devote more resources to

pursue ASR research using deep learning approaches, the
DNN approach in particular. The small-scale ASR experi-
ments were soon expanded to larger scales [21, 22, 25, 26,
60], spreading to the whole ASR industry including major
companies of Microsoft, Google, IBM, IflyTech, Nuance,
Baidu, etc. [59, 61, 62, 70–79]. The experiments carried
out at Microsoft showed that with increasing amounts of
training data over the range of close to four orders of mag-
nitude (from TIMIT to voice search to Switchboard), the
DNN-based systems outperformed the GMM-based sys-
tems monotonically not only in absolute percentages but
also in relative percentages. This is the kind of accuracy
improvement not seen in the ASR history. In short, for the
DNN-based speech recognizers, the more training data are
used, the better the accuracy, the greater word error rate
reduction over the GMM counterparts in both absolute and
relative terms, and further, the less care required to initialize
the DNN. Soon after these experiments at Microsoft were
reported, similar findings were published by all major ASR
groups worldwide.

Since the initial successful debut of DNNs for speech
recognition around 2009–2011, there have been huge pro-
gressesmade. These progresses, aswell as future challenging
research directions, are elaborated and summarized into six
major areas, each dedicated by a separate subsection below.

A) Output representation learning
Most deep learningmethods forASRhave focused on learn-
ing representations from input acoustic features without
paying attention to output representations. TheNIPSWork-
shop on Learning Output Representations held in Decem-
ber 2013 was dedicated to bridging this gap. The importance
of designing effective linguistic representations for the out-
put layers of deep networks for ASRwas highlighted in [80].
The most straightforward yet most important example is
the use of context-dependent (CD) phone and state units
as the DNN output layer, originally invented at Microsoft
Research as described in [21, 23]. This type of design for
the DNN output representations drastically expands the
output neurons from the context-independent phone states
with the size of 100–200 commonly used on 1990s to the
context-dependent ones with the size in the order of 1000–
30 000. Such design follows the traditional GMM-HMM
systems, andwasmotivated initially by saving huge industry
investment in the speech decoder software infrastructure.
Early experiments further found that due to the significant
increase of the HMM output weights and thus the model
capacity, CD-DNN gave much higher accuracy when large
training data supported such high modeling capacity. The
combination of the above two factors accounted for why the
CD-DNN has been so quickly adopted for industry deploy-
ment. Importantly, the design of the big CD-DNN within
the traditional framework ofHMMdecoding requires com-
bined expertise in the DNN and in the large-scale ASR
decoder. It also requires industry know-how for construct-
ing very large yet efficient CD units ported to the DNN
outputs. It further requires knowledge and skills of how
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to make decoding of such huge networks highly efficient
using HMM technology and how to cut corner in making
practical systems.

For future directions, the output representations for
ASR can benefit from more linguistically-guided struc-
tured design based on symbolic or phonological units of
speech. The rich phonological structure of symbolic nature
in human speech has beenwell-known formany years. Like-
wise, it has also been well understood for a long time that
the use of phonetic or its finer state sequences, even with
(linear) contextual dependency, in engineering ASR sys-
tems, is inadequate in representing such rich structure (e.g.
[81–84]). Such inadequacy thus leaves a promising open
door to improve ASR systems’ performance. Basic theories
about the internal structure of speech sounds and their rel-
evance to ASR in terms of the specification, design, and
learning of possible output representations of the under-
lying speech model for speech target sequences have been
surveyed in [85]. The application of this huge body of speech
knowledge is likely to benefit deep learning basedASRwhen
deep generative and discriminative models are carefully
integrated.

B) Moving towards raw features
One fundamental principle of deep learning is to do away
with hand-crafted feature engineering and to use raw fea-
tures. This principle was first explored successfully in the
architecture of deep autoencoder on the “raw” spectro-
gram or linear filter-bank features, showing its superiority
over the Mel-frequency cepstral coefficient (MFCC) fea-
tures which contain a few stages of fixed transformation
from spectrograms [69]. Over the past 30 years or so, largely
“hand-crafted” transformations of speech spectrogramhave
led to significant accuracy improvements in the GMM-
basedHMMsystems, despite the known loss of information
from the raw speech data. The most successful transforma-
tion is the non-adaptive cosine transform,which gave rise to
MFCCs. The cosine transform approximately de-correlates
feature components, important for the use of GMMs with
diagonal covariance matrices. However, when GMMs are
replaced by deep learningmodels such asDNNs, deep belief
nets (DBNs), or deep autoencoders, such de-correlation
becomes irrelevant due to the very strength of the deep
learning methods in modeling data correlation.

The feature engineering pipeline from speechwaveforms
to MFCCs and their temporal differences goes through
intermediate stages of log-spectra and then (Mel-warped)
filter-banks. Deep learning is aimed to move away from
separate design of feature representations and of classi-
fiers. This idea of jointly learning classifier and feature
transformation for ASR was already explored in early stud-
ies on the GMM-HMM-based systems [86–89]. However,
greater speech recognition performance gain is obtained
only recently in the recognizers empowered by deep learn-
ing methods. For example, Mohamed et al. [90] and Li
et al. [91] showed significantly lowered ASR errors using
large-scale DNNs when moving from the MFCC features

back to more primitive (Mel-scaled) filter-bank features.
These results indicate that DNNs can learn a better trans-
formation than the original fixed cosine transform from the
Mel-scaled filter-bank features.

Compared withMFCCs, “raw” spectral features not only
retainmore information, but also enable the use of convolu-
tion and pooling operations to represent and handle some
typical speech invariance and variability – e.g. vocal tract
length differences across speakers, distinct speaking styles
causing formant undershoot or overshoot, etc. – expressed
explicitly in the frequency domain. For example, the con-
volutional neural network (CNN) can only bemeaningfully
and effectively applied to ASR [25, 26, 92–94] when spectral
features, instead of MFCC features, are used. More recently,
Sainath et al. [74] went one step further toward raw fea-
tures by learning the parameters that define the filter-banks
on power spectra. That is, rather than using Mel-warped
filter-bank features as the input features, the weights corre-
sponding to the Mel-scale filters are only used to initialize
the parameters, which are subsequently learned together
with the rest of the deep network as the classifier. Substantial
ASR error reduction is reported.

Ultimately, deep learning would go all the way to the
lowest level of raw features of speech, i.e. speech sound
waveforms. As an initial attempt toward this goal, the study
carried out by Jaitly and Hinton [95] made use of speech
sound waves as the raw input feature to a deep learn-
ing system. Although the final results were disappointing,
similarly for the earlier work on using speech waveforms
in generative model-based ASR [96], the work neverthe-
less showed that more work is needed along this direction.
Most recently, the new use of raw waveforms of speech
by DNNs (i.e. zero-feature extraction prior to DNN train-
ing) was reported by Tuske et al. [97]. The study not only
demonstrated the same advantage of learning precise non-
stationary patterns of the speech signal localized in time
across frame boundaries, but also reported excellent larger-
scale ASR results. The most recent study on this topic is
reported by Sainath et al. [98, 99], where the use of raw
waveforms produces highest ASR accuracy when combined
with the prior state of the art system.

C) Better optimization
Better optimization criteria and methods are another area
where significant advances have been made over the past
several years in applying DNNs to ASR. In 2010, researchers
at Microsoft recognized the importance of sequence train-
ing based on their earlier experience on GMM-HMM the
[100–103] and started working on full-sequence discrimi-
native training for the DNN-HMM in phone recognition
[65]. Unfortunately, we did not find the right approach to
control the overfitting problem. Effective solutions were
first reported by Kingsbury et al. [104] using Hessian-free
training, and then by Su et al. [105] and by Vesely et al.
[106] based on stochastic gradient descent training. These
authors developed a set of non-trivial techniques to han-
dle the overfitting problems associated with full-sequence
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training of DNN-HMMs, including lattice compensation,
frame dropping, and F-smoothing, which are widely used
today.Other better and novel optimizationmethods include
distributed asynchronous stochastic gradient descent [70,
72], primal-dual method for applying natural parameter
constraints [107], and Bayesian optimization for automated
hyper-parameter tuning [108].

D) A new level of noise robustness
Research into noise robustness in ASR has a long history,
mostly before the recent rise of deep learning. A wide range
of noise-robust techniques developed over past 30 years can
be analyzed and categorized using five different criteria: (1)
feature-domain versus model-domain processing, (2) the
use of prior knowledge about the acoustic environment
distortion, (3) the use of explicit environment-distortion
models, (4) deterministic versus uncertainty processing,
and (5) the use of acoustic models trained jointly with the
same feature enhancement or model adaptation process
used in the testing stage. See a comprehensive review in
[109, 110] and additional review literature or original work
in [111–114].

The model-domain techniques developed for GMM-
HMMs are often not applicable to the new DNN models
for ASR. The difficulty arises primarily due to the differ-
ences between generative models that GMMs belong to and
discriminative models that DNNs belong to. The feature-
domain techniques, however, can be more directly applied
to the DNN system. A detailed investigation of the use of
DNNs for noise robust speech recognition in the feature
domain was reported by Seltzer et al. [115], who applied
the C-MMSE [102, 103] feature enhancement algorithm on
the input feature used in the DNN. By processing both the
training and testing data with the same algorithm, any con-
sistent errors or artifacts introduced by the enhancement
algorithm can be learned by the DNN-HMM recognizer.
Strong results were obtained on the Aurora4 task. More
recently, Kashiwagi et al. [116] applied the SPLICE feature
enhancement technique [117] to a DNN speech recognizer,
where theDNN’s output layer was determined on clean data
instead of on noisy data as in the study reported by Seltzer
et al. [115].

Recently, a series of studies were reported by Huang
et al. [118] comparing GMMs and DNNs on the mobile
voice search and short message dictation datasets. These
data were collected through real-world applications used
by millions of users with distinct speaking styles in diverse
acoustic environments. A pair of state-of-the-art GMM and
DNN models was trained using 400 h of VS/SMD data.
The two models shared the same training data and decision
tree. The same GMM seed model was used for the lattice
generation in the GMM and the senone state alignment in
the DNN. Under such carefully controlled conditions, the
experimental results showed that the DNN-based system
yields uniform performance gain over the GMM counter-
part across awide range of SNR levels on all types of datasets
and acoustic environments. That is, the use of DNNs raises

the performance of noise-robust ASR to a new level. How-
ever, this study, themost comprehensive in the noise-robust
DNN-based ASR literature so far, also suggests that noise
robustness remains an important research area and tech-
niques such as speech enhancement, noise robust acoustic
features, or othermulti-condition learningmethods need to
be further explored in the DNN setup.

In the most recent study on noise-robust ASR using
deep learning, Hannun et al. [77] reported an interesting
brute-force approach based on “data augmentation.” It is
intriguing to see how deep learning, deep recurrent neural
nets in particular, make the problem solution conceptually
much easier than other approaches discussed above. That
is, simply throw in very large amounts of synthesized or
“superpositioned” noisy data that capture the right kinds of
variability controlled by the synthesis process. The efficient
parallel training system was used to training deep speech
models with as many as 100 000 h of such synthesized data
and produced excellent results. The challenge for this brute-
force approach is to efficiently represent the combinatorially
growing size of a multitude of distortion factors known
to corrupt speech acoustics under real-world application
environments.

Noise robust ASR is raised to a new level in the DNN era.
For other notable work in this area, see [119–121].

E) Multi-task and transfer learning
In the area of ASR, the most interesting application of
multi-task learning is multi-lingual or cross-lingual ASR,
where ASR for different languages is considered as differ-
ent tasks. Prior to the rise of deep learning, cross-language
data sharing and data weighing were already shown to be
useful for the GMM-HMM system [122]. Another success-
ful approach for the GMM-HMM is to map pronunciation
units across languages either via knowledge-based or data-
driven methods [123]. For the more recent, DNN-based
systems, these multi-task learning applications in ASR are
much more successful.

In the studies reported by Huang et al. [124] and Heigold
et al. [125], two research groups independently developed
closely related DNN architectures with multi-task learning
capabilities for multilingual speech recognition. The idea is
that the hidden layers in the DNN, when learned appropri-
ately, serve as increasingly complex feature transformations
sharing common hidden factors across the acoustic data
in different languages. The final softmax layer represent-
ing a log-linear classifier makes use of the most abstract
feature vectors represented in the top-most hidden layer.
While the log-linear classifier is necessarily separate for dif-
ferent languages, the feature transformations can be shared
across languages. Excellent multilingual speech recognition
results were reported. The implication of this set of work
is significant and far reaching. It points to the possibility
of quickly building a high-performance DNN-based sys-
tem for a new language from an existingmultilingual DNN.
This huge benefit requires only a small amount of train-
ing data from the target language, although having more
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data would further improve the performance. This multi-
task learning approach can reduce the need for the unsu-
pervised pre-training stage, and can train the DNN with
much fewer epochs. Extension of this set of work would
be to efficiently build a language-universal speech recog-
nition system. Such a system will not only recognize many
languages and improve the accuracy for each individual lan-
guage, but also expand the languages supported by simply
stacking softmax layers on the DNN for new languages.

More recently, the power ofmultitask learningwithDNN
is demonstrated in improved ASR accuracy in difficult
reverberated acoustic environments [126].

F) Better architectures
The tensor version of the DNN was reported by Yu et al.
[127, 128] and showed substantially lower ASR errors com-
pared with the conventional DNN. It extends the DNN by
replacing one or more of its layers with a double-projection
layer and a tensor layer. In the double-projection layer, each
input vector is projected into two non-linear subspaces.
In the tensor layer, two subspace projections interact with
each other and jointly predict the next layer in the over-
all deep architecture. An approach is developed to map
the tensor layers to the conventional sigmoid layers so that
the former can be treated and trained in a similar way
to the latter.

The DNN and its tensor version are fully connected.
Locally connected architectures, or (deep) CNNs, have
each CNN module consisting of a convolutional layer and
a pooling layer. The convolutional layer shares weights,
and the pooling layer subsamples the output of the con-
volutional layer and reduces the data rate from the layer
below. With appropriate changes from the CNN designed
for image recognition to that taking into account speech-
specific properties, the CNN has been found effective for
ASR [25, 26, 62, 92–94, 129]. Note that the time-delay neu-
ral network (TDNN, [2]) developed for early days of ASR
is a special case and predecessor of the CNN when weight
sharing is limited to one of the two dimensions, and there
is no pooling layer. It was not until recently that researchers
have discovered that the time-dimension invariance is less
important than the frequency-dimension invariance for
ASR [92, 93].

Another important deep architecture is the (deep)
RNN, especially its long short-term memory (LSTM) ver-
sion. The LSTM was reported to give the lowest error
rate on the benchmark TIMIT phone recognition task
[57]. More recently, the LSTM was shown high effec-
tiveness on large-scale tasks with applications to Google
Now, voice search, and mobile dictation with excellent
accuracy results [71, 72]. To reduce the model size, the
otherwise very large output vectors of LSTM units are
linearly projected to smaller-dimensional vectors. Asyn-
chronous stochastic gradient descent (ASGD) algorithm
with truncated backpropagation through time is performed
across hundreds of machines in CPU clusters. The best
accuracy by year 2014 was obtained by optimizing the

frame-level cross-entropy objective function followed by
sequence discriminative training [72]. More recently, the
use of CTC objective function in the deep LSTM sys-
tem training further improves the recognition accuracy
[59, 130].

When the LSTM model is fed by the output of a CNN
and then feeds into a fully connectedDNN, the entire archi-
tecture becomes very deep, and is called the CLDNN. This
architecture leverages complementary modeling capabili-
ties of three types of neural nets, and is demonstrated to be
more effective than each of the neural net types including
the highest performing LSTM [98, 99].

While the DNN-HMM has significantly outperformed
the GMM-HMM, recent studies investigated a novel “deep
GMM” architecture, where a GMM is transformed to a
large softmax layer followed by a summation pooling layer
[131, 132]. Theoretical and experimental results show that the
deep GMM performs competitively with the DNN-HMM.

Another set of novel deep architectures, which are quite
different from the standard DNN, are reported in [133–
135] for successful ASR and related applications includ-
ing speech understanding. These models are exemplified
by the deep stacking network (DSN), its tensor vari-
ants [136, 137], and its kernel version [138]. The novelty
of this type of deep models lies in its modular design,
where each module is constructed by taking its input
from the output of the lower module concatenated with
the original data input, and in the specific way of com-
puting the error gradient of the weight matrices in each
module [139].

The initialmotivation of concatenating the original input
vector with the output vector of each DSN module as the
new input vector for each higher DSN module was to
avoid loss of information when building up higher and
higher modules in this deep model. Due to the largely
convex learning problem formulated for the DSN training,
such concatenation makes training errors (nearly) always
decrease as each new module is added to the DSN. It
turns out that such concatenation is also a natural conse-
quence of another type of deep architecture, called deep
unfolding nets [140]. These nets are constructed by stack-
ing a number of (shallow) generative models based on
non-negative matrix factorization. This stacking process,
called unfolding, follows the inference algorithm applied
to the original shallow generative model, which deter-
mines the non-linear activation function and also naturally
requires the original input vector as part of the inference
algorithm. Importantly, this type of deep stacking or unfold-
ing models allow the problem-domain knowledge to be
built into the model, which DNNs with generic architec-
tures consisting of weight matrices and fixed forms of non-
linear units would have greater difficulties in incorporating
knowledge.

An example of problem-domain knowledge discussed
above in the area of speech processing is how noise speech
is formed from clean speech and noise. Another example
in the area of language processing is how (hidden) topics
can be generated from words in text. Note that in these
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examples, the domain knowledge of generative type can
be parameterized naturally by matrices in the same way
that DNNs are parameterized. This enables similar kinds of
DNN learning algorithms to apply to fine-tuning the deep
stacking or unfolding nets in a straightforward manner.
When the generativemodels cannot be naturally parameter-
ized by matrices, e.g. the deep generative models of speech
with temporal dynamics discussed in Section II.A, how to
incorporate such knowledge in integrated deep generative
and discriminative models is a challenging research direc-
tion. That is, the second “quick-fix” discussed in Section II.B
has yet to be overcome in more general settings than those
when the deep generative models have not been parame-
terized by dense matrices and common non-linear func-
tions. Further, when the original generative model moves
from shallow to deep, as in the hidden dynamic mod-
els discussed in Section II.A, the inference algorithm itself
becomes computationally complex and requires various
kinds of approximation; e.g. variational inference. How to
build deep unfolding models and to carry out discrimi-
native fine-tuning using backpropagation becomes a more
challenging task.

G) Summary
Six main areas of achievements and progresses of deep
learning in ASR after the initial success of the pre-trained
DNN are surveyed in this section. Due to the space
limit, several other important areas of progresses are not
included here, including adaptation of DNNs for speakers
[127, 141], better regularization methods, better non-linear
units, speedup ofDNN training and decoding, tensor-based
DNNs [128, 141], exploitation of sparseness in DNNs [139],
and understanding the underlying mechanisms of DNN
feature processing.

In summary, large-scale ASR is the first and the most
convincing successful case of deep learning in the recent
history, embraced by both industry and academia across the
board. Between 2010 and 2015, the two major conferences
on signal processing and ASR, IEEE-ICASSP and Inter-
speech, have seen near exponential growth in the numbers
of accepted papers in their respective annual conferences
on the topic of deep learning for ASR. More importantly,
all major commercial ASR systems (e.g. Microsoft Cortana,
Xbox, Skype Translator, Google Now, Apple Siri, Baidu and
iFlyTek voice search, and a range of Nuance speech prod-
ucts, etc.) nowadays are based on deep learning methods,
the best evidence of high achievements of deep learning
in ASR.

In addition to ASR, deep learning is also creating high
impact in image recognition (e.g. [142]) and in speech syn-
thesis (e.g. [143]), as well as in spoken language under-
standing [144, 145]. A related major area with perhaps
more important practical applications, where deep learning
has the potential to make equally strong achievements but
where special challenges are lying ahead, will be discussed
and analyzed in the next section.

I V . DEEP LEARN ING FOR NATURAL
LANGUAGE AND MULT IMODAL
PROCESS ING

ASR involves the inference from low-level or raw speech
waves to high-level linguistic entities such asword sequences.
Image recognition involves the inference from low-level
pixels to high-level semantic categories. Due to the rea-
sonably well understood hierarchical, layered structure of
human speech and visual perception systems, it is easy to
appreciate why deep learning can do so well in ASR and
image recognition.

For natural language processing (NLP) and multimodal
processing involving language, the raw signal often starts
with words, which already embody rich semantic informa-
tion. As of this writing, one has not observed as striking
achievements of deep learning in natural language andmul-
timodal processing as in speech and image recognition,
and huge challenges lie ahead. However, strong research
activities have been taking place in recent years. In this
section, a selected review is provided on some of these
progresses.

A) A selected review on deep learning for NLP
Over the past few years, deep learning methods based on
neural nets have been shown to perform well on vari-
ous NLP tasks such as language modeling, machine trans-
lation, part-of-speech tagging, named entity recognition,
sentiment analysis, and paraphrase detection, as well as
NLP-related tasks involve user behaviors such as computa-
tional advertising and web search (informational retrieval).
The most attractive aspect of deep learning methods is
their ability to perform these tasks without external hand-
designed resources or feature engineering. To this end, deep
learning develops and makes use of an important concept
called “embedding”. That is, each linguistic entity (e.g. word,
phrase, sentence, paragraph, or a full text document), a
physical entity, a person, a concept, or a relation, which is
often represented as a sparse, high-dimensional vector in
the symbolic space, can be mapped into a low-dimensional,
continuous-space vector via distributed representations by
neural nets [146–149]. In themost recent work, such “point”
embedding has been generalized to “region” embedding or
Gaussian embedding [150].

Use of deep learning techniques in machine transla-
tion, one most important task in NLP applications, has
recently attracted much attention. In [151, 152], the phrase-
translation component in a machine translation system is
replaced by a set of DNNs with semantic phrase embed-
dings. A pair of source and target phrases is projected
into continuous-valued vector representations in a low-
dimensional latent semantic space. Their translation score
is then computed by cosine distance between the pair in
this new space. In a more recent study, a deep RNN with
LSTM cells are used to encode the source sentence into a
fixed-length embedding vector, which excites another deep
RNN as the decoder that generates the target sentence
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[153]. Most recently, Bahdanau et al. [154] reported a neu-
ral machine translation approach that learns to align and
translate jointly, where the earlier encoder-decoder archi-
tecture is extended by allowing a soft search, called the
“attention mechanism,” for parts of source sentence rele-
vant to predicting a target word with no need for explicit
segmentation.

Another important NLP-related task is knowledgebase
completion, instrumental in question-answering and other
NLP applications. In [155], a simple method (TransE) was
proposed which models relationships by interpreting them
as translations operating on the low-dimensional embed-
dings of the entities. More recent work [149] adopts an
alternative approach, based on the use of neural tensor net-
works, to attack the problem of reasoning over a large joint
knowledge graph for relation classification. Themost recent
work [156] generalizes these earlier models to a unified
learning framework, where entities are represented as low-
dimensional dense vectors learned from a neural network
and relations are represented by bilinear and/or linear map-
ping functions. For theNLPproblemof question answering,
a most recent and highly visible deep learning approach
is proposed in [157] using memory networks, which use a
long-term memory as a dynamic knowledge base. The out-
put of thememory network forms the text response to input
questions to the network.

Information retrieval is another important area of NLP
applications, where a user enters a keyword or natu-
ral language query into the automated computer system
that contains a collection of many documents with the
goal of obtaining a set of most relevant documents. Web
search is a large-scale information retrieval task on largely
unstructured web data. Since 2013, Microsoft Research has
successfully developed and applied a specialized deep learn-
ing architecture, called deep-structured semantic model or
deep semantic similarity model (DSSM; [158]) and its con-
volutional version (C-DSSM; [159, 160]), to web search and
related tasks. The DSSM uses the DNN architecture to cap-
ture complex semantic properties of the query and the doc-
ument, and to rank a set of documents for a given query.
Briefly, a non-linear projection is performed first to map
the query and the documents to a common semantic space.
Then, the relevance of each document given the query is
calculated as the cosine similarity between their vectors in
that semantic space. The DNNs are trained using the click-
through data such that the conditional likelihood of the
clicked document given the query ismaximized. TheDSSM
is optimized directly for Web document ranking exploiting
distantly supervised signals, and thus gives strong perfor-
mance. Furthermore, to deal with large vocabularies inWeb
search applications, a new word hashing method is devel-
oped, through which the high-dimensional term vectors
of queries or documents are projected to low-dimensional
letter-based n-gram vectors.

More recently, the DSSM has been further developed
and successfully applied to online ads selection and place-
ment (unpublished), to multitask learning involving both
semantic classification and information retrieval tasks [161],

to entity ranking in an Microsoft Office application [162],
and to automatic image captioning [163]. The latter is a
currently trendy multimodal processing task involving nat-
ural language, which will be discussed shortly in the next
subsection.

B) A selected review on deep learning for
multimodal processing
Multimodal processing is a class of applications closely
related to multitask learning, where the learning domains
or “tasks” cut across more than one modalities for prac-
tical applications that embrace a mix of natural language,
image/video, audio/speech, touch, and gesture. As evi-
denced in the successful cases of ASR described in Section
III.E, multitask leaning fits very well to the paradigm of
deep representation learning where the shared represen-
tations and statistical strengths across tasks (e.g. those
involving separate modalities of audio, image, touch, and
text) is expected to greatly facilitate many machine learn-
ing scenarios under low-resource conditions. Before deep
learning methods were adopted, there had already been
numerous efforts inmultimodal andmultitask learning. For
example, a prototype called MiPad for multimodal interac-
tions involving capturing, leaning, coordinating, and ren-
dering a mix of speech, touch, and visual information was
developed and reported in [113, 164]. In [165, 166], mixed
sources of information frommultiple-sensorymicrophones
with separate bone-conductive and air-born paths were
exploited to de-noise speech. These early studies all used
shallow models and achieved worse than desired perfor-
mance. With the advent of deep learning, it is hopeful that
the difficult multi-modal learning problems can be solved
with eventual success to enable a wide range of practical
applications.

The deep architecture of DeViSE (Deep Visual-Semantic
Embedding), developed by Frome et al. [167], is a typi-
cal example of multimodal learning where text information
is used to improve the image recognition system. In this
system, the loss function used in the training adopts a com-
bination of dot-product similarity and max-margin, hinge
rank loss. This is closely related to the cosine distance or
maximum-mutual information based loss function used for
training theDSSMmodel in [158] described in Section IV.A.
The results show that the information provided by text sig-
nificantly improves zero-shot image predictions, achieving
excellent hit rates across thousands of the labels never seen
by the image model.

One of the most interesting applications of deep learn-
ing methods to multimodal processing appeared recently
in November 2014, when several groups almost simultane-
ously publicized their work on automatic image caption-
ing in ArXiv, all to be revised and officially published at
the CVPR-2015 conference. In the Microsoft system [163],
the image is first broken down into a number of regions
likely to be objects, and then a deep CNN is applied to
each region to generate a high-level feature vector to cap-
ture relevant visual information. The resulting bag of words
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is then put together using a language model to produce
a set of likely candidate sentences. They are subsequently
ranked by the DSSMwhich captures global semantics of the
caption sentence about the image and produces the final
answer. Baidu’s approach is based on a multimodal RNN
that generates novel sentence descriptions to explain the
image’s content [168]. Google’s paper [169], and Stanford’s
paper [170] described two conceptually similar systems,
both based on multimodal RNN generative models con-
ditioned on the image embedding vectors at the first time
step. University of Toronto [171] reported a system pipeline
that is based on multimodal neural language models that
are unified with visual-semantic embeddings produced by
the deep CNN. All these systems were evaluated using the
common MSR’s COCO database, and thus upon final sys-
tems’ refinement the results of these different systems can be
compared.

C) Summary
The goal of NLP is to analyze, understand, and generate lan-
guages that humans use naturally, and NLP is also a critical
component of multimodal systems. Significant progress in
NLP has been achieved in recent years, addressing impor-
tant and practical real-world problems.Deep learning based
on embedding methods has contributed to such progress.
Words in sequence are traditionally treated as discrete sym-
bols, and deep learning provides continuous-space vector
representations that describe words and their semantic and
syntactic relationships in a distributed manner permitting
meaningfully defined similarity measures. Practical advan-
tages of such representations include natural abilities tomit-
igate data sparseness, to incorporate longer contexts, and to
represent morphological, syntactic and semantic relation-
ships across words and larger linguistic entities. The several
NLP and multimodal applications reviewed in this section
have all been grounded on vector-space embeddings for the
distributed representation of words and larger units as well
as of the relations among them. In particular, inmultimodal
processing, all types of signals – image, voice, text – are
projected into the same semantic vector space in the deep
learning framework, greatly facilitating their comparison,
integration, and joint processing. The representation power
of such flat vectors based on neural networks in contrast
with symbolic tree-like structure in NLP is currently under
active investigation by deep learning, NLP, and cognitive
science researchers (e.g. [172]).

V . CONCLUS IONS AND
CHALLENGES FOR FUTURE WORK

This article reviews part of the history on neural networks
and (deep) generative modeling, and reflects on the path to
the current triumph of applying deep neural nets to speech
recognition, the first successful case of deep learning at
industry scale. The roles of generative models have been
analyzed in the review, pointing out that the key advantages

of embedding knowledge about speech dynamics that are
naturally enabled by deep generative modeling have yet to
be incorporated as part of the new-generation deep learning
framework.

For speech recognition, one remaining future challenge
lies in how to effectively integrate major relevant speech
knowledge and problem constraints into new deep models
of the future. Examples of such knowledge and constraints
would include distributed, feature-based phonological rep-
resentations of sound patterns of language via hierarchical
structure based onmodern phonology, articulatory dynam-
ics, and motor program control, acoustic distortion mech-
anisms for the generation of noisy, reverberant speech in
multi-speaker environments, Lombard effects caused by
modification of articulatory behavior due to noise-induced
reduction of communication effectiveness, and so on. Deep
generative models are much better able to impose the prob-
lem constraints above than purely discriminative DNNs.
These deep generative models should be parameterized to
facilitate highly regular, matrix-centric, large-scale compu-
tation in order to take advantage of modern high-efficiency
GPGPU computing already demonstrated to be extremely
fruitful for DNNs. The design of the overall deep compu-
tational network architecture of the future may be moti-
vated by approximate inference algorithms associated with
the initial generative model. Then, discriminative learning
algorithms such as backpropagation can be developed and
applied to learn all network parameters (i.e. large matri-
ces) in an end-to-end fashion. Ultimately, the run-time
computation follows the inference algorithm in the gener-
ative model, but the parameters have been learned to best
discriminate all classes of speech sounds. This is akin to
discriminative learning for GMM-HMMs, but now with
much more powerful deep architectures and with more
comprehensive ways of incorporating speech knowledge.
The discriminative learning will be much more power-
ful (via backprop through the entire deep structure) than
the earlier discriminative learning on shallow architec-
tures ofGMM-GMMs that relied on extendedBaum–Welch
algorithm [100].

The past several years of deep learning research and
practical applications have established that for perceptual
tasks such as speech and image recognition, DNN-like
discriminative models perform extremely well and scale
beautifully with large amounts of strongly supervised train-
ing data. Some remaining issues would include: (1) What
will be the limit for growing recognition accuracy with
respect to further increasing amounts of labeled data? (2)
Beyond this limit or when labeled data become exhausted
or non-economical to collect, what kind of novel unsuper-
vised or semi-supervised deep learning architectures will
emerge? Deep generative models which can naturally han-
dle unlabeled training data appear well suited for meeting
this challenge. It is expected that within next 4–5 years,
the above issues will be resolved and rapid progress will
be made to enable more impressive application scenarios,
such as analyzing videos and then telling stories about them
by a machine.
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For the more difficult and challenging cognitive tasks –
natural language,multimodal processing, reasoning, knowl-
edge, attention, memory, etc. – deep learning researchers so
far have not found asmuch low-hanging fruit as for the per-
ceptual tasks of speech and image above, and the views for
the future development are somewhat less clear. Neverthe-
less, solid progress has beenmade over past several years, as
we selectively reviewed in Section IV of this paper. If suc-
cessful, the revolution to be created by deep learning for
the cognitive tasks will be even more impactful than the
revolution in speech and image recognition we have seen
so far. Important issues to be addressed and the technical
challenges for future developments would include: (1) Will
supervised deep learning, which applies to NLP tasks like
machine translation, significantly beat the state of the art
currently still held by dominant NLPmethods as for speech
and image recognition tasks? (2) How do we distill and
exploit “distant” supervision signals for (weakly) supervised
deep learning in the NLP, multimodal and other cognitive
tasks? and (3) Will flat dense-vector embedding with dis-
tributed representations, which is the backbone of much
of the deep learning methods for language as discussed in
Section IV, be sufficient for general tasks involving natural
language that is known to possess rich tree-like structure?
That is, do we need to directly encode and recover syntactic
and semantic structure of natural language?

Tackling NLP problems with the deep learning scheme
based on embedding may become more promising when
the problems are part of wider big-data analytic applica-
tions, where not only words and other linguistic entities but
also business activities, people, events, and so on may be
embedded into the unified vector space. Then the “distant”
supervision signals may be mined with broader context
than what we discussed in Section IV for text-centric tasks
alone. For example, an email from a sender to a receiver
with the email subject line, email body, and possible attach-
ments would readily establish such supervision signals that
relate different people in connection with different levels
of detail of natural language data. With large amounts of
such business-analytic data available including a wealth of
weakly supervised information, deep learning is expected to
play important roles in awider range of applications thanwe
have discussed in the current article.
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