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Abstract

In this paper we study impulsive periodic solutions for second-order nonautonomous singular differential
equations. Our proof is based on the mountain pass theorem. Some recent results in the literature are
extended.
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1. Introduction

In this paper we discuss periodic solutions for second-order nonautonomous singular
problems u′′ −

b(t)
uα

= e(t), a.e. t ∈ (0, T ),

u(0) − u(T ) = u′(0) − u′(T ) = 0,
(1.1)

under the impulse conditions

∆u′(t j) = I j(u(t j)), j = 1, 2, . . . , p − 1, (1.2)

where α > 1, b ∈ C1([0, T ], (0,∞)) and e ∈ L2([0, T ], R) are T -periodic, t j, j =

1, 2, . . . , p − 1, are the instants when the impulses occur and 0 = t0 < t1 < t2 < · · · <
tp−1 < tp = T , I j : R→ R ( j = 1, 2, . . . , p − 1) are continuous.

Impulse effects occur widely in many evolution processes in which their states
are changed abruptly at certain moments in time. For the general aspects of
impulsive differential equations, we refer the reader to the classical monograph [18].
Applications of impulsive differential equations with or without delays occur in
medicine, population dynamics, chaos theory, and so on; see [8, 16, 17, 21].
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Impulsive differential equations have been studied by many authors [4, 11, 19, 20].
Some classical tools have been used to study such problems. These classical
techniques include the coincidence degree theory of Mawhin [24], the method
of upper and lower solutions [6], some fixed point theorems [7] and variational
methods [22, 26, 27]. In 2009, Nieto and O’Regan [22] developed the variational
framework for impulsive problems and established existence results for a class of
impulsive differential equations with Dirichlet boundary conditions. Sun et al. [26]
obtained multiple periodic solutions for second-order perturbed Hamiltonian systems
with impulse effects via variational methods.

Singular problems without impulse effects have also been investigated extensively
in the literature [2, 3, 5, 9, 10, 12–14] by using topological methods and variational
methods. For example, Boucherif and Daoudi-Merzagui [5] considered a class of
singular differential equations and obtained the existence of periodic solutions when
the nonlinearity is bounded from above on u by using the mountain pass theorem.

Inspired by [5, 22], in this paper we shall study the existence of periodic solutions
for impulsive singular problems. The study of impulsive singular problems is more
recent and the number of references is small; see [1, 11, 25]. The tools used in all
these references are topological methods. In this paper we prove that problem (1.1)–
(1.2) has at least one periodic solution by applying variational methods.

Our result is presented as follows.

T 1.1. Assume that:

(S1) b ∈ C1([0, T ], (0,∞)) is T -periodic and b′(t) ≥ 0 for all t ∈ [0, T ];
(S2) e ∈ L2([0, T ], R) is T -periodic and

∫ T

0
e(t) dt < 0;

(S3) there exist two constants m, M such that, for any t ∈ R,

m ≤ I j(t) ≤ M, j = 1, 2, . . . , p − 1,

where m < 0 and 0 ≤ M < −1/(p − 1)
∫ T

0
e(t) dt;

(S4) for any t ∈ R, ∫ t

0
I j(s) ds ≥ 0, j = 1, 2, . . . , p − 1.

Then problem (1.1)–(1.2) has at least one solution.

R 1.2. In fact, it is not difficult to find some functions I j satisfying (S3) and (S4).
For example,

I j(t) = sin t, t ∈ R.

R 1.3. Obviously Theorem 1.1 also holds if there is no impulse. In [15],
Daoudi-Merzagui studied the existence of periodic solutions for singular differential
equations without impulsive effects. In order to apply the method of upper and
lower functions, he assumed that the singular nonlinearity f (t, ·) is unbounded from
above and from below. However, in our paper we consider the case where f (t, ·) is
only bounded from above (here f (t, u) = −b(t)/uα). So we extend the result in [15].
Moreover, we also extend the result in [5] to the impulsive case.

https://doi.org/10.1017/S0004972711003509 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003509


[3] Impulsive periodic solutions for singular problems via variational methods 195

2. Preliminaries

Let

H1
T = {u : [0, T ]→ R | u is absolutely continuous, u(0) = u(T ) and u′ ∈ L2([0, T ], R)}

with the inner product

(u, v) =

∫ T

0
u(t)v(t) dt +

∫ T

0
u′(t)v′(t) dt, ∀u, v ∈ H1

T .

The corresponding norm is defined by

‖u‖H1
T

=

(∫ T

0
|u(t)|2 dt +

∫ T

0
|u′(t)|2 dt

)1/2

, ∀u ∈ H1
T .

Then H1
T is a Banach space. (In fact, it is a Hilbert space.)

If u ∈ H1
T , then u is absolutely continuous and u′ ∈ L2([0, T ], R). In this

case, ∆u′(t) = u′(t+) − u′(t−) = 0 is not necessarily valid for every t ∈ (0, T ) and the
derivative u′ may have some discontinuities. This may lead to impulse effects.

Following the ideas of [22], take v ∈ H1
T and multiply the two sides of the equality

−u′′ +
b(t)
uα

+ e(t) = 0

by v and integrate from 0 to T :∫ T

0

(
−u′′ +

b(t)
uα

+ e(t)
)
v dt = 0. (2.1)

Note that, since u′(0) − u′(T ) = 0,∫ T

0
u′′(t)v(t) dt =

p−1∑
j=0

∫ t j+1

t j

u′′(t)v(t) dt =

p−1∑
j=0

(u′(t−j+1)v(t−j+1) − u′(t+j )v(t+j ))

−

p−1∑
j=0

∫ t j+1

t j

u′(t)v′(t) dt

= u′(T )v(T ) − u′(0)v(0) −
p−1∑
j=1

∆u′(t j)v(t j) −
∫ T

0
u′(t)v′(t) dt

= −

p−1∑
j=1

I j(u(t j))v(t j) −
∫ T

0
u′(t)v′(t) dt.

Combining with (2.1),∫ T

0
u′(t)v′(t) dt +

p−1∑
j=1

I j(u(t j))v(t j) +

∫ T

0

b(t)
uα

v(t) dt +

∫ T

0
e(t)v(t) dt = 0.

As a result, we introduce the following concept of a weak solution for problem
(1.1)–(1.2).
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D 2.1. We say that a function u ∈ H1
T is a weak solution of problem (1.1)–

(1.2) if∫ T

0
u′(t)v′(t) dt +

p−1∑
j=1

I j(u(t j))v(t j) +

∫ T

0

b(t)
uα

v(t) dt +

∫ T

0
e(t)v(t) dt = 0

holds for any v ∈ H1
T .

Define the functional Φ : H1
T → R by

Φ(u) :=
1
2

∫ T

0
|u′(t)|2 dt +

p−1∑
j=1

∫ u(t j)

0
I j(s) ds +

∫ T

0
b(t)

(∫ u(t)

1

1
sα

ds
)

dt

+

∫ T

0
e(t)u(t) dt

(2.2)

for every u ∈ H1
T . It is easy to verify that Φ is well defined on H1

T , continuously
differentiable and weakly lower semicontinuous. Moreover, the critical points of Φ

are the weak solutions of problem (1.1)–(1.2).
In the next section, the following version of the mountain pass theorem will be used

in our argument.

T 2.2 [23, Theorem 4.10]. Let X be a Banach space and let ϕ ∈C1(X, R).
Assume that there exist x0, x1 ∈ X and a bounded open neighbourhood Ω of x0 such
that x1 ∈ X \Ω and

max{ϕ(x0), ϕ(x1)} < inf
x∈∂Ω

ϕ(x).

Let
Γ = {h ∈C([0, 1], X) : h(0) = x0, h(1) = x1}

and
c = inf

h∈Γ
max
s∈[0,1]

ϕ(h(s)).

If ϕ satisfies the (PS)-condition (that is, a sequence {un} in X satisfying ϕ(un) is
bounded and ϕ′(un)→ 0 as n→∞ has a convergent subsequence), then c is a critical
value of ϕ and c > max{ϕ(x0), ϕ(x1)}.

3. Proof of Theorem 1.1

In order to study problem (1.1)–(1.2), for any λ ∈ (0, 1) we consider the modified
problem 

u′′ + b(t) fλ(u(t)) = e(t), a.e. t ∈ (0, T ),

∆u′(t j) = I j(u(t j)), j = 1, 2, . . . , p − 1,

u(0) − u(T ) = u′(0) − u′(T ) = 0,

(3.1)
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where fλ : [0, T ] × R→ R is defined by

fλ(u) =


−

1
uα
, u ≥ λ,

−
1
λα
, u < λ.

Let Fλ(u) =
∫ u

1
fλ(s) ds and consider the functional

Φλ : H1
T → R

defined by

Φλ(u) :=
1
2

∫ T

0
|u′(t)|2 dt +

p−1∑
j=1

∫ u(t j)

0
I j(s) ds −

∫ T

0
b(t)Fλ(u(t)) dt

+

∫ T

0
e(t)u(t) dt.

(3.2)

Clearly, Φλ is well defined on H1
T , continuously differentiable and weakly lower

semicontinuous. Moreover, the critical points of Φλ are the weak solutions of
problem (3.1).

P. The proof is divided into four steps.

Step 1. We verify that the functional Φλ satisfies the Palais–Smale condition.
Let a sequence {un} in H1

T be such that Φλ(un) is bounded and Φ′λ(un)→ 0. That is,
there exist a constant c1 > 0 and a sequence {εn}n∈N ⊂ R

+ with εn→ 0 as n→ +∞ such
that, for all n,∣∣∣∣∣ ∫ T

0

(1
2
|u′n(t)|2 − b(t)Fλ(un(t)) + e(t)un(t)

)
dt +

p−1∑
j=1

∫ un(t j)

0
I j(s) ds

∣∣∣∣∣ ≤ c1, (3.3)

and, for every v ∈ H1
T ,∣∣∣∣∣ ∫ T

0
[u′n(t)v′(t) − b(t) fλ(un(t))v(t) + e(t)v(t)] dt +

p−1∑
j=1

I j(un(t j))v(t j)
∣∣∣∣∣ ≤ εn‖v‖H1

T
.

(3.4)

By a standard argument, it suffices to show that {un} is bounded when verifying the
(PS)-condition.

Taking v(t) ≡ −1 in (3.4),∣∣∣∣∣ ∫ T

0
(b(t) fλ(un(t)) − e(t)) dt −

p−1∑
j=1

I j(un(t j))
∣∣∣∣∣ ≤ εn

√
T for all n.
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By (S3), ∣∣∣∣∣ ∫ T

0
b(t) fλ(un(t)) dt

∣∣∣∣∣ ≤ εn

√
T +

∣∣∣∣∣ ∫ T

0
e(t) dt

∣∣∣∣∣ +

p−1∑
j=1

|I j(un(t j))|

≤ εn

√
T +

∣∣∣∣∣ ∫ T

0
e(t) dt

∣∣∣∣∣ + (p − 1)M := c2.

Note that, for any t ∈ [0, T ], b(t) fλ(un(t)) < 0. Thus∫ T

0
|b(t) fλ(un(t))| dt =

∣∣∣∣∣ ∫ T

0
b(t) fλ(un(t)) dt

∣∣∣∣∣ ≤ c2.

On the other hand, take, in (3.4),

v(t) ≡ wn(t) := un(t) − ūn, where ūn =
1
T

∫ T

0
un(t) dt.

By [23, Proposition 1.1],

c3‖wn‖H1
T
≥

∫ T

0
(w′n(t)2 − b(t) fλ(un(t))wn(t) + e(t)wn(t)) dt +

p−1∑
j=1

I j(un(t j))wn(t j)

≥ ‖w′n‖
2
L2 − (c2 + ‖e‖L1 )‖wn‖L∞ + (p − 1)m‖wn‖L∞

= ‖w′n‖
2
L2 − (c2 + ‖e‖L1 − (p − 1)m)‖wn‖L∞

≥ ‖w′n‖
2
L2 − c4‖wn‖H1

T
,

where c3 and c4 are two positive constants. Thus,

‖w′n‖
2
L2 ≤ (c3 + c4)‖wn‖H1

T
.

Consequently, using the Wirtinger inequality, we see that there exists c5 > 0 such that

‖u′n‖
2
L2 ≤ c5. (3.5)

Now suppose that
‖un‖H1

T
→ +∞ as n→ +∞.

Since (3.5) holds, we have, passing to a subsequence if necessary, that either

Mn := max un→ +∞ as n→ +∞ or

mn := min un→−∞ as n→ +∞.

(i) Assume that the first possibility occurs. By (S3) and the fact that fλ < 0,∫ T

0
(b(t)Fλ(un(t)) − e(t)un(t)) dt −

p−1∑
j=1

∫ un(t j)

0
I j(s) ds

≥

∫ T

0

((∫ un(t)

1
b(t) fλ(s) ds

)
− e(t)un(t)

)
dt − (p − 1)MMn

https://doi.org/10.1017/S0004972711003509 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003509


[7] Impulsive periodic solutions for singular problems via variational methods 199

=

∫ T

0

((∫ Mn

1
b(t) fλ(s) ds −

∫ Mn

un(t)
b(t) fλ(s) ds

)
− e(t)un(t)

)
dt − (p − 1)MMn

=

∫ T

0
b(t)Fλ(Mn) dt −

∫ T

0
Mne(t) dt −

∫ T

0

(∫ Mn

un(t)
(b(t) fλ(s) − e(t)) ds

)
dt

− (p − 1)MMn

≥ Fλ(Mn)
∫ T

0
b(t) dt − Mn

∫ T

0
e(t) dt +

∫ T

0
(Mn − un(t))e(t) dt

− (p − 1)MMn

≥ Fλ(Mn)
∫ T

0
b(t) dt − Mn

∫ T

0
e(t) dt − ‖e‖L1‖Mn − un‖C − (p − 1)MMn.

Thus, using Sobolev and Poincaré’s inequalities,

−

(
(p − 1)M +

∫ T

0
e(t) dt

)
Mn

≤

∫ T

0

(
b(t)Fλ(un(t)) − e(t)un(t)

)
dt −

p−1∑
j=1

∫ un(t j)

0
I j(s) ds +

√
T‖e‖L1‖u′n‖L2

− Fλ(Mn)
∫ T

0
b(t) dt

=

∫ T

0

(
b(t)Fλ(un(t)) − e(t)un(t)

)
dt −

p−1∑
j=1

∫ un(t j)

0
I j(s) ds +

√
T‖e‖L1‖u′n‖L2

−

∫ T

0
b(t) dt

α − 1

( 1

Mα−1
n
− 1

)
.

From (3.3), (3.5) and the fact that 1/Mα−1
n → 0 as n→ +∞, we see that the right-hand

side of the above inequality is bounded, which is a contradiction.
(ii) Assume that the second possibility occurs, that is, mn→−∞ as n→ +∞. We

replace Mn by mn in the preceding arguments, and we also get a contradiction.
Therefore, Φλ satisfies the Palais–Smale condition.

Step 2. Let

Ω =

{
u ∈ H1

T

∣∣∣∣∣ min
t∈[0,T ]

u(t) > 1
}
,

and

∂Ω = {u ∈ H1
T |u(t) ≥ 1 for all t ∈ (0, T ), ∃tu ∈ (0, T ) : u(tu) = 1}.

We show that there exists d > 0 such that infu∈∂Ω Φλ(u) ≥ −d whenever λ ∈ (0, 1).
For any u ∈ ∂Ω, there exists some tu ∈ (0, T ) such that mint∈[0,T ] u(t) = u(tu) = 1.
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By (3.2), (S4) and extending the functions by T -periodicity,

Φλ(u) =

∫ tu+T

tu

(1
2
|u′(t)|2 − b(t)Fλ(u(t)) + e(t)u(t)

)
dt +

p−1∑
j=1

∫ u(t j)

0
I j(s) ds

≥
1
2

∫ tu+T

tu

|u′(t)|2 dt +
1

α − 1

∫ tu+T

tu

b(t)
(
1 −

1
u(t)α−1

)
dt

+

∫ tu+T

tu

e(t)(u(t) − 1) dt +

∫ tu+T

tu

e(t) dt

≥
1
2

∫ tu+T

tu

|u′(t)|2 dt +

∫ tu+T

tu

e(t)(u(t) − 1) dt +

∫ tu+T

tu

e(t) dt.

By the Schwarz inequality,

Φλ(u) ≥ 1
2‖(u(·) − 1)′‖2L2 − ‖e‖L2 · ‖(u(·) − 1)‖L2 − ‖e‖L1 .

Applying Poincaré’s inequality to u(·) − 1,

Φλ(u) ≥ 1
2‖u

′‖2L2 − γ‖e‖L2 · ‖u′‖L2 − ‖e‖L1 ,

where γ = γ(tu). The above inequality shows that

Φλ(u)→ +∞ as ‖u′‖L2 → +∞.

Since mint∈[0,T ] u(t) = 1, we have that ‖u(·) − 1‖H1
T
→ +∞ is equivalent to ‖u′‖L2 →

+∞. Hence
Φλ(u)→ +∞ as ‖u‖H1

T
→ +∞, ∀u ∈ ∂Ω,

which shows that Φλ is coercive. Thus it has a minimising sequence. The weak lower
semicontinuity of Φλ yields

inf
u∈∂Ω

Φλ(u) > −∞.

It follows that there exists d > 0 such that infu∈∂Ω Φλ(u) > −d for all λ ∈ (0, 1).

Step 3. We prove that there exists λ0 ∈ (0, 1) with the property that, for every
λ ∈ (0, λ0), any solution u of problem (3.1) satisfying Φλ(u) > −d is such that
minu∈[0,T ] u(t) ≥ λ0, and hence u is a solution of problem (1.1)–(1.2).

Assume, to the contrary, that there are sequences {λn}n∈N and {un}n∈N such that:

(i) λn ≤ 1/n;
(ii) un is a solution of (3.1) with λ = λn;
(iii) Φλn (un) ≥ −d;
(iv) mint∈[0,T ] un(t) < 1/n.

Since fλn < 0 and
∫ T

0
(b(t) fλn (un(t)) − e(t)) dt = 0,

‖b(·) fλn (un(·))‖L1 ≤ c6, for some constant c6 > 0.
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Hence
‖u′n‖L∞ ≤ c7, for some constant c7 > 0. (3.6)

From Φλn (un) ≥ −d, it follows that there must exist two constants l1 and l2, with
0 < l1 < l2 such that

max{un(t); t ∈ [0, T ]} ⊂ [l1, l2].

If not, un would tend uniformly to 0 or +∞. In both cases, by (S2)–(S3) and (3.6),

Φλn (un)→−∞ as n→ +∞,

which contradicts Φλn (un) ≥ −d.
Let τ1

n, τ
2
n be such that, for n large enough,

un(τ1
n) =

1
n
< l1 = un(τ2

n).

Multiplying the differential equation in (3.1) by u′n and integrating the equation on
[τ1

n, τ
2
n], or on [τ2

n, τ
1
n],

Ψ :=
∫ τ2

n

τ1
n

u′′n (t)u′n(t) dt +

∫ τ2
n

τ1
n

b(t) fλn (un(t))u′n(t) dt

=

∫ τ2
n

τ1
n

e(t)u′n(t) dt.

(3.7)

It is easy to verify that
Ψ = Ψ1 + 1

2 (u′2n (τ2
n) − u′2n (τ1

n)),

where

Ψ1 =

∫ τ2
n

τ1
n

b(t) fλn (un(t))u′n(t) dt.

From (S2), (3.6) and (3.7) it follows that Ψ is bounded, and consequently Ψ1 is
bounded.

On the other hand, it is easy to see that

b(t) fλn (un(t))u′n(t) =
d
dt

(b(t)Fλn (un(t))) − b′(t)Fλn (un(t)).

Thus, by (S1),

Ψ1 = b(τ2
n)Fλn (l1) − b(τ1

n)Fλn

(1
n

)
−

∫ τ2
n

τ1
n

b′(t)Fλn (un(t)) dt

≤ b(τ2
n)Fλn (l1) − b(τ1

n)Fλn

(1
n

)
−

1
α − 1

∫ τ2
n

τ1
n

b′(t)
( 1

l2α−1
− 1

)
dt.

From the fact that Fλn (1/n)→ +∞ as n→ +∞, we obtain Ψ1→−∞, that is, Ψ1 is
unbounded. This is a contradiction.
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Step 4. We show that Φ has a mountain pass geometry for λ ≤ λ0.
Fix λ ∈ (0, λ0]. Then

Fλ(0) =

∫ 0

1
fλ(s) ds = −

∫ 1

0
fλ(s) ds

= −

∫ λ

0
fλ(s) ds −

∫ 1

λ

fλ(s) ds

=
1

λα−1
−

∫ 1

λ

fλ(s) ds,

which implies that

Fλ(0) > −
∫ 1

λ

fλ(s) ds =

∫ λ

1
fλ(s) ds = Fλ(λ).

Hence

Φλ(0) = −Fλ(0)
∫ T

0
b(t) dt < −Fλ(λ)

∫ T

0
b(t) dt

= −

∫ T

0
b(t) dt

α − 1

( 1
λα−1

− 1
)
.

(3.8)

Consider λ ∈ (0, λ0] such that

1
λα−1

> 1 +
d(α − 1)∫ T

0
b(t) dt

.

Thus it follows from (3.8) that Φλ(0) < −d.
Also, using (S3), we can choose R > 1 large enough that

−

(
M(p − 1) +

∫ T

0
e(t) dt

)
R −

∫ T

0
b(t) dt

α − 1

(
1 −

1
Rα−1

)
> d.

Then,

Φλ(R) =

p−1∑
j=1

∫ R

0
I j(s) ds − Fλ(R)

∫ T

0
b(t) dt + R

∫ T

0
e(t) dt

≤ M(p − 1)R +
1

α − 1

(
1 −

1
Rα−1

) ∫ T

0
b(t) dt + R

∫ T

0
e(t) dt

=

(
M(p − 1) +

∫ T

0
e(t) dt

)
R +

∫ T

0
b(t) dt

α − 1

(
1 −

1
Rα−1

)
< −d.

Since Ω is a neighbourhood of R, 0 <Ω and

max{Φλ(0), Φλ(R)} < inf
x∈∂Ω

Φλ(u).
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Steps 1 and 2 imply that Φλ has a critical point uλ such that

Φλ(uλ) = inf
h∈Γ

max
s∈[0,1]

Φλ(h(s)) ≥ inf
x∈∂Ω

Φλ(u),

where
Γ = {h ∈C([0, 1], H1

T ) : h(0) = 0, h(1) = R}.

Since infu∈∂Ω Φλ(uλ) ≥ −d, it follows from Step 3 that uλ is a solution of problem
(1.1)–(1.2). The proof of the main result is complete. �

4. An example

Consider the impulsive singular problem
u′′ −

b(t)
uα

= e(t), a.e. t ∈ (0, T ),

∆u′(t j) = I j(u(t j)), j = 1, 2, . . . , p − 1,

u(0) − u(T ) = u′(0) − u′(T ) = 0,

(4.1)

where α > 1, p ≥ 2 and T > 0. Take b ∈ C1([0, T ], (0,∞)) such that b′(t) ≥ 0 for all t ∈
[0, T ], I j(t) = sin t, t ∈ R and e ∈ L2([0, T ], R) such that

∫ T

0
e(t) dt < −(p − 1). Choose

m = −1 and M = 1. Then (S1)–(S4) in Theorem 1.1 hold. Therefore, problem (4.1) has
at least one periodic solution.
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