Proceedings of the Edinburgh Mathematical Society (2002) **45**, 547–548 © DOI:10.1017/S0013091502000287 Printed in the United Kingdom

A DIMENSION-DEPENDENT MAXIMAL INEQUALITY

ROMAN SHVIDKOY

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA (shvidkoy@math.missouri.edu)

(Received 26 February 2002)

Abstract In this short note we show that $\sup\{||M_{\nu}|| : \nu \text{ is a measure on } \mathbb{R}^n\}$, where $||M_{\nu}||$ denotes the centred Hardy–Littlewood maximal operator, depends exponentially on n.

Keywords: Hardy-Littlewood maximal operator; maximal inequality

AMS 2000 Mathematics subject classification: Primary 42B25

1. Statement of the problem

Let ν be a σ -finite measure on the Borel subsets of \mathbb{R}^n . Define the Hardy–Littlewood centred maximal operator associated with ν by

$$M_{\nu}f(x) = \sup_{r>0} \left(\frac{1}{\nu(B_r(x))}\right) \int_{B_r(x)} |f| \,\mathrm{d}\nu, \quad x \in \mathbb{R}^n.$$

It was proved in [1, 2] that

$$\|M_{\nu}f\|_{L_p(\mathbb{R}^n,\nu)} \leqslant C \|f\|_{L_p(\mathbb{R}^n,\nu)}, \quad 1$$

where C does not depend on ν . We present a simple construction showing that C depends exponentially on n. This answers the question posed in [2,3].

2. Construction

Claim 2.1. There is an absolute constant $\alpha > 1$ such that one can find $[\alpha^n]$ points $x_1, x_2, \ldots, x_{[\alpha^n]}$ on the Euclidean sphere S^{n-1} such that

$$||x_i - x_j|| > 1, \quad i \neq j.$$

The maximal value of α is immaterial. A simple argument based on volume estimates yields $\alpha \ge e^{(\pi/6)^2/2}$.

Let us fix $x_1, x_2, \ldots, x_{[\alpha^n]}$ as in the claim and put

$$\nu = \delta_{\{0\}} + \sum_i \delta_{\{x_i\}}.$$

5	1	7
J	4	1

R. Shvidkoy

Define $f = \delta_{\{0\}}$. Then $||f||_{L_p(\mathbb{R}^n,\nu)} = 1$. On the other hand,

$$(M_{\nu}f)(x_i) \ge \frac{1}{\nu(B_1(x_i))} \int_{B_1(x_i)} |f| \, \mathrm{d}\nu = \frac{1}{2}, \quad i = 1, \dots, [\alpha^n].$$

Hence, $||M_{\nu}f||_{L_p(\mathbb{R}^n,\nu)} \ge \frac{1}{2}[\alpha^n]$. This is the end of the construction.

References

- R. FEFFERMAN, Strong differentiation with respect to measures, Am. J. Math. 103 (1981), 1. 33 - 40.
- 2.L. GRAFAKOS AND J. KINNUNEN, Sharp inequalities for maximal functions associated with general measures, Proc. R. Soc. Edinb. A 128 (1998), 717-723.
- 3. I. E. VERBITSKY, A dimension-free Carleson measure inequality, in Complex analysis, operators, and related topics, pp. 393-398 (Birkhäuser, Basel, 2000).

548